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A method that uses a structured grid to perform micromechanical analysis for determining effective
properties of a composite microstructure is presented. This approach eliminates the need for constructing
a mesh that has nodes along the interfaces between constituent materials of the composite. Implicit
boundary method is used to ensure that interface conditions are satisfied at the material boundaries.
In this method, solution structures for test and trial functions are constructed using approximate step
functions such that the interface conditions are satisfied, even if there are no nodes on the material inter-
face boundary. Since a structured grid does not conform to the geometry of the analysis domain, the
geometry of the microstructure is defined independently using equations of the interface boundary
curves/surfaces. Structured grids that overlap the geometry are easy to generate, and the elements in
the grid are regular shaped and undistorted. A numerical example is presented to demonstrate that
the proposed solution structure accurately models the solution across material interface, and conver-
gence analysis is performed to show that the method converges as the grid density is increased. Fiber
reinforced microstructures are analyzed to compute the effective elastic properties using both 2D and
3D models to show that the results match closely with the ones available in the literature.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The finite element method (FEM) is a well established numeri-
cal method for solution of engineering analysis problems and has
been used extensively in micromechanical analysis of composite
microstructures to determine effective properties (Sun and Vaidya,
1996; Taliercio, 2005; Xia et al., 2003; Marrey and Sankar, 1997;
Zhu et al., 1998). The effective elastic properties are determined
by performing six different analyses on the representative volume
element (RVE) of the composite. In each of the analysis, one of the
six macro-strains (average strain over the RVE) is kept non-zero
while the remaining five macro-strains are set to zero. This is
accomplished by imposing appropriate periodic boundary condi-
tions on the outer surfaces of the RVE. The mesh is generated in
such a way that the element boundaries conform to the matrix–
inclusion interfaces. However, for complicated microstructures,
automatic mesh generation becomes difficult and special tech-
niques and algorithms need to be developed (Kim and Swan,
2003) to generate a quality mesh with quadrilateral or hexahedral
elements. Automatic mesh generation algorithms are available that
work acceptably for most 2D problems but can be unreliable for
some 3D geometries often resulting in poor or distorted elements
in some regions that can lead to large error in the solution. Signif-
ll rights reserved.

: +1 352 392 1071.
icant amount of user intervention is sometimes needed to correct
such problems. For example, in the analysis of composite micro-
structures involved in textile composites, the automatic mesh gen-
eration often becomes difficult and one of the main problems is
meshing the interfacial region as shown in Kim and Swan (2003).
This region is multiply connected, posing difficulties in mesh gen-
eration. Furthermore, to impose periodic boundary conditions
using multipoint constraints, it is convenient to ensure that there
is a one-to-one correspondence between nodes on the opposite
faces of the RVE. This requirement adds further difficulties to the
mesh generation process.

In order to avoid these problems associated with the mesh gen-
eration process, several meshless techniques have been developed
in the past two decades. Some of the popular meshless techniques
include Element Free Galerkin Method (Belytschko et al., 1994,
1996), Meshless Local Petrov–Galerkin Method (Atluri and Zhu,
1998), Method of Finite Spheres (De and Bathe, 2000), Method of
hp Clouds (Oden et al., 1998) and Natural Element Method (Suku-
mar et al., 2001). These methods differ from each other in the
choice of basis functions, numerical integration schemes, weak
form employed or the techniques used for imposing essential
boundary conditions. Element Free Galerkin Method has been ex-
tended to incorporate discontinuous derivatives (Cai and Zhu,
2004; Cordes and Moran, 1996; Krongauz and Belytschko, 1998)
for application to multi-material problems. Similarly, MLPG meth-
od has also been extended to incorporate material discontinuity
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and enable micromechanical analysis (Dang and Sankar, 2007). An
alternative to meshless methods is structured grid based methods
for analysis that avoid the need for a mesh that conforms to the
geometry and interface boundaries. Extended finite element method
or X-FEM developed by Belytschko (Belytschko et al., 2003) is one
such method that uses implicit equations for definition of the geom-
etry of the analysis domain, and the essential boundary conditions
are applied using Lagrange multipliers. Another approach for apply-
ing boundary condition for structured grid based analysis involves
using implicit equations to construct solution structures that are
designed to automatically satisfy the essential boundary conditions
(Kantorovich and Krylov, 1958; Shapiro and Tsukanov, 1999; Höllig,
2003; Kumar et al., 2007). An implicit equation of a curve/surface is
an equation of the form /(x) = 0, which divides the space (a line in
one-dimension, a plane in two-dimensions, and 3D space in three-
dimensions) into two half-spaces. The first half-space given be /
(x) > 0 could be considered the inside of the solid region and the
other half-space /(x) < 0 will then be considered the outside of the
solid region. The scalar function /(x) is often referred to as the char-
acteristic function. Shapiro (Shapiro and Tsukanov, 1999) and Höllig
(Höllig, 2003) also use structured grids for the analysis where they
use specialized implicit equations (termed R-functions) to define
the boundaries. A structured grid is much easier to generate as com-
pared to a finite element mesh and all the elements in the grid have
regular geometry. However, the nodes are not guaranteed to lie on
the boundary, this necessitates the use of special techniques for
imposing boundary conditions. Kumar et al. (2007) have developed
implicit boundary method for applying boundary conditions for
analysis using a structured grid where approximate step functions
are used to construct solution structures that satisfy boundary
conditions.

In this paper, an extended finite element method is developed
for micromechanical analysis in which implicit boundary method
is used to ensure that interface conditions are satisfied. The impli-
cit boundary method involves using approximate step functions to
construct solution structures that allow discontinuous gradients
across the interface boundary even though there may not be any
nodes of the grid on this boundary. The representative volume ele-
ment for many microstructures is a rectangle/cuboid and hence a
structured grid can always be constructed such that nodes are
present on the RVE boundaries. This feature is exploited to incor-
porate periodic boundary conditions using the classical techniques
of multipoint constraints (Cook et al., 2003). For 2D problems,
plane strain formulation is used to determine the transverse elastic
and shear moduli and the corresponding Poisson’s ratios; general-
ized plane strain formulation (Li and Lim, 2005) is used to deter-
mine the longitudinal elastic modulus and longitudinal shear
moduli are determined by using longitudinal shear formulation
as described by Adams and Crane (1984) and Zhu et al. (1998).
However for 3D problems, no idealization is necessary and all
the elastic and shear moduli are determined by 3D stress formula-
Matrix Inclusion Grid

Fig. 1. Structured grids used to m
tion. The rest of the paper is organized as follows: In Section 2, the
solution structure constructed using step functions is presented
along with the corresponding modified weak form for elastostatic
problems. Methods for imposing periodic boundary conditions
are presented in Section 3. Section 4 describes efficient numerical
implementation scheme for computation of various terms in the
modified weak form. Computation of effective properties based
on plane strain, generalized plane strain and longitudinal shear
strain conditions are presented in Section 5. Numerical examples
are presented to demonstrate validity and convergence of the solu-
tion structure in Section 6. This section also presents examples in
2D and 3D to determine effective elastic properties. The results
are compared with FEM and results available in the literature.

2. Solution structure for modeling material discontinuity

In the finite element method, the mesh is created such that the
element edges/faces form the material interface boundary. When
structured grids are used for analysis, the nodes may not lie on
the material interface and hence there is challenge in imposing
interface conditions for material discontinuity. A solution structure
is described here that is obtained by blending together the solu-
tions represented using two identical overlapping grids, corre-
sponding to the matrix (grid 1) and the inclusion (grid 2), as
shown in Fig. 1 where only the elements that contribute to the
solution from each grid are shown.

If ug1 and ug2 are fields constructed by piecewise interpolation
within the elements of grids 1 and 2, respectively, the solution
structure for the displacement field within the RVE can be con-
structed as

u ¼ ð1� HincÞug1 þ Hincug2 ð1Þ

In the preceding equation, Hinc is an approximate step function of
the inclusion which has a unit value within the inclusion and transi-
tions sharply to zero at the boundary of the inclusion as shown in
Fig. 2. We shall refer to this approximate step function as the inclu-
sion function. Implicit equations of the boundaries of the inclusion
material will be used to construct this approximate step function
and used to blend the solution from the inclusion grid and matrix
grid to form a solution structure as shown in Eq. (1).

Fig. 2 shows a plot of the inclusion function in one-dimension
but an expression for this function can be constructed for arbitrary
dimension using an implicit equation the interface boundary. Let
/(x) = 0 be the implicit equation of the interface boundary be-
tween two materials such that / > 0 represents the region occu-
pied by the inclusion material. Then, an expression for the
inclusion function can be constructed as follows:

Hincð/Þ ¼
0 / 6 0

1� 1� /
d

� �k
0 6 / 6 d

1 / P d

8><
>: ð2Þ
1 Grid 2

odel matrix and inclusion.
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Fig. 2. Approximate step function of inclusion.
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It can be seen that the inclusion function is unity inside the
inclusion and transitions to zero at the boundary of the inclusion
with a non-zero slope determined by the parameter d. This func-
tion is a shifted approximate step function that tends to the Heav-
iside step function in the limit as d ? 0 but has a value of zero on
the boundary unlike in traditional approximations of step func-
tions where it has value of 0.5 (Osher and Fedkiw, 2002). Moreover,
for allowing discontinuity in the normal strain, Hinc(/) is con-
structed to have non-zero and discontinuous gradient at / = 0. At
/ = d this function has Ck�1 continuity. In this paper, the step func-
tion approximation of Hinc with k = 2 and very small value of d is
used as inclusion function with values of d � 10�2 or smaller.

The solution structure in Eq. (1) combines the solution from
both grids (Fig. 1) to represent the solution in the analysis domain.
When the inclusion function is unity, the solution is given by
u = ug2, which is the solution from the inclusion part and when
the inclusion function is zero, the solution is given by u = ug1,
which is the solution from the matrix. In the region where the
inclusion function varies from zero to unity, the solution is a blend
of the solutions from matrix grid and inclusion grid. This way of
constructing solution structure ensures the displacement continu-
ity of the solution through out the analysis domain. It also allows
the normal strain to be discontinuous at the interface. This prop-
erty can be seen from the gradients of the solution structure as
shown below.

@ui

@xj
¼ ð1� HincÞ @ug1

i

@xj
� @Hinc

@xj
ug1

i þ Hinc @ug2
i

@xj
þ @Hinc

@xj
ug2

i

 !
ð3Þ

In this expression, the first term: ð1� HincÞ @ug1
i

@xj
and third term

Hinc @ug2
i

@xj
are continuous at the interface boundary while the second

term: � @Hinc

@xj
ug1

i and fourth term @Hinc

@xj
ug2

i are discontinuous at the
interface boundary because @Hinc

@xj
is zero for / < 0 and non-zero for

0 < / < d. Therefore these terms provide independent slopes on
the two sides of the interface allowing discontinuous normal
strains when necessary and at the same time producing a continu-
ous strain if ug1

i ¼ ug2
i .

2.1. Modified weak form

The weak form of the elastostatic boundary value problem is
the principle of virtual work which can be written in the following
form:Z

X
fdegTfrgdX ¼

Z
Ct

fdugTftgdCþ
Z

X
fdugTfbgdX ð4Þ

Here {de} is the virtual strain, {r} is the Cauchy stress tensor, {t}
is the traction vector, {du} is the virtual displacement and {b} is the
body force. For elastostatic problems, the essential boundary con-
ditions are displacements {u} = {u0} specified on Cu and the natural
boundary conditions are traction {t} = {t0} specified on Ct.

The displacements within the grid elements are interpolated as
ug1

i ¼ Nju
g1
ij for the grid corresponding to matrix and ug2

i ¼ Nju
g2
ij for

the inclusion grid where, Nj are the shape functions and ug1
ij is the
ith component of displacement for the jth node of the element.
Then, based on the solution structure in Eq. (1), the displacement
vector within an element can be expressed as:

fug ¼ N
� �
fXeg ¼ N1

� �
N2
� �h i fXg1g

fXg2g

� �
ð5Þ

where, the nodal displacement vector for the element, {Xe}, is par-
titioned into nodal values from grid 1 and grid 2. {Xg1} are the nodal
values corresponding to grid 1 and {Xg2} are the nodal values corre-
sponding to grid 2. The matrices ½Ni� can be expressed as:

½N1�T ¼ ð1� HincÞ½N� ð6Þ
½N2�T ¼ Hinc½N� ð7Þ
½N� ¼ ½N1� ½N2� � � � ½Nn�½ � ð8Þ

½Ni� ¼
Ni 0
0 Ni

� 	
ð9Þ

Similarly, the virtual displacements can be expressed as
fdug ¼ ½N�fdXeg. The strains for 2D models can be computed for
each element using the following expression:

e1

e2

c12

8><
>:

9>=
>;¼

@u1

@x1

@u2

@x2

@u1

@x2
þ @u2

@x1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ B1

� �
B2
� �h i fXg1g

fXg2g

� �
¼ B1

� �
B2
� �h i

fXeg

ð10Þ

In the above expression, ½B� ¼ ½B1� ½B2�
� �

is the modified
strain–displacement matrix and is a combination of strain–dis-
placement matrices from the two grids. For the 2D strain vector
in Eq. (10), the components of the strain–displacement matrix
can be expressed as:

B1
� �

¼ ð1� HincÞ½B� � ½H�½N� ð11Þ
B2
� �

¼ Hinc½B� þ ½H�½N� ð12Þ

where

½B� ¼ ½B1� ½B2� � � � ½Bn�½ � ð13Þ

½Bi� ¼

@Ni

@x1
0

0
@Ni

@x2

@Ni

@x2

@Ni

@x1

2
66666664

3
77777775

ð14Þ

½H� ¼

@Hinc

@x1
0

0
@Hinc

@x2

@Hinc

@x2

@Hinc

@x1

2
666666664

3
777777775

ð15Þ
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The expression for stress is given as ri = Cijej, where Cij are the
elasticity coefficients. In the computation of stress, the inclusion or
matrix elasticity coefficients are used when the strains are evaluated
in the inclusion or matrix region, respectively. The modified weak
form takes the following discrete form when the above expressions
for stress and strain are incorporated into the weak form:

XNE

e¼1

fdXegT
Z

Xe

B1
� �

B2
� �h iT

½C� B1
� �

B2
� �h i

fXegdX

¼
XNE

e¼1

fdXegT
Z

Xe

½N�TfbgdXþ
XNBE

e¼1

fdXegT
Z

Ct

½N�TftgdC ð16Þ

In this expression, the summation is over the number of ele-
ments (NE) and the number of boundary elements (NBE) in the grid
used for analysis. As in the finite element method, these element
matrices can be assembled to form global equations, where the left
hand side terms form the stiffness matrix and the right hand side
the force vector.

3. Periodic boundary conditions

The inhomogeneous composite material can be assumed to be
made of infinite number of periodic arrangement of identical cells
A

C

E

G

X, 2

Y, 3

Z, 1

Fig. 4. Representative volume element used for computation o

F1

F2

F3

F4

Fig. 3. Un-deformed and deformed configuration of a set of 4 RVEs.
such that its behavior can be predicted by analyzing the behavior
of one of the cells. When the material is not periodic then it is often
possible to define a representative volume element (RVE) if the
material is homogenous at a macro-scale. In order to analyze the
behavior at the micro-scale, the RVE is analyzed with appropriate
loading and boundary conditions. The RVEs tile the computational
domain by translation such that the neighboring cells must fit into
each other in both deformed and un-deformed states. Hence the
boundary conditions for the RVE should be periodic in order to pre-
serve the continuity of displacements, strains and stresses across
each RVE. The periodic boundary conditions are expressed as linear
constraints and they are implemented as multipoint constraints in
the finite element method. The following figure shows the neces-
sity of periodic boundary conditions. It can be seen that deforma-
tion of the edges (faces) should be periodic to preserve continuity.

The periodic boundary conditions are expressed in the follow-
ing form:

uF1 � uF3 ¼ const or in general uF1 � k1uF3 þ l1 ¼ 0 ð17aÞ
uF2 � uF4 ¼ const or in general uF2 � k2uF4 þ l2 ¼ 0 ð17bÞ

In the preceding equation, uF1 and uF3 are displacement compo-
nent at corresponding points on the opposing faces F1 and F3, respec-

tively, as shown in Fig. 3. Similarly, uF2 and uF4 are displacement
component on faces F2 and F4 and ki and li are constants. The mul-
tipoint constraints were implemented exactly as is done in tradi-
tional finite element method (Cook et al., 2003). Structured grid
with elements that use Lagrange interpolations functions were
used for all the examples in this paper. Rectangular or cuboid
RVE were uniformly divided to generate the grid such that identi-
cal nodes are present on all the edges/faces of the RVE to facilitate
the imposition of periodic boundary conditions. This is obviously
easier to accomplish for structured grids than for finite element
mesh because it is not necessary to have nodes on interface bound-
aries and identical grid nodes are automatically present on oppo-
site faces of the RVE. Fig. 4 shows a typical RVE used to model
the microstructure of fiber reinforced composite where the coordi-
nate system is chosen such the x1 direction corresponds to the fiber
direction. The figure also shows the naming convention used to re-
fer to the various faces of the RVE.

Table 1 shows the periodic boundary conditions needed on the
various faces of the RVE to impose six independent unit macro-
B

D

F

H

Front Face: ABFE

Back Face: CDHG
Left Face: ACGE
Right Face: BDHF
Top Face: EFHG
Bottom Face: ABDC

f effective properties of a unidirectional fiber composite.



Table 1
Periodic boundary conditions for the six independent macro-strains.

Case Unit strain Front and back face Left and right face Top and bottom face

1 e11 uf
1 ¼ ubk

1 þ L; uf
2 ¼ ubk

2 ; uf
3 ¼ ubk

3 ur
1 ¼ ul

1; ur
2 ¼ ul

2; ur
3 ¼ ul

3 ut
1 ¼ ub

1; ut
2 ¼ ub

2; ut
3 ¼ ub

3
2 e22 uf

1 ¼ ubk
1 ; uf

2 ¼ ubk
2 ; uf

3 ¼ ubk
3 ur

1 ¼ ul
1; ur

2 ¼ ul
2 þ L; ur

3 ¼ ul
3 ut

1 ¼ ub
1; ut

2 ¼ ub
2; ut

3 ¼ ub
3

3 e33 uf
1 ¼ ubk

1 ; uf
2 ¼ ubk

2 ; uf
3 ¼ ubk

3 ur
1 ¼ ul

1; ur
2 ¼ ul

2; ur
3 ¼ ul

3 ut
1 ¼ ub

1; ut
2 ¼ ub

2; ut
3 ¼ ub

3 þ L
4 c23 uf

1 ¼ ubk
1 ; uf

2 ¼ ubk
2 ; uf

3 ¼ ubk
3 ur

1 ¼ ul
1; ur

2 ¼ ul
2; ur

3 ¼ ul
3 þ L ut

1 ¼ ub
1; ut

2 ¼ ub
2; ut

3 ¼ ub
3

5 c13 uf
1 ¼ ubk

1 ; uf
2 ¼ ubk

2 ; uf
3 ¼ ubk

3 þ L ur
1 ¼ ul

1; ur
2 ¼ ul

2; ur
3 ¼ ul

3 ut
1 ¼ ub

1; ut
2 ¼ ub

2; ut
3 ¼ ub

3
6 c12 uf

1 ¼ ubk
1 ; uf

2 ¼ ubk
2 ; uf

3 ¼ ubk
3 ur

1 ¼ ul
1; ur

2 ¼ ul
2; ur

3 ¼ ul
3 ut

1 ¼ ub
1 þ L; ut

2 ¼ ub
2; ut

3 ¼ ub
3

Matrix Region

Inclusion Region

Varying Hinc Region

Fig. 5. Division of computational domain into three regions.
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strain components. In the table, uf
i stands for the ith displacement

component on the front face. Similarly, the superscripts: bk, r, l, t
and b are used for back, right, left, top and bottom faces of the
RVE. The RVE is assumed to be a cube of side length L.

The nodes on the faces (or edges in 2D) of the RVE can be par-
titioned into two parts: independent or master nodes (m) and
dependent or slave nodes (s). The displacement vector can be sim-
ilarly partitioned into u = [umus], where um are displacement of the
master nodes and us are those of slave nodes. The displacements
for the slave nodes are specified in terms of the master nodes in
the following form us = G1um + g1, where g1 is the non-zero peri-
odic boundary conditions (e.g., Case 1: uf

1 ¼ ubk
1 þ L). Hence the dis-

placements are expressed as:

u ¼
um

us

� 	
¼

I
G1

� 	
½um� þ

0
g1

� 	
¼ G½um� þ g ð18Þ

where I denotes the identity matrix and 0 is the zero vector. The
matrices G and g are constructed globally for all the master degrees
of freedom present in the analysis model. Using this expression for
displacement and a similar expression of the corresponding virtual
displacement du = G[dum] in the weak form, the global stiffness ma-
trix is transformed into K0 = GTKG and the load vector is increased
by�GTKg to impose the multipoint constraints. It is to be noted that
in a general case of multipoint constraints, G and g are constructed
such that they may be a fully populated matrix and vector, respec-
tively. However, when structured grids are used for analysis, iden-
tical nodes are guaranteed to be present on the opposite faces and
hence with proper choice of node numbers, G matrix can be con-
structed to be a diagonal matrix. This simplifies the computations
involved in the transformation of the stiffness matrix and hence
leads to efficient implementation.

4. Numerical implementations

The solution structure presented in the previous section is such
that the contribution from the matrix grid is suppressed by the
inclusion function within the inclusion and similarly the solution
from inclusion grid does not contribute to the solution outside
the inclusion. Therefore, the elements of the matrix grid that are
completely inside the inclusion and the elements of the inclusion
grid that are entirely outside the inclusion can be removed from
the analysis by setting to zero the nodal values of nodes that be-
long only to these elements. This leads to a reduction in the total
number of degrees of freedom for the analysis model. Furthermore,
only the elements through which the interface boundary passes
will have active overlapping elements from both the grids.

The strain–displacement matrix was decomposed into two
parts ½B1� and ½B2� that correspond to the overlapping matrix and
inclusion grid elements, respectively. These matrices were further
decomposed into the part that depends on the gradient of the
shape functions [B] and the part that depends on the gradient of
the inclusion function [H]. It can be noticed that some of these
components of the strain–displacement matrix vanish in certain
regions of the computational domain and are non-zero in other
parts of computational domain depending on where the inclusion
function and its gradients vanish. Therefore, the elements in the
grid are divided into three types: elements that are in the matrix
region, elements that are in the inclusion region and those that
contain the interface region as shown in Fig. 5.

Matrix region: For elements that are in the matrix region, only
the degrees of freedom for grid corresponding to matrix are active,
therefore the strain–displacement matrix becomes ½B� ¼
½B1� ½B2�
� �

¼ ½B� 0½ � because Hinc = 0 everywhere in the matrix.
Therefore, the stiffness matrix will take the following form in ma-
trix region:

½K� ¼
Z

Xe

B1
� �

B2
� �h iT

½Cmat� B1
� �

B2
� �h i

dV ¼
Z

Xe

½B�T½Cmat�½B� 0
0 0

" #
dV

ð19Þ

Inclusion region: In this region the degrees of freedom for grid corre-
sponding to inclusion are active. The strain–displacement matrix
becomes ½B� ¼ ½B1� ½B2�

� �
¼ 0 ½B�½ � because Hinc = 1 everywhere

within the inclusion. The stiffness matrix is expressed as:

½K� ¼
Z

Xe

B1
� �

B2
� �h iT

½Cinc� B1
� �

B2
� �h i

dV ¼
Z

Xe

0 0
0 ½B�T½Cinc�½B�

� 	
dV

ð20Þ

Interface region: In this region, the approximate step function
transitions from zero to unity. Elements from both grids contribute
to the solutions within the element and strain–displacement matrix
becomes ½B� ¼ ½B1� ½B2�

� �
. The stiffness matrix is expressed as:

½K� ¼
R

Xe
B1
� �

B2
� �h iT

½C� B1
� �

B2
� �h i

dV

¼
R

Xe

B1
� �T½C� B1

� �
B1
� �T½C� B2

� �
B2
� �T½C� B1

� �
B2
� �T½C� B2

� �
2
4

3
5dV ¼

½K11� ½K12�
½K21� ½K22�

� 	

ð21Þ

In this expression [C] = [Cinc] or [Cmat] depending on which re-
gion is being integrated upon. Each of the terms in this matrix
can be decomposed as a sum of volume integral and a surface inte-
gral. The procedure for this decomposition is described in detail for
[K11].

½K11� ¼
Z

Xe

B1
� �T

C½ � B1
� �

dX ¼ Kð1Þ11

h i
þ Kð2Þ11

h i
þ Kð3Þ11

h i
þ Kð4Þ11

h i
ð22Þ

Substituting the definition of B1 from Eq. (11), we get,
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½Kð1Þ11 � ¼
R

Xe
fð1� HincÞ2½B�T½C�½B�gdV

½Kð2Þ11 � ¼
R

Xe
fð1� HincÞ½B�T½C�½H�½N�gdV

½Kð3Þ11 � ¼
R

Xe
fð1� HincÞ½N�T½H�T½C�½B�gdV

½Kð4Þ11 � ¼
R

Xe
f½N�T½H�T½C�½H�½N�gdV

ð23Þ

In this expression, the first term ½Kð1Þ11 � is non-zero only outside
the inclusion where Hinc = 0. The integration to compute this com-
ponent is performed by subdividing the element into triangles or
tetrahedra. The remaining three terms ½Kð2Þ11 �; ½K

ð3Þ
11 � and ½Kð4Þ11 � in-

clude the matrix [H] which contains gradients of the approximate
step function. Therefore, these terms are non-zero only in the thin
band along the interface boundary in which the gradient of the
inclusion function is non-zero. This allows the volume integral to
be converted to a surface integral by using very small value of
the range parameter d in Eq. (2). The gradients of inclusion function
has large magnitude within this band when d is made very small so
its contribution to the integral cannot be ignored even though the
band is very narrow. The integral can be converted into a surface
integral by performing a change of coordinates to t, n (tangent
and normal to the boundary) as shown in Fig. 6 and computing
the integral in the normal direction analytically. The integral in
the normal direction is evaluated using the assumption that only
quantities that are a function of the inclusion function Hinc(/)
and its gradients vary across the band and all other quantities
are constant in the normal direction. A change of variable from
spatial coordinate n to the characteristic function / makes this
integral easy to evaluate as shown below where an arbitrary func-
tion f(/) is integrated across the band whose width is n2 � n1.Z n2

n1

f ð/Þdn ¼
Z d

0
f ð/Þ 1

jr/ j d/ ð24Þ

Using the approach described above the last three terms in Eq.
(23) can be converted to surface integrals as shown below:

Kð2Þ11

h i
¼
Z

C
½B�T

Z
/
ð1� HincÞ½C�½H� 1

jr/j d/


 �
½N�

� �
dt

Kð3Þ11

h i
¼
Z

C
½N�T

Z
/
ð1� HincÞ½H�T½C� 1

jr/j d/


 �
½B�

� �
dt ð25Þ

Kð4Þ11

h i
¼
Z

C
½N�T

Z
/
½H�T½C�½H� 1

jr/j d/


 �
½N�

� �
dt

The matrices [B] and [N] are treated as constants and taken out
of the inner integral but they are not constants for the outer inte-
gral which is along the boundary. This decomposition leads to effi-
Matrix Region

Inclusion BoundaryBand

n

t

Inclusion Region

0φ =

φ δ=

Fig. 6. Band with varying inclusion function.
cient and accurate computation of the stiffness matrix. Using the
same approach, the other components of the stiffness matrix can
be evaluated as:

K22½ � ¼ Kð1Þ22

h i
þ Kð2Þ22

h i
þ Kð3Þ22

h i
þ Kð4Þ22

h i
ð26Þ

Using the definition of B2 and converting volume integrals into
surface integrals when possible, we get,

Kð1Þ22

h i
¼
Z

Xe

½B�T
Z

/
Hinc
� 
2

½C� 1
jr/j d/


 �
½B�

� �
dV

Kð2Þ22

h i
¼
Z

C
½B�T

Z
/

Hinc½C�½H� 1
jr/j d/


 �
½N�

� �
dt ð27Þ

Kð3Þ22

h i
¼ Kð2Þ22

h iT

Kð4Þ22

h i
¼ Kð4Þ11

h iT

Similarly, the off-diagonal terms ([K12] = [K21]T) can be evalu-
ated as shown below. Any component containing Hinc(1 � Hinc) is
neglected since this term will be zero in both the inclusion and
the matrix and has small magnitude along the boundary band.

K12½ � ¼ K21½ �T ¼ Kð2Þ11

h i
� Kð3Þ22

h i
� Kð4Þ11

h i
ð28Þ
5. Computation of effective properties

Effective properties of the composite materials with periodic
distribution of microstructures are computed by applying far-field
(macro) strains to the RVE. The displacements, strains and stresses
are assumed to be periodic in the RVE. Hill’s lemma (Qu and Cher-
kaoui, 2006) states that the average of the strain energy in RVE is
same as the strain energy due to average stress and strains. It
can be stated in the form hr:ei = hri:hei, where hai ¼ 1

V

R
V adV rep-

resents the average value of a over the volume V of the RVE. This
property is used to compute the effective properties from an
RVE. The average stresses and strains are computed by solving
the boundary value problem six times with different applied
strains. These average stresses and strains are used in the relation
hri = CHhei or its inverse hei = SH hri to determine a row (or col-
umn) of the homogenized stiffness matrix CH (or SH). In this paper,
six different unit strain states were used to determine all the com-
ponents of SH. The strain–stress relation for orthotropic materials
in the form hei = SHhri is as follows:
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In two-dimensional problems, the effective properties in the
transverse directions are determined by analyzing the model in
plane strain conditions. The longitudinal modulus is computed
by analyzing the model in generalized plane strain conditions.
The longitudinal shear moduli are computed by analyzing the
model in longitudinal shear loading conditions. Each of these cases
is explained in the following sub-sections.

6. Results and discussion

The implicit boundary method for modeling microstructures
described in this paper was implemented by modifying a finite ele-
ment program and will be referred to here as the Implicit Boundary
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Finite Element Method (IBFEM). The shape of the inclusions was
defined using implicit equations of its boundaries. These implicit
equations were used for constructing the solution structure and
for the computation of the stiffness matrix. The periodic boundary
conditions were imposed using multipoint constraints. Several
numerical examples are presented in this section to validate this
approach. The first example is a square plate with a circular inclu-
sion under axial tension. This problem demonstrates the validity of
the solution structure for representing continuous displacements
and discontinuous stress/strain across the interface boundaries.
The second example involves computation of effective properties
of a fiber reinforced composite using two-dimensional formulation
and the third example involves the computation of the same prop-
erties using a three-dimensional model.

6.1. Example 6.1: square plate with a circular inclusion

This example demonstrates the validity of the solution struc-
ture presented in this paper. A circular inclusion of volume fraction
vf = 0.47 as shown in Fig. 7 is modeled in this example. Plane stress
idealization was used assuming elastic properties of the matrix
(aluminum) as: Em = 68.3 GPa and mm = 0.3 and the isotropic fiber
material (boron) properties as: Ef = 379.3 GPa and mf = 0.1. The
solution obtained by IBFEM is compared with the solution ob-
tained by FEM using ABAQUS software. The contour plot of stress
in X-direction is plotted in Fig. 8 and it can be observed that the
stress pattern as computed by FEM matches closely with the stress
pattern as computed by IBFEM. The maximum and minimum val-
Fig. 8. Contour plot of X-stresses (a) FEM
ues for the stresses also match very closely. Convergence analysis
is performed by analyzing a sequence of models and the error in
strain energy is plotted in Fig. 9. The solution from a highly dense
FE model with 12,001 bi-quadratic quadrilateral elements was
used as the exact solution for convergence analysis. The strain en-
ergy from the dense FE model was computed to be 4.273 � 10�6 J
and the error in strain energy for a given grid density is computed
as the difference in computed strain energy and the above value. It
can be observed that the solution converges as the error ap-
proaches to zero when the grid density is increased.

The plots along the line AB are shown in Figs. 10 and 11. Fig. 10
shows the comparison of X-displacement along line AB (see Fig. 7)
with FEM solution. It can be observed that the displacement solu-
tion obtained by IBFEM matches exactly with the FEM solution. A
slope discontinuity can be observed at the inclusion boundary.

Fig. 11 shows the line plots of rxx and exx along the line AB.
Again, the solution for both stresses and strains match exactly with
the FEM solution. The discontinuity in stress and strain can be ob-
served at the inclusion interface.

6.2. Example 6.2: computation of effective properties using a two-
dimensional model

In this example a two-dimensional model is used for computa-
tion of effective properties of a boron–aluminum fiber reinforced
composite with a volume fraction of 0.47. Six different periodic
boundary conditions are applied on the RVE as listed in Table 1.
For determining the effective properties in the transverse direction,
results (ABAQUS) (b) IBFEM results.
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plane strain assumption is used. The constitutive equation for
plane strain is presented in the following equation.
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This stress–strain relation is used in the modified weak form
shown in Eq. (16) for Cases 2, 3 and 4 in Table 1 to solve the bound-
ary value problem and compute the transverse material properties.

In order to determine the homogenized material properties in the
longitudinal direction (Case 1 in Table 1), a generalized plane strain
model (Li and Lim, 2005) is used. In this model, the strains in the lon-
gitudinal directions are specified. A constant strain in the z is as-
sumed and the strains and stresses are expressed as follows:
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Using the constant strain in z-direction, the stresses are written
as follows:
0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

2

2.5x 10−8

Distance along line AB

St
ra

in
 c

om
po

ne
nt

s 
al

on
g 

lin
e 

AB

Abaqus εxx
Abaqus εyy
IBFEM εxx
IBFEM εyy

a b

Fig. 11. (a) Comparison of rxx along line A
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The principle of virtual work (Eq. (16)) is modified by choosing
the virtual strain vector as de ¼ dex dey dcxy

� �T to get the fol-
lowing equation.Z

X
fdegTfrgdX ¼

Z
Ct

fdugTftgdCþ
Z

X
fdugTfbgdX

� fdegT Ck�ez ð33Þ

In this expression, the last term is the load due to prescribed
strain in the third direction. The rest of the formulation is exactly
similar to plane strain formulation. This model is used with unit
strain in z-direction and periodic boundary conditions according
to Case 1 in Table 1.

The homogenized shear properties in the longitudinal direction
are determined by using a longitudinal shear loading (Cases 5 and
6 in Table 1), where there is only one degree of freedom which is
the displacement in the z-direction. This assumption results in
non-zero shear strains only in the z � y and z � x planes while all
other strain and stress components are identically zero. The equa-
tions for shear strains and shear stress are given by the following
expression:
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The principle of virtual work (Eq. (16)) is modified by choosing
the virtual strain vector as de ¼ dczy dczx

� �T . This formulation is
used to specify unit shear strains (Cases 5 and 6) and compute
the corresponding shear moduli.

The results obtained by IBFEM are compared with the results
available in the literature (Sun and Vaidya, 1996; Sun and Chen,
1990; Chamis, 1984; Whitney and Riley, 1966). The periodic
boundary conditions shown in Table 1 are used for the analysis.
The average stresses for each case are tabulated in Table 2. Figs.
12–14 show the stress distribution for various cases with the de-
formed shape. The effective properties are computed by using
the average stresses and strains and are compared in Table 3. It
can be observed that the effective properties determined by the
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Fig. 12. (a) Plot of r11 normal stress for Case 1 and (b) plot of r22 normal stress for Case 2.

Table 2
State of stress for six different cases in 2D model.

Case Unit strain r11(GPa) r22(GPa) r33(GPa) s23(GPa) s31(GPa) s12(GPa)

1 e11 = 1 230.84 41.14 41.14 0 0 0
2 e22 = 1 40.35 161.20 46.22 0 0 0
3 e33 = 1 40.35 46.22 161.20 0 0 0
4 c23 = 1 0 0 0 46.07 0 0
5 c31 = 1 0 0 0 0 54.44 0
6 c12 = 1 0 0 0 0 0 54.44

Fig. 13. (a) Plot of r33 normal stress for Case 3 and (b) plot of s23 shear stress for Case 4.

Fig. 14. (a) Plot of s31 shear stress for Case 5 and (b) plot of s12 shear stress for Case 6.
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Table 3
Comparison of elastic effective properties obtained by IBFEM and the ones available in the literature.

Property IBFEM 2D IBFEM 3D Ref: Sun and Vaidya (1996) Ref: Sun and Chen (1990) Ref: Chamis (1984) Ref: Whitney and Riley (1966)

E1(GPa) 214.83 214.85 215 214 214 215
E2(GPa) 144.07 143.85 144 135 156 123
E3(GPa) 144.07 143.85 144 135 156 123
G23(GPa) 46.07 45.97 45.9 – 43.6 –
G13(GPa) 54.44 54.35 57.2 51.1 62.6 53.9
G12(GPa) 54.44 54.35 57.2 51.1 62.6 53.9
m23 0.25 0.25 0.29 – 0.31 –
m13 0.198 0.195 –
m12 0.198 0.195 0.19 0.19 0.20 0.19
m32 0.25 0.25
m31 0.13 0.13
m21 0.13 0.13
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current method match very closely with the effective elastic con-
stants as reported in the literature.

To further test the method, the performance of the proposed
solution structure is studied by increasing the fiber volume frac-
tion to when the fiber boundary is tangential to the matrix bound-
ary within the RVE. Several configurations are analyzed by
increasing the fiber volume fraction from 0:80 p

4 to p
4. The plots of

effective elastic moduli with increasing fiber volume fraction are
Fig. 15. Plot of elastic moduli versus fiber volume fraction.

Fig. 16. (a) Plot of r11 normal stress for Case 1
shown in Fig. 15. It can be observed that the proposed method pro-
vides stable and expected behavior of elastic moduli with increas-
ing fiber volume fraction.

Fig. 16 shows contour plots of a stress component for Cases 1
and 4 when the fiber volume fraction of fiber is p

4. For this volume
fraction the effective properties were computed to be E1 = 313 GPa,
E2 = E3 = 257 GPa, G23 = 99 GPa, G13 = G12 = 114 GPa, m23 = m32 =
0.174, m13 = m12 = 0.131, m31 = m21 = 0.108. For comparison the longi-
tudinal modulus computed using the rule of mixtures is
E1 = 312 GPa. Note that in Fig. 16 stress discontinuity exits as ex-
pected across the fiber–matrix boundary where it passes through
the elements.

To demonstrate the applicability of the method to model non-
trivial geometry, the fiber or inclusion geometry is modeled as a
union of four circles as shown in Fig. 17. A method for defining
the step functions for Boolean combination of shapes has been de-
scribed in past work (Kumar and Lee, 2006). Alternatively, implicit
equations can be constructed as signed distance functions for any
geometry defined using parametric equations (Osher and Fedkiw,
2002; Burla and Kumar, 2008).

The contour plots for normal and shear stresses for load Cases 1
and 4 are shown in Fig. 17. In this example, the fiber volume ratio
of 0.41 was used. The effective properties were computed as:
E1 = 196 GPa, E2 = E3 = 132 GPa, G23 = 44 GPa, G13 = G12 = 51 GPa,
m23 = m32 = 0.269, m13 = m12 = 0.208, m31 = m21 = 0.141. Using the rule
of mixtures for the longitudinal modulus shows a good agreement.
However, other moduli are not compared with analytical solutions
as the geometry used is non-standard.
and (b) plot of s23 shear stress for Case 4.



Fig. 17. (a) Plot of r11 normal stress for Case 1 and (b) plot of s23 normal stress for Case 2.

Table 4
State of stress for six different cases in 3D model.

Case Unit strain r11(GPa) r22(GPa) r33(GPa) s23(GPa) s13(GPa) s12(GPa)

1 e11 = 1 230.57 40.34 40.34 0 0 0
2 e22 = 1 40.35 160.93 46.25 0 0 0
3 e33 = 1 40.35 46.25 160.93 0 0 0
4 c23 = 1 0 0 0 45.98 0 0
5 c13 = 1 0 0 0 0 54.37 0
6 c12 = 1 0 0 0 0 0 54.37
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6.3. Example 6.3: computation of effective properties using a three-
dimensional model

In this example a three-dimensional model is used for computa-
tion of effective properties of the composite modeled in Example 6.2.
The results obtained by three-dimensional analysis are compared
with the results available in the literature. The periodic boundary
conditions shown in Table 1 are used for the analysis. The average
values of stresses and strains are tabulated in Table 4, and the effec-
tive elastic constants that are determined by the 3D model are tab-
ulated in Table 3. It can be observed that the effective properties
determined by 3D model matches very closely with the ones deter-
mined by 2D model and with the ones available in the literature.
Figs. 18–20 show the stress distribution for various cases.

7. Conclusions

In this paper, a method for imposing material interface condi-
tions is presented by constructing a solution structure based on
Fig. 18. (a) Plot of r11 normal stress for Case 1 a
the implicit equations of the inclusion boundaries. The weak form
for linear elasticity was modified using this solution structure such
that interface conditions are satisfied exactly for displacements
and weakly for the stresses/strains. The primary motivation for the
method is the desire to eliminate the need for a mesh that conforms
to the interface boundaries and to use implicit equations of curves/
surfaces to represent the inclusion instead of using a conforming
mesh to approximate it. Generating a uniform structured grid that
encloses the geometry is a very straight forward process. One of
the advantages of this method is that stiffness matrix integration
does not have to be computed for all the elements. Stiffness matrix
evaluated for any one element entirely within the inclusion (or ma-
trix) can be used for all other elements within the element (or ma-
trix). It has been shown that the solution structure presented in
this work has good convergence properties and is capable of deter-
mining the effective elastic constants with very good accuracy. This
method holds the potential for determining effective properties of
complicated microstructures if the equations of the geometry of
the inclusions are imported from computer-aided design software.
nd (b) plot of r22 normal stress for Case 2.



Fig. 20. (a) Plot of s31 shear stress for Case 5 and (b) plot of s12 shear stress for Case 6.

Fig. 19. (a) Plot of r33 normal stress for Case 3 and (b) plot of s23 shear stress for Case 4.
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For other types of periodic structures such as hexagonal pattern of
fiber packing (Chen and Cheng, 1967), larger RVE that include more
fibers will be needed but the method is applicable regardless of the
geometry of the microstructure or the inclusions.
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