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Abstract

In this paper we classify linear maps preserving commutativity in both directions on the
space N (F) of strictly upper triangular (n + 1) x (n 4+ 1) matrices over a field F. We show
that for n > 3 a linear map ¢ on N (F) preserves commutativity in both directions if and only
if p = ¢/ + f where ¢’ is a product of standard maps on N (F) and fis a linear map of N (F)
into its center. © 2002 Elsevier Science Inc. All rights reserved.

AMS classification: 15A04; 15A27; 15A57
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1. Introduction and statement of results

Let M be a matrix space over a field F. A linear map ¢ on M is said to be com-
mutativity preserving if ¢(A) commutes with ¢(B) for every pair of commuting
elements A, B € M.Itis said to be commutativity preserving in both directions when
the condition AB = BA holds if and only if ¢(A)p(B) = ¢(B)gp(A). It is one of
the linear preserver problems to classify commutativity preserving linear maps on
matrix spaces (see [10, Section 3.4], [11] and [14, Section 7.1]). Several authors
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have classified commutativity preserving linear maps on a number of variations of
matrix spaces, see [1,5,6,9,12,13,15-17].

In this paper, we will classify linear maps preserving commutativity in both direc-
tions on the space N (F) of strictly upper triangular (n + 1) x (rn + 1) matrices over
an arbitrary field F. Our main result is:

Theorem 1.1. Letn > 3. A linear map ¢ on N (F) preserves commutativity in both
directions if and only if ¢ is of the form
2) (12) (nl) (11
¢ = yeopy upup up Vor + f. (1.1)
where the factors in the first term on the right-hand side are standard maps on N (F)
and f'is a linear map of N (F) into its center.

We will give the definitions of standard maps on N (F) in Section 2 and prove
this theorem in Section 3. By Theorem 1.1, we can obtain the following theorems
(Theorems 1.2 and 1.3).

Theorem 1.2. Letn > 3. Regard N (F) as an associative algebra over F. A map ¢
on N (F) is an F-algebra automorphism if and only if ¢ is of the form

¢ =or(l+f), (1.2)
where both ot and 1 + f are standard F-algebra automorphisms of N (F).

On the other hand, we define the bracket operation [A, B] = AB — BA on N (F).
It is clear that ¢ is commutativity preserving in both directions if and only if it pre-
serves zero brackets in both directions. In this paper, we will use this fact repeatedly.

The bracket operation defines a structure of Lie algebra on N (F). Choi et al. [6]
mentioned that the results on linear maps preserving commutativity can be viewed
in the content of Lie algebra, where one assumes that the linear map preserves ze-
ro products and the conclusion is that the map “essentially” preserves all products.
Marcoux and Sourour [12] also pointed out that the linear maps that preserve zero
Lie brackets in both directions differ only slightly from those that preserve all Lie
brackets. These assertions are also true for the strictly upper triangular matrix space
N (F) when n > 3. In fact, we have the following theorem.

Theorem 1.3. Letn > 3. Regard N (F) as a Lie algebra over F. A map ¢ on N (F)
is a Lie automorphism if and only if ¢ is of the form

¢ =y uyVor(1+ ) ifcharF 2 (1.3)
or
2 12 1 11 .
¢ = oy up wgy Vo (L ) if charF =2, (1.4)

where the factors on the right-hand side are standard Lie automorphisms of N (F).
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We will define standard F-algebra automorphisms and standard Lie automor-
phisms in Section 2 and prove Theorems 1.2 and 1.3 in Section 3.

Remark 1. The result of Theorem 1.2 is covered with our earlier one in [4], where
for n > 1 we characterize R-algebra automorphisms of strictly upper triangular ma-
trices over an arbitrary commutative ring R.

Remark 2. In [3], for n > 3 we characterize Lie automorphisms of strictly upper
triangular matrices over a local ring that contains 2 as a unit and an integral domain
of characteristic other than 2. In [3], w, u(bzl)p,(blll) and 1 4 f are called graph, ex-
tremal and central automorphisms, respectively, and o7 is called inner or diagonal
automorphism according as 7 is an upper triangular matrix having entries 1’s on the
main diagonal or an invertible diagonal matrix. It follows from Theorem 1.3 that over
a field F of characteristic 2 there exist Lie automorphisms of N (F) which cannot be
expressed as a product of standard automorphisms defined in [3]. So for N (F) over
a field F of characteristic 2 the result of Theorem 1.3 is new.

Remark 3. For descriptions for Lie automorphisms of the upper triangular matrices
over a commutative ring, see [2,7].

2. Preliminaries and notations

Let F be an arbitrary field and F* the group of non-zero elements of F. Let
M1 (F) be the full matrix space of (n 4+ 1) x (n + 1) matrices over F, and N (F)
the subspace of strictly upper triangular matrices in M, (F). Let T (F) be the group
of invertible upper triangular matrices in M, (F) and U (F) the group of upper
triangular matrices having entries 1’s on the main diagonal in M, 41 (F). Denote by E
the identity matrix in M, (F) and by E;; the matrix with sole non-zero element 1 in
the (i, j) position. Then, {E;; |1 <i < j < n + 1} is the canonical basis of N(F).
For a matrix X, we denote by X' the transpose of X and use corresponding lower case
with subscripts x;; to denote the (i, j) entry of X. If X is invertible, denote by xl.*j the
(i, j) entry of X —1_ For convenience sake, in a matrix expression X = ) x; JE;j the
subscript i can be less than 1 and the subscript j can be greater than n 4+ 1 and we
use the convention that the coefficient x;; is regarded as zeroif i < lor j > n +1
in some term x;; E;;.

Clearly, the following sets

Ny={XeN®F) |X= ) xjEjp. k=12,
j—izk
are ideals of the F-algebra N(F) and N, is the center of the F-algebra N (F). We
assume Ny = {0} for k > n. It is easy to check that
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NiNi = {XY | X € Ni, Y € N} € Niga.

Denote by & the set of all linear maps on N (F) that preserve commutativity in
both directions and by .%” the set of all bijections in .. Denote by 1 the identity map
on N(F).

Linear maps of N(F) into its center are given by X — f(X)E| ,+1 where f :
N (F) — F is a linear functional. We will use the term “linear functional on N (F)”
to denote both the linear functional of N (F) as well as the corresponding linear map
of N(F) into its center. It is clear that for ¢ € % and a linear functional f on N (F),
themap ¢ + f : X > @(X) + f(X)Ej ny1 isin &.

It is easy to check that when n > 3 the following linear maps on N (F) are all in .%:
(@) Y. : X+ cX where cis a constant in F*.

(b) or : X +— T7'XT where T € T(F).
(c) w=1orwywhere wy: X+>—RX'Rwith R=E1 y1+Exm+--+Epn+E+1.1.
(d) p? forb € F,i=1,nand j = 1,2, are defined by

11 1
Ml(y ) X = X+ bx12E2 41, ;,Ll(jn ) X = X+ bxypt+1E1n,

12
M;(, L X > X 4 bx12Es gt + bxi3E i,

and

2
Mz(;n "X XA b1 Elpet 45Xt g1 Bl

We call the linear maps of types (a)—(d) defined above standard maps.

It is clear that o7 is an F-algebra automorphism of N (F) and if fis a linear func-
tional satisfying the additional condition: f(XY) =0 for any X,Y € N(F), then
1 4 f is also an F-algebra automorphism of N (F). These automorphisms are called
standard F-algebra automorphisms of N (F).

On the other hand, o7, w and M(;l 1), i = 1, n, are all Lie automorphisms of N (F),
and if fis a linear functional satisfying the additional condition: f([X, Y]) = 0 for
any X, Y € N(F), then 1 + f is also a Lie automorphism of N (F). In addition, when
charF = 2, both ul(,lz) and /L;"Z) are also Lie automorphisms of N (F). These auto-
morphisms are called standard Lie automorphisms of N (F). The automorphisms

/,Ll(jl 1), /Ll(,nl) are called extremal automorphisms in [3] and when char F = 2, the auto-

morphisms lez) and ,ué"z) are generalization of the extremal automorphisms in [3].

For the notion for extremal automorphisms of N (F), we are motivated by Gibbs [8],
where the automorphisms of certain unipotent subgroups of Chevalley groups and
Steinberg groups over a field are discussed.

Lemma 2.1.
1) Ifp € &, then Kergp C N,,.
(i) ¢ € & ifand only if p(E1 n+1) # 0.
(i) If o € &, then 9(E1 y+1) = cEq ny1 for some ¢ € F*.
(iv) If o € & and fis a linear functional on N (F), then both ¢ f and f ¢ are linear
functionals on N (F).
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Proof. (i) If X € N(F) such that ¢(X) = 0, then for any ¥ € N (F) we have ¢(X)
oY) =9p@)p(X).So XY =YX, ie., Xisin the center N, of the F-algebra N (F).

(ii) Clearly, if ¢ is bijective, we have ¢ (E| ,+1) # 0. Conversely, if ¢(E1 n+1) #
0 and ¢ is not bijective, then there exists some non-zero X € N (F) such that p(X) =
0. By (i) we have X = cEj ;4| with some ¢ € F*. It follows that (E ,4+1) =0, a
contradiction.

(iii) The assertion follows from the fact that ¢ (N,) = N, and (ii).

(iv) It is clear that for f¢ the assertion is true. It is easy to see that if ¢(E1 ,+1) =
cE| pq1,thenof =cf. O

Lemma 2.2.
(1) VYee = Yo forany ', c € F*
(i1) opor = oy forany T', T € T (F).
(i) o} = 1.
@iv) ,ug,])u[(;]) = ué’/_&bfor anyb',beF,i=1,n,and j =1,2.
Proof. The proof is trivial. [

By Lemma 2.1(ii) all the standard maps are in .%". By Lemma 2.2, it is easy to
check that wc_l =Y.-1, JT_I =071, wo_l = wq and (Mlg”))_l = M(,lé,)-
Lemma 2.3.

(1) Y. commutes with every linear map on N (F). In particular, . commutes

with every standard map.

(ii) walug”wo = ul(jk]) where k = n or 1 according asi = 1 or n.

(iii) a)glGT'a)o = Gwo(r_l)'
@iv-1) O‘T_l,ul()ll)GT = ,ul(f,l) + f where b’ € F and fis a linear functional on N (F).
(iv-2) aT_l,u,(jz)aT = O‘T///L}(;f)lt}(;ll) +f= M,(,lzz)u,(;]l)ar + fwhereT' € T(F), by,
by € F and fis a linear functional on N (F).
(v) If n = 4, then any pair of maps of type (d) is commutative except the pairs

consisting of MI(;IIZ) and ,ugz) whenn = 4. Ifn = 4, we have

12) (42) _ “42) (12) _ (42) (12)
Hp, Mp, =O0THp, My~ = Mp, "My, 0T,

where T = E — b1byEoy.

Proof. The proof is routine, but tedious. We give the proof only for (iv-2) with
i = 1.Forany X € N(F),

— 12
o7y Vo (X)
— 12 _
=o' wP@'XT)
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=07 (T7'XT + bt} 1x12E3 -t
+ b(t1*1 133X13 + 1{;123X12 + t1*2t33X23)E2,n+1)

=X + bttty 4y 1X12(t13E1 n1 + 123 E2 1 + 133 E3 n41)

+ bty 1 (11133513 + 1 123x12 + 115133%03) (222 B2t + 112E 1 1)
= X + bax12E3 nt1 + (ax23 + bixi2 + bax13) E2 nt1

+ (c1x12 + c2x23 + c3xX13) E1 iy 1
= (o g + £)(X)
= (ihy 1ep, o + £)(X),

where

and

with

/
T'"=E+aFE3,41, a= bt1*2t33t22t:+1,n+1,

_ * * — gk *
by = 2bt{ 120238, 11 1> b2 = DIy 101330, 4y g

[ X = cixip + caxo3 + (c3 — a)xiz,

c1 = btfity 1 (t2ti3 + 12123),

c2 = bIjtat3sty s

c3 = bl‘]*ltlzt33t*

n+1,n+1" U

If X € N(F), we denote by C(X) the centralizer of X in F-algebra N (F), i.e.,
CX)={Ye NF)| XY =YX}

Lemma 2.4. If X € N\Niy1 for 1 <k < n, then

dimC(X) < sn(n+1) — (n — k). 2.1

In particular, if X = Epy myk for 1 <m < n+1—k, then the equality holds.

Proof. For the sake of convenience, we first give some notations. For 1 < k < n
andl <m <n+1-—k,set

Unmip =Y e Np |Y = Z yijEij ¢
i<m
i+k<j<m+k
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"%m,k =

and

ka =

YeN, |Y = Z vijEij
i<m
Jj>m-+k

Ye Nk Y = Z y,-jE,-j
m<i<n+1-—k
Jjzi+k

The matrices in %m k, ¥ m.x and Wy, i are of the forms

----- k  k+1 - - m—14+k m+k m+1+k --- n+1
0 % o x 0 0 - 0
*
m—1
m
m+1
n+1—k
n+2—k
0 n+1
----- k  k+1 - - m—14+k m+k m+1+k - n+1
0
m—1
m
m+1
n+1—k
n+2—k
0 n+1

47
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and
| ERITIRTPRNIN S < o SETTER m—1+k m+k m+1+k - n+1
O --- 0 0 --- 0 0 0 ---0
. . . I
0
m—1
m
* e x| mH1
n+1—k
n+2—k
0
6 n+1
respectively.

It is clear that %, k, ¥ 'm.kx and W p, i are left, two-sided and right ideals of the
F-algebra N (F), respectively. Moreover, we have

ol 2
%m,k . Wm,k C Vm,kv /Vm,k = 07 Wm,k . %m,k = Os

Wm,k . ”V'mJ( = 0 and "Vm,k . Jll,mk = 0.

Assume X € Ni\Ni41 with some Xy, m+k # 0. We write X as

o ... 0 * * X1m+k * *
*  Xm—1,m+k * ce *
Xm,m+k  Xmm+l+k - Xmn+l
X = s -
0
m—1 n+1
:xm,m+kEm,m+k + Z xi,m+kEi,m+k + Z xijmj +U+V+W
i=l1 j=m+k+1

withU € Ui,V €V mrand W € W, k. Set
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m—1
—1
T'=FE+ Z xi,m+kxmym+kEin7

i=1

n+1

— 1 .
Lh=E- Z xmlxm,m+kEm+k»J
Jj=m+k+1

and T = T T>. Then

T7'XT = (I'T2) ' X (11 1)

* 0
Xm,m+k 0 0
0
0

= xm,erkEm,erk + U’ + v’ + w’

with U’ € U, V' € V' mi and W € W i Since dim C(X) = dim C(T~'XT)
forany T € T (F), we can assume without loss of generality that

X = xrn,m+kEm,m+k +U+V+W,
where Xy mik FO0,U € Ui,V €V mrand W € W'y k.

LetZ=3,_,2pqEpg € C(X). It follows from ZX = X Z that

m—1

> SmmtkZpmEpmk + ZU + ZV + ZW

p=1

n+1
= Z Xk Zmtk,gEmg +UZ +VZ +WZ, (2.2)
g=m-+k+1

where ZU € Ui, ZV.VZ € Vi WZ € W s

ZW = Z ZpgEpq | - Z Xij Eij

1<p<g<n+1 m<i<n+1—k
j=i+k
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n+1 Jj—k—1 Jj—k
-y Y[ T ) @
j=m+k+1 p=1 i=max{p,m}+1

and

Uz = Z xijEij | - Z ZpaEpq
i<m 1<p<g<n+1
i+k<j<m+k
m—1  n+l1 min{m+k,q}—1
= Z Z xiijq Eiq~ (24)

i=1 g=itk+1 j=i+k

If we regard the entries z,, of Z as unknowns, then ZX = X Z yields a system of
%n(n + 1) homogeneous linear equations in %n(n + 1) unknowns. The dimension
of C(X) is equal to that of the solution space of the system of equations. Also, we
know by (2.2)—(2.4) that the above system of equations contains the following n — k
homogeneous linear equations

+k—1
Xm,m+kZpm = ZT:p—i—k XpiZjmt+k, pP=1,....,m—1, } 2.5)

q—k ’
X m+kZmtkg = D iy XigZmis g =m+k+1,...,n+1.

Since each of the n —k unknowns zim, Z2m,.--sZm—1.m and Zmtkm-+k+1,

Zm+k.m+k+2> - - - » Zm+k.n+1 occurs once and only once in all the n — k equations

in (2.5), these n — k homogeneous linear equations are linearly independent. Hence

the dimension of the solution space of the system of equations given by ZX = X Z is

less than or equal to %n(n + 1) — (n — k) and so the desired inequality (2.1) holds.
If X = E, m+k, then Eq. (2.2) becomes

m—1 n+1
Z ZpmEpm+k = Z Zm+k,q Emg -
p=1 qg=m+k+1

It is easy to see that the dimension of C(X) is equal to %n(n +1D)—-m—%k). O

Lemma 2.5. Forany ¢ € &', ¢(Ni) = Ny and ¢ induces a linear bijection of the
quotient space Ni/Ny41 onto itself, k = 1,2, ...

Proof. If we can prove that ¢(Nig\Nk+1) C Ni\Ni+1, then the assertions of the
lemma follow from the bijectivity of ¢. Now, we use induction on [ =n — k to
prove that @ (Nx\Ng+1) C Ni\Ni+1. When [ = 0, the assertion follows from Lem-
ma 2.1(iii). Assume that for any ¢ € &’ the assertion holds for n — k <[ with
1>0.Let X € N\\N¢y1 where k=n—1[—1and ¢ € ¥'. Assume ¥ = ¢(X) €
N \Npm+1. We need to prove m = k.
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If m > k, it follows from n —m <n —k — 1 =1 and the induction hypothe-
sis that X:(p_l(Y) € <p_1(Nm\Nm+1) C Nu\Nm+1 < Ni+1, a contradiction. Thus
m < k. To prove m = k, we first consider the special case that X = E; ;4. It
follows from Lemma 2.4 that dim C(¢(E; ;+k)) = dim C(E; ;+x) = %n(n +1)—
(n — k). If m < k, again by Lemma 2.4, dim C(¢(E; j+£)) < %n(n + 1) —m—m)<
%n(n + 1) — (n — k), a contradiction. So m =k for X = E; j4k, 1.e., 9(Ejitk) €
Ni\Nj41 for 1 <i <n+1—k.Since any X € Ni\Ni+1 can be expressed as X =
> j—ik XijEij with x;; € F, by the argument above and the induction hypothesis
we get ¢(X) € Ni. From the induction hypothesis, it is easy to see that ¢(X) €
Ni\Nig+1. O

For any ¢ € %, assume

n
@(Eiiv1) = ZaﬁE-/’j""l mod Ny for 1<i<n.
j=1

Then ¢ determines a matrix

aly a2 ... Qaip

a1y dyp ... dp
Alp) =] . . N

dpl ap2 ... Qpp

where the entries a j; are dependent on ¢.

Lemma 2.6. Forany ¢ € &', det A(p) # 0 and the entries of the matrix A(p) sat-
isfy the following relations:

ralsp = Qrgasq  If|r —s| =1 and |a — B| > 1.

Proof. Since ¢ induces a linear bijection of the quotient space N1/N; onto itself by
Lemma 2.5, det A(¢) # 0.

If [r—s|=1 and | —B|> 1, then [E(x,a+1» Eﬂ,ﬂ—H] =0. So [(p(EOl,Ot-i-l)v
@(Eg g+1)] = 0, on the left-hand side of which the coefficient of E, ;1 forr < s or
E; 1 fors < ris &(arqasp — argage). Hence ayqasp — arpase = 0, 1.€., argasp =
arpQse - O

Lemma 2.7. Let ¢ € &' such that A(p) is the identity matrix. Then

¢(Ei,i+k) = bg{)Ei,iJrk mod Nk+1
for2 <k<nand 1 <i<n+1-—k, (2.6)

where bg{) + 0.
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Proof. Since A(gp) is the identity matrix, we have

@(Eiiv1) = Ejjy1mod Ny forl <i<n. 2.7
By Lemma2.5,forl <k <nmand1 <i <n+1—kwemay assume

(Eiivk) = bgllf)El,Hk +- 4 b,(lﬁ)_l_k’iEn+l—k,n+l mod Nii. (2.8)

If k = n, (2.6) holds by Lemma 2.1(iii). Assume k < n. We use a case-by-case anal-
ysis to prove b‘g? = 0fors # i in (2.8).

(A-1)s >22ands —1#i+k. Since [Es_15, Eii+k] = 0, we have [@(Es—1),
¢(E; i+k)] = 0. By (2.7) and (2.8) we obtain

k k
bii)Es—l,s—&-k - b‘g_)k_l’iEs—k—l,s = 0 mod Ni42,

which implies b'% = 0.

(A-2) s<n—k and i #s+k+1. As in (A-1), it follows from [E; %,
Egiistkr1] = 0that b = 0.

Since s — 1 =i + k implies that i #* s + k + 1, it follows from (A-1) and (A-
2) that bg‘) =0for 2<s <n—kands +#i, and it remains only to consider the
following two cases (B-1) and (B-2). In case (B-2), it follows from s =n+ 1 —k
and s — 1 =i + k that k < %n In case (B-1), noting that i < n + 1 —k, we also
have k < %n Soifk > %n, then cases (B-1) and (B-2) do not occur and we always
have bgf) =0 forany s #i.

(B-1) s =1,i =5+ k+ 1. By the argument above, we have k < %n and so
n—=k> %n By the comment above,

— . (n—k)
@(Erkn+1) = by E14kone1 mod Nygi—,

where bg"!kkhk # 0 by Lemma 2.5. Hence applying ¢ to [E; j+k, E14+k.n+1] = 0, we
obtain b¥ = 0.
B-2)s=n+1—-k,s—1=i4+k. As in (B-1), it follows from [E{ 41—k,

k
E; i) = 0 that bfﬂgl_k’i —0.

Thus we have proved that bgf) = 01in (2.8) for s # i. Finally, by Lemma 2.5 we
have b £ 0. O

3. Proofs of Theorems 1.1-1.3

Throughout this section, we assume that n > 3 and assume without loss of gen-
erality that ¢ is bijective. In fact, if ¢ is not bijective, we have ¢(E| ,+1) = 0 by
Lemma 2.1(ii). Let f be a linear functional on N (F) such that f(E; ,+1) # 0. Then
¢ + f € & again by Lemma 2.1(ii). Thus ¢ can be replaced with ¢ + f.

First, we will prove Theorem 1.1. The “if” part of the theorem is clear. For the
“only if” part, we will prove it for the case n > 4 and the case n = 3, respectively.
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First, we assume n > 4 and we will prove that any map ¢ in %’ can be expressed as
form (1.1) via Lemmas 3.1-3.8.

Lemma 3.1. We can take o = 1 or wg such that the matrix A(w™! @) is diagonal.

Proof. Let A(p) = (aji)nxn- We prove in turn the following statements:
D Ifare #0and |a — B| > 2, then a,g = 0.

Assume that a,g # 0. Take s such that |r —s| = 1. By Lemma 2.6, we have
asq/arq = agp/ayg. Denote by p this ratio. For any y with 1 < y < n, we have |a —
yl>1lor|B—y|> 1. So by Lemma 2.6, a,qas, = aryasq OF argay, = aryasp.
Hence, a5y =p-ary,y =1,...,n. Therefore, rows r and s of the matrix A(g) are
linearly dependent. This contradicts the non-singularity of A(¢) and so (I) holds.

D Ifayq #0, |l — Bl =2and 1 <r < n, then a,g = 0.

Assume that a,g # 0. Take y such that | —y|= |8 —y|=1.1If § # a, B and
y, then a,s = 0 by (I). Moreover, a,_1 5 = ar4+1,s = 0. Otherwise, say a,_1 5 # 0.
Since |0 — 8| >2or |8 — 8| >2,say @ — §| >2, by Lemma 2.6 we have a,_1 oa,5s =
ar—1,sarq. The left-hand side of this equality is zero, but the right-hand side is not
zero, a contradiction. Again by Lemma 2.6, we have a,_1 oa,g = a,_1,paro and
r+1,00rp = Qr4+1,p0rq. Hence,

arp
(ar—l,ﬁ» arg, ar—i—l,ﬁ) = a_(ar—l,cu Aros ar+1,c{)~
ra

Thus the minor of the matrix A(g) consisting of rows r — 1, r,r 4+ 1 and columns
o, v, B is zero and the other entries in these three rows are all zero, so these rows are
linearly dependent. This contradicts the non-singularity of the matrix A(g). Hence,
ayg = 0 and (II) holds.

(IIT) For 1 < r < n, row r of the matrix A(¢) has only one non-zero entry that is in
some column except columns 1 and n and a1 # 0 or ay1 # 0.

Assume a,o # 0 for some a. If we have a,g # 0 with # 8, then |« — | = 1 by
(D and (IT). We assert that the non-zero entries in rows » — 1 and r + 1 of the matrix
A(p) are all in columns « and B. Otherwise, say a,—1,, # 0,y # «, B. Then |o —
yl>1lor|B—y|>1 Say |a —y|> 1. By Lemma 2.6, a,_1 40y, = Gr_1,y0rq-
But a,, = 0 by () or (II). This yields a contradiction. Furthermore, again by (I) and
(II), the non-zero entries in row r of the matrix A(¢) are also in columns « and .
Again, this contradicts the non-singularity of the matrix A(gp).

Thus we have proved that row r of the matrix A(g) has only one non-zero entry.
Assume a,y is the sole non-zero entry in row r. We assert that o # 1, n. Other-
wise, take g such that |@ — 8| = 1. Then for 1 < y < n with y # «, 8, we have
|l —y| > 1. By Lemma 2.6, a,qa,—1,, = aryay—1. It follows from a,, = 0 that
ar—1,y = 0. The same argument shows that a,41,, = 0. Thus, the non-zero entries
in rows r — 1,r and r + 1 of the matrix A(p) are all in columns « and S. This
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contradicts the non-singularity of the matrix A(g). Hence, the sole non-zero entry in
any row of A(g) except rows 1 and » is in some column except columns 1 and .

Finally we have aj; # 0 or a1 # 0. Otherwise, the entries in the first column of
A(yp) are all zero, a contradiction.

(V) Set w = 1 if a11 # 0 and w = wq otherwise. Then the diagonal entries of A =
A(a)_1<p) are non-zero.

It is clear that for A = A(w~'¢), a1; # 0 and so aj, =0 by (D). It follows from
the non-singularity of the matrix A(¢) that a,, # 0. Next, we have az; # 0. In fact,
if app = 0, assume ayy # 0 with « > 2. By Lemma 2.6, aj1az, = ajqa21 = 0 since
az1 = 0, a contradiction. So azy # 0. In the same way, we can prove that aj; #
0,....a;; #0imply a;+1,i+1 #0,i =2,...,n = 2.

(V) The matrix A = A(w™ @) is diagonal.

By (I)-(IV) above, for the matrix A = A(w_lw) we have obtained the following
results:

(i) Inthe firstrow,aj; # 0andayy = --- = ay, = 0.
(i) In the ith row for 1 < i < n, the sole non-zero element is a;;.
(iii) In the nthrow, a,, # 0andap = --- = app—3 =0.
Namely,
ajr app a3 0 0 0 0 0
0 apn O 0 0 0 0 0
0 0 a3z O 0 0 0 0
0 0 0 ay 0 0 0 0
A= : : : :
0 0 0 0 n—3.n—3 0 0 0
0 0 0 0 0 An—2.n-2 0 0
0 0 0 0 0 0 an—in-1 O
0 0 0 0 0 An,n—2 An,n—1 Ann
forn > 5,
ajr app a3 0 0
0 ap O 0 0
A=1] 0 0 a3 O 0 forn =5
0 0 0 ayy O
0 0 ass3 ass ass
and
ajr app a3 0
_ 0 ann 0 0 _
A= 0 0 an 0 for n = 4.
0 ae a4z as
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Hence, for n > 3 we have
o '9(E12) = a1 E12 mod N,

w_l(p(En,n+1) = annEn,n+l mod N>.

Applying o !¢ to [El2, E1y] =0and [Ep 41, Ennt1] = 0, we obtain

w_l(p(Eln) = bﬁ_l)Eln mod Ny, 3.1)
o ' 9(Eani1) = b3y " Ey g1 mod Ny,

where bg’i_l) #+ 0 and bé’é_l) # 0. When n > 5, we have
0 ' @(Ez3) = apnE1z + anExz mod Na, (3.2)
0 '9(E34) = a13E 12 + az3Ez4 mod N,. .

Applying @' t0 [E23, E.nt1] = 0 and [E34, Ez n11] = 0, by (3.1) and (3.2)
we obtain alzbg;l)El,nH =0and algbg;l)ELnH = 0, which imply a1, = 0 and
a1z = 0, respectively. Similarly, a, ,—1 =0 and a, ,-2 = 0. Thus A is diagonal.
When n = 4, 5, in the same way, we can also prove that A is diagonal. [

Lemma 3.2. Let w be as above such that A(w™"'¢) is diagonal. Then there exists a
diagonal matrix D' € T (F) such that A(ol;,]a)_lw) is the identity matrix.

Proof. By Lemma 3.1, we have
o '@(Eiit1) = aiiEij+1 mod Ny for 1 <i <n.

Since detA(a)_1<p) #0,a;; #0.Set D' = diag {1, ai, (anax), ..., (a -- 'a,m)}.
Then

O’l;/la)_l(p(Ei’lLFl) =E;j+1mod No forl <i<n.

This means that A(o B,lw_lgo) is the identity matrix. [

Lemma 3.3. There exista T' € U(F) and b}, b), € F such that

12)\—1 N—1 1 -1 _—
( ;,/3 ) (M,(,Z N optoplo T e(Eis)
=Eijir1mod N, forl <i<n. 3.3)

Proof. First, we will use induction on k to prove that there exist 7, € U(F), k =
1,2,...,n — 3, such that

o 'opt o @(Eiit1) = Eijr1 mod Niyy for 1 <i <n. (3.4)

Let 71 = E. Then Lemma 3.2 shows that (3.4) for k = 1 is true, and for (3.4) we
may assume n > 4. Assume that thereexistsa Ty_1 e UF) with 1l <k —-1<n—4
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such that (3.4) for k — 1 is true. Set 6 = o;kila,;,lwﬂp. It is clear that A(6) is still
the identity matrix. Assume
n+1—k
k .
O(Eiiv1) = Eijy1 + Z a;i)Ej,j—t-k mod Niq1 for 1 <i <n. (3.5)
j=1
For (3.5), we first prove the following claim:

Claim. a —0f0i’S7’:l i+1—k.

We give a case-by-case analysis. In the following discussion, assume s % i, i +
1 —k.

(A-1)s<n—kands #i—k,i —k— 1. Applying 0 to [E; i+1, Estk s+k+1]1 =
0, we have

n+1—k n+1—k
Eiiv+ Z a Ej jtks Esvksvir1 + Z aj YJrkE] J+k
j=1

_ ) (k)
= a,-+1,s+kEi,i+1+k +ag; Es s+k+1

(k) (k)
O ki1, Estks2k+1 — al‘_kys_;’_kEi*k,l'Jr]

= 0 mod Ni4o.

Hence a =0.

(A- 2)s 2ands #i+1,i + 2. Asin (A-1), applying6 to [Es_15, Ei i+1] =0,
we have a(k) =0.

Since s =i —k ori —k — 1 implies that s # i 4+ 1, i + 2, it follows from (A-1)
and (A-2) that for 2 < s < n — k the claim is true and it remains to consider the
following cases (B-1), (B-2), (C-1) and (C-2).

(B-1)s =1and s =i — k. By Lemma 2.7 we have

2
O(E1+k,3+k) = biﬁk,1+kE1+k,3+k mod N3,
where bg%:k,uk # 0. Applying 6 to [E| 4k 24k E1+k3+k] = 0, we obtain

n+1—k
k 2
Eiir otk + Z a;,erkEj,jJrk +--, bi_gk’1+kEl+k,3+k +---| =0.
j=I
On the left-hand side of the above equality there is a term aiki +kb§ ke 14xE1,3+k and
the other terms do not contain the basis element E1 31. So alki %= 0,1i.e., a(k) =0.
(B-2)s =1lands =i — k — 1. Asin(B-1), applying 6 to [ E2 3+k, E1+k,4+k] =

(k) (k)
0, Weobtalna1k+2_0 i.e., a i =0.

(C-)s=n+1—kands =i+ 1. Asabove, applying 0 to [Es_2 5, Es—1,5] =0,

® ® _ 0.

we obtaina; . | =0, i.e., ag
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(C-2)s=n+1—kand s =i42. Applying 0 to [Es_3, Es—25-1] =0, we

obtamag) =0,ie., a(k)—O

Thus, the claim is proved and (3.5) may be rewritten as

k k
O(Eiiv1) = Eijt1+ affl,k,iEHl—k,iJrl + a,-(l-)Ei,i+k mod N1
forl1 <i < n. 3.6)

To complete the induction on k, we need again use induction on / to prove that there
exist S; e UF),l =0,1,...,n,suchthatfor1 <i </,

05 ' 0(E; 1) = Eijr1 mod Ny (3.7)
andfor/+1<i <n,
_ I 1
Uslle(Ei,i+l) =Eiiy1 + ng],k‘,-Ei+l—k,i+l + Cf,-)Ei,iJrk mod Ni+1.  (3.8)

Let So = E. Then it follows from (3.6) that (3.8) with 01(?31 ki al(i)l ki and c(o)
( ) is trivially true, and (3.7) does not occur. Assume that (3.7) and (3.8) hold for

some Si—1 € UF) with0 <! —1 < n—1.In particular,
1 oE =E P =Dg dN,
og, 0(ELi+1) = Epppr + ¢4y 2 Ervr—ki+1 + ¢ 1,1+ mod N 1.

SetZ=FE — Cl+1 k (Ep1—k1 + Cll El+1 1+kand §; = ZS§;— 1 In fact, C[(iril)kz =
0 if [ % k. This is clear for I < k. And for / > k applying o5, 19 to [Ei—ki—k+1,

E; 1411 =0, we have Cl(+1—)k,1El—kJ+1 = 0 mod Ny4>. Hence, Cl(i-ll—)k,l =0.1Itis
easy to check that (3.7) and (3.8) with

(1) (l (-1
Citi—k,i = Cig1 k1+81+klcll ;

where 8 ; denotes the Kronecker delta, and c(l) = c(l D for S; hold. Thus, the induc-
tion on [ is completed. Set Ty = S;Tj—1. Then (3.4 for k is true, and the induction on
k is completed. Hence we have proved thatforn > 4,1 <i <nand 1 <k <n -3,
(3.4) is true. In particular, for k = n — 3, we have

-1 -1 -1
or _0p @ @(Eiit1)

_E,l+1+Za(" YE; jinomod N,_; forl<i<n. (3.9)

For k=n — 2, repeating the arguments in (A-1), (A-2), (B- 1) and (C-1) above, we
obtain that in (3.9) a(n 2 —0fors #i,i +3 — nexcept aél and aln 2 . (Note. For
k=n —2, the arguments in (B-2) and (C-2) are invalid since Ej4k 44k = En—1n+2
and E;_3 ;= Eo3 are not elements in N (F).) Thus (3.9) may be rewritten as
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-1 -1 -1 _ (n—2 n—2)
o7 Op @ @(En)=Ep+ta) VE1 -1 +a§1 E3 p41 mod Ny,
ol o ! (Eiiv1)
T,.3%p @ P41
— (n—=2) (n=2)
=Eiiv1+a; 37, Eivzniv1 +a;
fori=2,...,.n—1,

E;itn—2 mod N,

and

-1 -1 —1 — (n=2) (n—2)
07, ,9p @ ©(Ennt1) = Enp+1 + ay, “Ein-1+az, TE3p41 mod Ny_j.

In the same argument as above, we can use induction to prove that there exists an
S € U(F) such that T/ = ST,,_3 satisfies
1 -1 _
07 0 0 '@(E1) = E1p 4 byE3 i1
U;ldg,la)_l(p(Ei,H_l) =Eii+1, i=2,...,n—1,p mod N,_

-1 _-1 — —
Orr Opr @ I(P(En,n—H) = En,n—i—l + b El,n—l

(12)

with b}, by € F. It is easy to check that o7, o and ,u("z)

satisfy (3.3). The proof
is completed. [

Lemma 3.4. Let 0) = (,ubl,z)) 1('u(n2)) UT,IUD/ICU @. Then there exist a T" €
U(F) and b}, b}, € F such that

1)\ — -1 _— .
(") () ot 01 (Eii) = Eiigr mod Ny for L <i <.

Proof. By Lemma 3.3, we have

01(Eiis1) = Eij1 +af VEip+ay VEyppimod N, for 1<i<n.

For 2 < i < n, applying 0; to [E12, Eii+1] = 0, we have ag;_l)El,nH = 0, from

which it follows thata(” D—o. Similarly, for 1 <i < n — 1, applying 0 to [E; i +1,

Eyn+1] =0, we have a(” D' — 0. Furthermore, [E1», E,n+1] =0 implies that

gfl D — Yll D Thus, we have
O1(Enn) = En+ aYl'_l)Eln + agf_l)Ez,nH
01(Ex3) = Ex + aé’é‘”Ez,nﬂ
01(Eii+1) =Eii+1, i=3,....,n-2, mod N,,.
O1(En—1,n) = En—1.n +a§",,_le1n

O1(Enn+1) = Enpy1 + a )Eln Cl” E2 n+1

SetT" =E — af"n liELn_] + alrll_l)Ezn + agé_l)E3’n+1. Then
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UTT,lel(Elz) =Ep+ agll*l)Ez,nH

0t 01(Eiis1) = Eijs1, i=2,...,n—1,{ modN,.

o7 01 (Enns1) = Enns1 + aizil)Eln
Set b} = aé’} D and b’2 = af':l D Then (ué}l)) 1(/JL("I)) lor) 16, acts trivially on
E;iy1 mod N, for 1 <i < n. The proof is completed O

Lemma 3.5. Set 6, = (u,}”) 1(;L‘””) '67101. Then

02(Eiivk) = BeEiivk mod Niyy forl<k<nand 1<i<n+1-k,
where By = land B e F*, k=2,...,n— 1.
Proof. By Lemma 3.4, the assertion for k = 1 is true. So we need only to consider

the case of 2 < k < n — 1. Since the matrix A(6;) is the identity matrix, by Lemma
2.7 we have

62(Eiist) = bV Eijpxmod Nepy for2 <k <n—1and 1 <i<n+1—k.
For 1 <i < n — k, applying 6, to
[Eiivk + Eit1iv1+ks Eiit1 + Eitrivi+k] =0,

we obtain that

k k
(b =6, 1) Eiiv1ex = 0 mod Niso.
So bl.(f) bl(l_?l iv1- Set B = b(k) for 2 < k < n — 1. Then the proof is completed.
|
Lemma 3.6. Let 6, and By for 1 < k < n be as above. Then
02(Eiivk) = PkEijiykmod N, forl<k<nand 1<i<n+1-—k.
(3.10)

Proof. It follows from Lemma 3.4 that (3.10) for k = 1 is true. We use induction on
ltoprovethatfor2 < k<n—-1L1<i<n+1—kand0O<I<n—k—1,

02(E;i+k) = B Eii+k mod Nijpi. (3.11)

Then when [ =n — k — 1, (3.11) shows that this lemma holds. First, Lemma 3.5
shows that (3.11) for / = 0 is true. Next, assume that (3.11) for/=p —1 <n —
k — 1 is true. We need to prove that (3.11) for [ = p is true. In order to shorten the
subscripts, we putk + p=m. Assume thatfor2 <k <n—1land1 <i <n+1—k,
n+l1-m
k
02(Eiivi) = BeEiivk + Z C;,')Ej,j+m mod Niyp. (3.12)
j=1
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To prove that (3.11) for / = p is true, we need to show that the coefficients cy;)
in the above equation. We use a case-by-case analysis

=0
(A-1)j >2and j #i,i +k+ 1. Applying 6 to [E; 1 j, E; i+x] = 0, we obtain
¢ Ej1 j4m — C;k_)l_m’iEj—l—m,j = 0 mod Noi,
which implies c(k) =0.
(A-2) j <n—m and j #i+k—m,i —m — 1. As in (A-1), applying 6, to
[Eiit+ks Em+jm+j+1] = 0, we obtain c(k) =0.

Since j =iori +k + 11mpheSJ #i+k—m,i —m — 1,itfollows from (A-1)
and (A-2) that c(k) =0for2 < j < n—m and (3.12) can be rewritten as

k
02 (Eii+k) = PrEii+k +cli E1 1+m + C,EJZ],m,iEn—H m.n+1 mod Niym
for2<<k<n—1and 1 <i<n+1-—k, (3.13)
where ¢! =0 for 1 #i+k—m,i—m—1andc®, ——=0forn+1-—m%
i,i+k + 1. In particular, we have
2 2
0 (E;, z+2) = rEi 2+ ¢\ E134p +c,(l_)1_p’iE,, 1—pn+1 mod N3y
for1 <i<n—1, (3.14)

Next, we consider the remaining cases.

(B-1) j=1and j =i —m — 1. In this case we have i =m + 2. Apply 6, to
[Em+2.m+2+k> Em+1,m+3] = 0. By (3.13) and (3.14),

(@) (k)
5m+2+k,n71fp,Bkcn_l_p,m_H Emto.n+1 + ,32C1,m+2E1,m+3

(k) —
- 5m+3,n+1—mIBZCn_i_l_m’m_Q_zEm-H,rH-l = 0 mod N34,

which implies c( ) ma2 =0, ie., c( ) =o.

B-2)j=1 and j=i—p. In this case, i = 1 + p. By (3.13) we have

— (k)
02(E24p24m) = BrE2sp24m + €y og p Ent1-mn1 mod Nigp.

Applying 62 t0 [E14p 14m + Eo4p2+m»> E1+p2+p + E14m,24+m] = 0, we have

(k) (k) (k)
cl,1+pE1’2+m - (cn+1—m,1+p + cn+1—n1,2+p)

X 824 p.nt+1-mE1+pn+1 + S24mnt1-mE14mn+1) =0 mod Np4p,

Hence CYTL_ =0,ie., c(k) =0.

In view of (B-1) and (B-2), we have ¥’ = 0in (3.13).

(C-1)j=n+1—mand j =i+ k+ 1. In this case, we have i = n —m — k.
As in case (B-1), the equation [E,—1—mn+1-m> En—m—kn—m] =0 implies
L =0,1ie., c(k)_O
n+1l—m,n—m—k
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(C-2) j=n+1—-—mand j =i.Inthis case,i = n 4+ 1 — m. By the above argu-
ments,
92(En—m,n—p) = ,BkEn—m,n—p mod Nl+m-
Asin (B-2), the equatiOH [En—p,n —p+1 +En —m,n—m-+1 ,En—m,n—p+En+1—m,n+l—p] =
k

. (S o .
0 implies Cotl—montl—m = 0,ie.,c:’ =

The proof is completed. [

Lemma 3.7. Let 6 and By for 1 < k < n be as above. Then there exist a diago-
nal matrix D" € T(F) and a scalar ¢ € ¥* such that for 1 <k <nand 1 <i <
n+1-—k,

Vo1 02(Eiisk) = Eijipx mod Ny (3.15)

Proof. Set D" = diag{d,, ...,d,,d,11} € T(F) with dy = B for 1 <k <n —1,
dy = dody,—1 and dp41 = dgd,,. Keep in mind the fact that d; = g1 = 1. We first
show that

dpdy =dpdy, forl <k,l,p,g<nand k+Il=p+q<n+2. (3.16)
If k = p, then (3.16) is clear. Assume k # p. First consider the case of k +1 =

p+q < n. Applying 63 to [E1 11k + E1,14p, Etak 11k — E14p,14p1¢q]l =0, we
obtain that (3.16) is true. Next consider the case of k +/ = p + g = n + 1. In this
case, it is enough to prove

didj=d, for 1<k, I<n and k+Il=n+1. (3.17)

When k =1, 2, (3.17) is clear. Assume that for k with 2 < k < %(n —1) (3.17)is
true. Then dyi1dy—r = drdady— = drdyy1— = dy,. Thus (3.16) for k+1=p +
g = n + 1 is true. Similarly, (3.16) for k +1 = p + ¢ = n + 2 holds. By (3.16) we
have dydid; = dzd,'+k 1 = di+k, which implies

dkdd_k—af2 forl<k<nand 1 <i<n+1—k. (3.18)
Then by Lemma 3.6 and (3.18), we have

opr62(Eiik) = dpdid ) Ei ik mod Ny = dy ' E; 4 mod N,
forl<k<nand 1 <i<n+1-—k.

Setc =d; . Then (3.15) holds. [

Lemma 3.8. Set 63 = v 105,} 0. Then there exists a linear functional f’ on N (F)
such that 63 = 1+ f.

Proof. By Lemmas 3.7 and 2.1(iii) we may assume that
03(Eij) = Eij + fijEint1,  fij €F, 1<i<j<n+1.

Let f’ be the linear functional on N (F) such that f'(E;;) = fij for 1 <i < j <
n + 1. Then f’ satisfies the lemma. [
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Proof of Theorem 1.1 (for n > 4). It follows from Lemmas 3.1-3.8 that
¢ =wo D/UT/MZ,Zz)MZ};)QI
—wapar i Porul u o
—wopor it or ul oty
=¢'+¢'f
where ¢’ = wopoy MI(’ZZ) M;,ZZ)UT“ MZZI) M;}II)GDN V.. By Lemmas 2.1(iv), 2.2 and
2.3 it is easy to show that ¢ is of form (1.1). O

Proof of Theorem 1.1 (for n = 3). First we show that in the matrix A = A(¢) =
(aj;) for any ¢ € " we have ap; = a3 = 0. Otherwise, say a; # 0. By Lemma
2.6, we have ajzaz) = aijlals and ajz1aizz = ajizdasy. Thus a3z = (a23/a21)a,~1,i =
1,2, 3. This contradicts the non-singularity of A. Now assume that ¢ is any map in
S". We will show that ¢ can be expressed as form (1.1).

Since a3 =0, we have aj3 #0 or az3 #0. Set w =1 if a33 # 0 and w = wy
otherwise. Set 01 = w_1<p and still denote A(61) by A = (aj;). Then we have a1 =

ax =0 and as; # 0. Set b, = a3;'ai3 and 6, = (') ~'6; and denote A(62) by
4

A = (aj;). Then we have a1 = a3 = a;3 = 0 and a1y # 0. Set bg = al_lla31 and

12
b5 = (1
zero entry in each of the first and the third columns of A and the sole non-zero entry
is a1 and as3, respectively. Assume that

)~ 16, and still denote A(63) by A = (a ji)- Then there is only one non-

03(E;i+2) =b1;E13 + bajExa mod N3 fori =1, 2.

Applying 63 to [E12, E13] = 0, we obtain a11b21 E14 = 0 and so by; = 0. Further-
more, by Lemma 2.5 we have b1 # 0. Similarly, bj = 0 and b # 0. Thus it
follows from [E13, E23] = 0 that b11a32 E14 = 0 and so a3y = 0. Similarly, we have
ajz = 0. Therefore, the matrix A is diagonal. Set D = diag {1, a1, ar1az, aj1a»azz}
and 04 = o)y 193. Then A(04) is the identity matrix. We may assume that

04(Eiiv1) = Eijy1 +ciiEz + c2iEzgmod N3 fori =1,2,3.
Applying 04 to [E12, E34] = 0, we have (c23 + ¢11) E14 = 0 and so ¢23 = —cy1. Set
T'=E —c1pE1p +c11Ex»3 + ¢ E34 and 65 = 07?/194. Then

05(E12) = E1p + c21E24
05(Ex3) = En3 mod N3.
05(E34) = E34 + c13E13

Set bl = ¢a1, by = ¢13 and 5 = (ugll“)—l(ulg-?))—les. Then
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06(Eii+1) = E;jy1 mod N3 fori=1,2,3.
In addition, by the argument above we may assume that
Os(Ej it2) = b,/','Ei,i+2 mod N3 fori =1,2,

where b # 0.1t follows from [E 2 4 E34, E13 4+ E24] = Othat b}, = b),.Set D' =
diag{l, d, d? d*} with d = b}, and 6; = 0},'. Then

67(E;;)=d "E;;j mod N3 forl<i<j<4and j—i<3.
Set fg = ¥ '6; with c = d~!. Then

Og(Eij) = E;j mod N3 forl <i<j<4and j—i<3.
Thus we may assume that

Os(Eij) = Eij + fijE14, fij€F, 1<i<j<4

Hence 63 = 1 + f’ where f” is a linear functional on N (F) such that f'(E;;) = f;;
for 1 <i < j < 4. It follows from the series of arguments above that

32 12) _—1_—-1 (@1 11
QY= CU,U«Z;‘ ):U“l(,é )GD O/ H“l(/z ),uf;,/l )GD/I//C(I + f/)

Finally, by Lemmas 2.1(iv), 2.2 and 2.3 we can obtain that ¢ is of form (1.1). O

Proof of Theorem 1.2. It is clear that a map on N (F) of form (1.2) is an F-algebra
automorphism. Conversely, assume that ¢ is any F-algebra automorphism on N (F).
By Theorem 1.1, we can assume

2 12 1 11
¢ = veomy, wy w1y, Vot + f.

Set 0 = wc-wu,gzz) ,uéiz)ugl)/xilll) + f’ where ' = fo, ! is a linear functional on
N(F). Then ¢ = for and 0 is an F-algebra automorphism. First, we assert that v =
1. In fact, if o = wyg, then forany ¢ € F*andany b; € F,i = 1, ..., 4, by calculation
we have

O(Epnt1) = —c(E12 +b4E3 1 +b2E2 i)
+ f/(En,n+l)El,n+l forn > 3,
0(E34) = —c(E12 + baE3s + babsE13 + ba(1 + b3ba) Ers)
+ f'(E34)E14 forn =3,

(3.19)

G(En—l,n) = —cExy + f/(En—l,n)El,n+l forn > 3, (320)
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and

O(Epn—1n+1) = —C(E13 + bsErni1) + f(En—tns1)E1ng1 forn > 3.
(3.21)

Since Ey,—1 n+1 = En—1.nEn n+1, by (3.19) and (3.20) it follows that 0 (E,—1 n4+1) =
czb4E2,n+1. This contradicts (3.21). Therefore, w = 1 and

C(En,n+l + b4El,n—l + b Eqy)

+ [ (Enn+1)E1 ns1 forn > 3,
c(E34 +bsE1n + brb3Eny

+by(1 + b3by)E3) + f'(E34)E1s forn =3

Q(En,nJrl) =

and
G(En—l,n) = CEn—l,n + f/(En—l,n)El,n+l forn > 3.

Since E, p+1Eq,—1,,n =0, it follows that c2b4E1,, = 0, which implies b4 = 0. Fur-
thermore, by Ein 1= 0 we get b, = 0. Similarly, it follows from E3E1; = 0 and
E% =0thatby = Oand b; = 0. Thus § = V. + f. Since 8(E13) = 0(E12)0(E23),
it follows that cE13+ f'(E13) E1.ns1 =c?Ej3 and so c=1. Thus 6 = 1 + f’. Further-
more, for any X, Y € N(F), since 0(XY)=0(X)0(Y), it follows that f'(XY) = 0.
By Lemma 2.1(iv), ¢ = o7 (1 + f”) where f” = aT_lf is a linear functional on
N (F) with the property that f”(XY) = 0 for any X, Y € N(F). The proof is com-
pleted. O

Proof of Theorem 1.3. It is clear that a map on N (F) of form (1.3) for char F# 2 or
of form (1.4) for char F= 2 is a Lie automorphism. Conversely, assume that ¢ is any
Lie automorphism on N (F). As in the proof of Theorem 1.2, we can assume that ¢ =
6or where 6 = wcwul(zz)ul(,?)ul(,’;l)ul(,lll) + f/ with f' = for'. Clearly, 6 is a Lie
automorphism. First, consider the case w = wg. Since E;,—1 n+1 = [En—1,ns En.nt11,
it follows from (3.19) and (3.20) that 0(E,—1 p+1) = cz(b4E2,n+1 — E13). Compar-
ing this equation with (3.21), we have ¢ = 1 and b4 = —b4. So by = 0 when char F
2. Similarly, the equation [Ej7, E23] = E3 implies that b3 = 0 when charF # 2.
Using similar arguments, we can prove that if = 1, we also have ¢ = 1 for any field
F and b3 = by = 0 when char F # 2. Thus we have proved that § = n + f’ where
n= a)ugl)ul(ylll) when charF # 2 and n = wuzzz)uziz)uézl)uélll) when char F = 2.

Finally, for any X, Y € N, (F), the facts that n is a Lie automorphism of N, (F)
and O([X,Y]) =[0(X),0(Y)] imply that f'([X,Y]) =0. By Lemma 2.1(iv),
¢ =nor(1+ f”) where f” = (nor)~'f is a linear functional on N, (F)
with the property that f”([X,Y]) =0 for any X,Y € N,,.(F). The proof is
completed. [
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4. The exceptional case n = 2
The following theorem is the analogy of Proposition 8 in [12].

Theorem 4.1. Letn = 2 and ¢ be a linear map on N (F). Then:

(1) ¢ is commutativity preserving if and only if 9(E13) € FE13, or the range of ¢
is a commutative subspace of N (F).

(i) ¢ € SLifand only if p(E13) € FE 3 and the range of ¢ is non-commutative.

Proof. (i) If the range of ¢ is commutative, then ¢ obviously preserves commutativ-
ity. If ¢(E13) € FE 3, for commuting matrices X, Y € N(F), {E3, X, Y} cannot be
abasis of N(F), and so {Ej3, X, Y} are linearly dependent. Hence {E13, ¢(X), ¢(Y)}
are also linearly dependent and ¢ (X) commutes with ¢(Y).

Conversely, if ¢ preserves commutativity and the range of ¢ contains two non-
commuting matrices ¢(X) and ¢(Y), then {E3, ¢(X), ¢(Y)} are linearly indepen-
dent and so span N (F). Since ¢(E13) commutes with ¢(X) and ¢(Y), ¢(E13) is in
the center of N(F). Hence ¢(E13) € FE 3.

(i) If ¢ € &, then the range of ¢ must be non-commutative and so ¢(E13) €
FE3 by (i). Conversely, assume that ¢(E13) € FE3 and the range of ¢ is non-
commutative. If ¢(E3) = 0, adding an appropriate linear functional on N (F) to ¢,
we obtain a linear map ¢; on N (F) such that ¢;(E3) = E3 and the range of ¢
is also non-commutative. It is easy to see that if a subspace of N(F) of dim < 3
contains E13, then it must be commutative. Hence ¢ is surjective and so bijective.
From (i), we see that both ¢; and ¢, ! preserve commutativity. Thus ¢ preserves
commutativity in both directions, and so does ¢. [
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