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It is the object of the present note to give a brief and transparent 
proof of the following generalization of the classical Picard-Banach con
traction principle in its quantitative form: 

Theorem l. Let X be a complete metric space, M a bounded subset 
of X, T a mapping of M into M. Suppose that there exists a monotone 
nondecreasing function 1p(r) for r> 0, with 1p continuous on the right, such 
that 1p(r)<r for all r>O, while for all x and y in M, 

d(Tx, Ty) <;1p(d(x, y}}, 

(where d is the distance function on X). 
Then: For each xo in M, Tnxo converges to an element~ of X, independent 

of xo, and 

where do is the diameter of M, 1pn is the n-th iterate of 1p, and 

For the classical Picard-Banach theorem, 1p(r)=1Xr with IX<l. We shall 
give sharper specializations of Theorem l below, as well as a discussion 
of its relation to other generalizations of the contraction principle in the 
literature. 

We emphasize explicitly the importance of the explicit estimate given 
in Theorem l for the error term, since it is the explicit control over the 
error term in the Picard theorem which contributes so much to its wide
spread usefulness. 

Proof of Theorem l. For a fixed x0 in M, let 

If do is the diameter of M, 
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while by hypothesis, 

d(xf, xk) = d(TXf-1, Txk-1) < "P(d(XJ-1, X1c-1)) 

for all j, k-;;;. l. 
We set 

Then 

by the monotonicity of 1p, i.e. 

An<"fJ(An-1), n-;;;.l. 

Iterating and applying the monotonicity of 1p, we see that 

If dn="fJn(do), we note that 

Hence dn -+ d00 for some d00 > 0. By the right continuity of 1p, 

and hence 

Since 1p(r) < r for r > 0, it follows that doo = 0, and hence that An -+ 0, i.e. 
{xn} is a Cauchy sequence in X and hence converges to an element ~ 
of the complete metric space X. 

Finally, if yo is another point of M, Yn=T11 yo, then by the same argu
ment Yn -+ ~1 for an element ~1 of X. Then 

q.e.d. 

Corollary to Theorem 1. Under the hypotheses of Theorem 1, T 
can be extended in one and only one way to a continuous mapping of the 
closure of Min X into itself, and ~is the unique fixed point of this extended 
mapping. 

We give some applications of Theorem 1 under variant hypotheses. 

Theorem 2. Let X be a complete metric space, M .a bounded subset 
of X with d1:ameter do. Suppose that T is a mapping of M into M and that 
for each s-;;;.0, there exists <l>(s) with O.;;;;<l>(s)<s for s>O such that for all x 
andy in M, 

d(Tx, Ty)<<l>(d(x, y)). 
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Suppose further that on each compact subinterval [p, do] of [0, do] (/1>0), 
the function s-1 $(s) is uniformly bounded by a constant 0(/1) < 1. 

Then: 

(a) For each Xo in M, the sequence Xn=Tnxo converges in X to a point~ 
independent of the choice of xo. 

(b) Let tp(r) for r > 0 be defined by 

Then for each n;;;. I, 

where dn -?-- 0 as n -?-- + oo. 

Proof of Theorem 2. It suffices to show that the hypotheses of 
Theorem I are satisfied for the given function tp(r). 

The function 
tpo(t) = sups.;;;;t $(s) 

is monotone non -decreasing in t, so that 

is obviously both monotone non-decreasing and continuous from the right. 
Moreover, $(r)<;tp(r) for each r>O, so that the inequality 

d(Tx, Ty) <;tp(d(x, y)) 

holds for all x andy in M. It suffices therefore to show that for all r>O, 
tp(r)<r. 

Let r>O be given, and choose p with 0</J<r. For s.;;;p, we know that 
$( s) < s < p, while by hypothesis there exists a constant 0(/1) < 1 such that 
for all s;;;.p, 

$(s) < 0(/J)s. 

Hence for t>r, 
tpo(t)=sups.;;;;t$(s)< max (/1, 0(/J)t). 

Hence 

q.e.d. 
As a specialization of Theorem 2, we have the following: 

Theorem 3. (RAKOTCH [15]) Let X be a complete metric space, M 
a subset of X, T a mapping of Minto M. Suppose that for each s>O there 
exists tp(s)<s such that for x and y in M with xi=y, 

d(Tx, Ty) < tp(d(x, y)). 
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Suppose further that s-1 '!fJ(s) is non-increasing ins for s>O. Then for each 
x0 in M, Tn xo converges in X. 

Proof of Theorem 3. Since s-l'!fJ(s) is less than l for each s>O and 
is non-increasing, it is bounded by a constant (J(f3) < l on each interval 
of the form [{3, + oo] with f3 > 0. Hence, to apply Theorem 2, it suffices 
to show that each point Xo of M is contained in a bounded subset Mo 
of M invariant under T, i.e. that the orbit of each point xo under T is 
bounded. This, however, follows from the following more general result: 

Theorem 4. Let M be a metric space, T a mapping of Minto M such 
that there exists a function '!fJ with '!fJ( s) < s for each s > 0 such that for all x 
and y in M with xc/=y, 

d(Tx, Ty) <'!fJ(d(x, y)). 

Suppose that x0 is a point of M, and that there exists a constant R > 0 
such that for r>R, 

r- '!fJ(r) > 2d(xo, Txo). 

Then the orbit of xo under T is a bounded subset of M of diameter at 
most R. 

Proof of Theorem 4. It suffices to show that for each n> l, 

d(Tnxo, xo) <;R. 

Indeed, this last inequality shows that the orbit of x0 is bounded, and 
since the hypothesis of the Theorem is invariant if one replaces x0 by x1 

for any j > l, it will also follow that for 0 <; j < k, 

For each n> l, we have 

d(Tnxo, xo)<d(Tnxo, Tn+lxo)+d(Tn+lx0 , Txo)+d(Txo, xo)< 

<;2d(xo, Txo)+'!fJ(d(xo, Tnxo)). 

Hence 
d(xo, Tnx0 )-'!jJ(d(xo, Tnx0 ))<;2d(xo, Tx0 ), 

and it follows that d(xo, Tn x0 ) < R. q.e.d. 
Another consequence of Theorem 2 is the following result of a type 

announced recently by BoYD and WONG [1]: 

Theorem 5. Let X be a complete metric space, M a subset of X, T a 
mapping of Minto M such that there exists a function '!fJ(r) for r>O with 
'!fJ(S)<s and '!fJ(s) upper semi-continuous ins such that for all x andy in M 
with xc/=y, 

d(Tx, Ty) <'!fJ(d(x, y)). 
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Let x0 be a point of M, and suppose that there exists an R> 0 such that 
for all r>R, r-'ljl(r)>2d(xo, Txo). 

Then: Tn x0 converges in X as n --;.. + oo. 
Theorem 5 follows obviously from Theorems 2 and 4, since s-1 'IJ'(s) 

attains its upper bound on each compact subinterval [p, do] with P > 0. 

Remarks. (1) Theorem 1 and its proof is a specialization on the 
qualitative level of a mode of argument applied in the much more general 
context of pseudo-metric spaces by Kantorovich, Schroder, and others. 
(See KANTOROVICH [11], ScHRODER [17], [18], CoLLATZ [7], WouK [19], 
Pseudo-metric spaces have a "metric" taking values in a cone in a partially 
ordered linear space.) 

(2). Forms of the iteration method which work for arbitrary non
expansive operators in Hilbert space and certain other Banach spaces 
have been treated in BROWDER (2], [3], [4], BROWDER-PETRYSHYN [5], 
[6], PETRYSHYN [14], and 0PIA.L [13]. (For the compact and weakly 
continuous mappings in this class, see also KRASNOSELSKI [12] and 
ScHAEFER [16]). Results about iterates for contractive mappings have 
been considered in a number of papers by EDELSTEIN [8], [9], [10]. 

In conclusion, we note that a slightly sharper form of Theorem 2 holds 
when X is a Banach space. 

Theorem 6. Let X be a Banach space, M a bounded convex subset 
of X, T a mapping of Minto M. Suppose that for each s>O, there exists 
a least constant 'IJ'(s)<s such that if d(x, y).;;.s, then d(Tx, Ty)<'IJ'(s). Then: 

(a) For each Xo in M, the sequence Tnxo converges to an element ~ of X. 

(b) For each n;;. 0, 

as n --;.. + oo, where do is the diameter of M. 

Proof of Theorem 6. For each x andy of M with xt=y, we obvi-
ously have 

d(Tx, Ty) <. 'lf'(d(x, y)), 

and moreover 'IJ'(r) is monotone non-decreasing in r. Hence, to apply 
Theorem 1 to obtain the conclusion of Theorem 6, it suffices to prove 
that the function 'IJ'(r) is continuous from the right. 

Let s>O be fixed, and let t>s. Ifx andy are points of M with d(x, y)=t, 
it follows since M is convex that we can choose points X1 and Yl of M 
on the segment joining x to y such that the following conditions hold: 

d(x, XI)=!(t-s), d(x1, YI)=s, d(y1, y)=!(t-s). 

Since T is a non-expansive mapping on M, we have 

d(Tx, Tx1) <!(t-s), d(Ty, Ty1) <!(t-s). 
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Hence 
d(Tx, Ty) <.,d(Tx1, Ty1) + (t-s) <1J'(s) + (t-s). 

Therefore 
1J'(S) <.,1jl(t) <.,1JI(S) + (t-s), 

and 1J' is continuous (and indeed satisfies a Lipschitz condition with 
constant 1). d q.e .. 

An addendum: After completing the previous part of the present note 
and making a further examination of the literature on the general topic 
of successive approximation techniques for nonlinear equations, we have 
noted that it would be useful to extend the above results by a simple 
argument to cover those theorems in which contractiveness hypotheses 
are imposed upon iterates of the mapping T rather than upon T itself. 
The primary example of such a result is the theorem of Cacciopoli (Atti. 
Accad. Naz. Lincei (6), 11 (1930), 794-799) which asserts the covergence 
of successive approximants Tnxo in a complete metric space X provided 
that for each j> 1, there exists a constant c1 such that 

d(Tix, T1y) <., c1 d(x, y) 

for all x and y in M, where 

(This theorem was republished two decades later by J. Weissinger, Math. 
Nachr., 8 (1952), 193-212). 

The following two theorems give much stronger results (which include 
the weakening of the Cacciopoli hypothesis to the simpler condition that 
for some m, Cm< I): 

Theorem 7. Let M be a bounded subset of the complete metric space X, 
T an uniformly continuous mapping of M into M. Suppose that there exists 
a positive integer m and a monotone function 1J'(r) for r;;;, 0, with 1J' continuous 
on the right, such that 

1J'(r)<r, for all r>O, 

while for all x and y in M, 

d(Tmx, Tmy) <1J!(d(x, y)). 

Then: 

(a) For each x0 in M, Tn x0 converges in X to a limit point ~ which is 
independent of the choice of the initial approximant xo in M. 

(b) If T is extended continuously to a continuous mapping of the closure 
of Minto itself, then~ is the unique fixed point of the extended mapping 
T in the closure of M. 



33 

(c) For each xo in M, 

where: 
d(Tn Xo, ~) < {J(tp[n/m] (do), 

do= the diameter of M; 

[n{m]=the integer part of (n/m), 

{J(r) =maxo,;;;J,;;;m-1 supx, ye M; a(x, y) .;;r Jd(Tix, Tiy)J. 

Proof of Theorem 7. We begin by applying Theorem 1 to the 
iterated mapping Tm of Minto M. It follows from Theorem 1 that there 
exists an unique element ~ in X such that as k -+ + oo, Tmk x0 -+ ~ for 
each Xo in M. Moreover, 

where do is the diameter of M. We may assume without loss of generality 
that T is already extended by continuity to a continuous mapping of 
cl(M), the closure of Min X, into cl(M). Then, if we continue to denote 
this extended mapping as T, Tm is the continuous extension of Tm{M 
to a continuous mapping of cl(M) into cl(M) and ~ is the unique fixed 
point of Tm in cl(M). 

We note the elementary fact that if for a point p in cl(M), Tm(p) = p, 
then 

Tm(Tp)=T(Tmp)=Tp, 

i.e. T maps the fixed point set of Tm in cl(M) into itself. Since ~ is the 
unique fixed point of Tm in cl(M), it follows that T~=~. Since, on the 
other hand, every fixed point ofT is also a fixed point of Tm, we know 
that ~ is the unique fixed point ofT in cl(M). 

By hypothesis, T is uniformly continuous as a mapping of M into M. 
It follows by induction that for each positive integer j, Ti is uniformly 
continuous as a mapping of Minto M. Hence the function {J(r) of the 
conclusion (c) of Theorem 7, which is the maximum of the moduli of 
continuity of Ti for O.;;;;r.;;;;m-1, satisfies the condition that 

{J(r) -+ 0, as r-+ 0. 

Let n be a positive integer. We may write n in the form 

n=mk+j, k= [n{m], O.;;;;j .;;;;m-1. 

By a preceding remark, for each x0 in M 

Since (J(r) dominates the modulus of continuity of eachTi with O.;;;;j .;;;;m-1, 
it follows that 

3 Series A 
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By Theorem 1, tpk(do) -+ 0 as k -+ + oo, i.e. as n-+ + oo. Since f3(r) -+ 0 
as r -+ 0, it follows that 

{3(tpk(do))-+ 0, (n-+ +oo). 

Hence Tn x0 converges to ,;, the unique fixed point of T in cl(M), and 
the estimate of conclusion (c) holds. q.e.d. 

Theorem 8. Let M be a bounded subset of the complete metric space X, 
T a uniformly continuous mapping of Minto M. Suppose that there exists 
a positive integer m and a function cp(r) for r;;;. 0 such that on each interval 
of the form [{3, do] with f3 > 0 s-1 cp( s) is bounded from above by a constant 
Op< 1. Suppose that for each x and y in M, 

d(Tmx, Tmy) <.cp(d(x, y)). 
Then: 

(a) For each xo in M, Tnxo converges to a point ,; in X, where ,; is inde
pendent of the choice of Xo in M and is the unique fixed point of the 
mapping T extended continuously to cl(M). 

(b) For each xo in M, 

where: 
do=the diameter of M, 

[nfm]=the integer part of (n/m), 

{3(r)=maxo..;.J,;;;.m-1 supx,y~tM; a(x,y)..;.r d(Tix, Tiy), 

tp(r)=limt-+r+ supa,;;;.ecp(s). 

Proof of Theorem 8. AsintheproofofTheorem2fromTheoreml, 
we show that under the hypotheses of Theorem 8, 

d(Tmx, Tmy) <"P(d(x, y)), (x, y r= M), 

and that the function tp satisfies the restrictions imposed in Theorem 7. 
The proof is identical in the latter respect with the proof of Theorem 2. 
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