Provided by Elsevier - Publisher Connector

Journal of King Saud University — Science (2016) 28, 178-189

Metadata, citation and similar papers at core.ac.uk

King Saud University
Journal of King Saud University —
Science

www.ksu.edu.sa
www.sciencedirect.com

ags2sdlloldl

King Saud University

ORIGINAL ARTICLE

On bivariate Poisson regression models

@ CrossMark

Fatimah E. AIMuhayfith *, Abdulhamid A. Alzaid *, Maha A. Omair "

& Department of Mathematics and Statistics, King Faisal University, Saudi Arabia
® Department of Statistics and Operations Research, King Saud University, Saudi Arabia

Received 14 April 2015; accepted 4 September 2015
Available online 12 September 2015

KEYWORDS

Correlated count data;
Conditional modeling;
Bivariate Poisson distribu-

Abstract In this paper, we consider estimating the parameters of bivariate and zero-inflated bivari-
ate Poisson regression models using the conditional method. This method is compared with the
standard method, which uses the joint probability function. Simulations and real applications show
that the two methods have almost identical Akaike Information Criteria and parameter estimates,

tion; but the conditional method has a much faster execution time than the joint method. We conducted

Regression models;
Zero-inflated models

our computations using the R and SAS package. Our results also indicate that the execution time of
SAS is faster than that of R.
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1. Introduction

Joint modeling of two or more counts data has received a great
deal of attention in recent years. Bivariate count models are
used in cases where two count variables are correlated and
need to be jointly estimated. For example, variables can
include the number of emergency and non-emergency visits
by a person to the hospital, the number of insurance claims
with and without bodily injuries, or the number of voluntary
and involuntary job changes.

The bivariate Poisson is the most widely used model for
bivariate counts. It was proposed by Holgate (1964) and
presented by Johnson and Kotz (1969). The definition of the
bivariate Poisson distribution is not unique. Several approaches
have been discussed by Kocherlakota and Kocherlakota (1992).
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Here, we adopt the trivariate reduction method to construct the
distribution (Johnson et al., 1997). Consider three independent
Poisson random variables, X, k=1, 2, 3, with parameters
(means) A, >0, k=1, 2, 3. Then, the random variables
Y1 = X, + X;and Y, = X, + Xj; are set to follow joint bivariate
Poisson distribution JBP'(A;, A, A3). The joint probability mass
function (p.m.f) is given by

Siwe (V1,023 Ay day As) =

vy min(yy,y) , r
—(/11+A"2+/x)/“l /1_ i Y2 ol A3 |
: S (0GR o

It can be easily shown that Y; and Y, are marginally dis-
tributed as Poisson with means 4, + 43 and 4, + 43, respec-
tively. The covariance of Y, and Y, is A3, and hence, /; is a
measure of dependence between the two random variables. If
/A3 = 0, then the two variables are independent and the bivari-
ate Poisson distribution reduces to the product of two indepen-
dent Poisson distributions (referred to as double Poisson
distribution “DP”?).

! JBP: joint bivariate Poisson distribution.
2 DP: double Poisson distribution.
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By means of conditional probability theory, the joint
density (1) can be written as the product of a marginal and a
conditional distribution. Hence:

S 02) :f}'z\yl(y2|yl)fY| 1) (2)
or
SO 02) :fyl\yg(J’1|J’2)fY2(J’2)~ (3)

In general, every decomposition of f(y,,y,) will lead to
different marginal and conditional distributions.

Returning to Eq. (2), Y, is a Poisson distribution with
parameter p; = A + A3 and the conditional distribution of
Y, given Y] is expressed as

min(yy.,y,)
Sy 0alm) = Z (r )

r=0

—s );12"271‘

e @

—p)"

pree

The expression in (4) is a convolution of a Poisson variable
with parameter 4, and a binomial with parameters (y,,p,).
The conditional mean and variance are given by:

E(Y2| Y1) = 4o+ piyys
Var(Y,| Y1) = 72 +pi(1 = py)y,-

where p, =

Hence, the joint p.m.f of conditional model 1 “CM1”*
given in (2):

S0, 3,) :fyzm (J’2|J’1)fY1 o)
min(yy,y2) »=r oy 1
1 - y le /{ e |
= (L =p)" *
; (" ) : 1 ( —7)! !
= fomi (V15025 Prs 22, ) (5)

For this model Cov(y,,y,) = p;}t,. Hence, the covariance is
zero if and only if p; = 0 (note that p; = 0 correspond to the
univariate case).

In the same way, Eq. (3) can be written as:

S, 72) :fylm O |J’2)fy2 ()
min(yy .. — g —Hy 2
Y2\ py—r € A e,
= Pl —py)? %
; (” ) 2 2) (=) »)!
:fcmz(yla)/z;PthHz)v (6)
where p, = 72 and p, = 4> + Zs.

Also, for this model Cov(y,,y,) =
ance is zero if and only if p, = 0.

Note that for CM1 and CM2, p, and p, play the same role
as Az in JBP.

The bivariate Poisson model was applied by King (1989) to
the annual number of presidential vetoes of social welfare bills
and defense bills, by Jung and Winkelmann (1993) to the num-
ber of voluntary and involuntary changes, and by Ozuna and
Gomez (1994) to the number of trips to different recreational
sites. They model the marginal expectation of Y} and Y, as a
log linear function of explanatory variables.

The disadvantage of this particular model is that it does not
allow for over/under dispersion (the marginal distributions are
Poisson) or negative correlation, and thus lacks generality. For
the case of over-dispersed count data, the mixed Poisson
models are potentially useful (BermCdez and Karlis, 2012;

= p,1,,. Hence, the covari-

3 CM1: Conditional Model 1; CM2: Conditional Model 2.

Ghitany et al., 2012; Gurmu and Elder, 2000; Munkin and
Trivedi, 1999). There are also some other models that allow
for negative correlation (Berkhout and Plug, 2004; Chib and
Winkelmann, 2001; Gurmu and Elder, 2008; Karlis and
Meligkotsidou, 2007; Van Ophem, 1999).

It is clear that there are one-to-one transformations
between the parameters of the three representations of the
bivariate Poisson distribution. Hence, according to the
maximum likelihood invariance principle, we obtain identical
estimates of the parameters no matter which representation
has been used. It will be of interest to see whether such an
invariance property holds when we have explanatory variables.

In this paper, we compare fitting a bivariate Poisson regres-
sion model using both the joint and conditional arguments
described above. We also consider the inflated versions of these
models to allow for over-dispersion and discuss inferences
related to the parameters involved in the models and the exe-
cution times, using SAS and R software.

The outline of the paper is as follows. In Section 2, we pre-
sent the bivariate Poisson regression model and discuss the
estimation procedure using both the joint and conditional pro-
cedures. In Section 3, we discuss the zero-inflation version of
the joint bivariate Poisson regression model and the proposed
conditional models. In Section 4, a simulation study is con-
ducted to compare the three models. In Section 5, applications
on two data sets from Australia and Saudi Arabia are illus-
trated using the considered bivariate regression models.
Finally, some concluding remarks are provided in Section 6.

2. Bivariate Poisson regression model

Here, we assume that the parameters of the models depend on
explanatory variables. In the joint bivariate Poisson regression
model “JBPM”*, J, > 0 with k = 1, 2 and 3 can be related to
various explanatory variables using the classical exponential
link functions. Therefore, the joint bivariate Poisson regression
model can take the following form:

(Y1i7 Yzi) ~ JBP(},],‘, )~2i7 )"31')
loghy =wlay, k=1,2, 3,

™)

where i =1, 2, ..., n denotes the observation number, w;
denotes a vector of explanatory variables of length / for the
i-th observation related to the k-th parameter and o is the cor-
responding vector of regression coefficients.

In the case of the explanatory variables, two aspects should
be stressed. First, different covariates can be used to model
each parameter (or same covariates) and second, covariates
can be introduced to model A; in order to learn more about
the influence of the covariates on each pair of variables (or,
to facilitate interpretation, no covariates are used to model /3).

Gourieroux et al. (1984) derived pseudo maximum likeli-
hood estimation methods. Jung and Winkelmann (1993) and
Kocherlakota and Kocherlakota (2001) considered the joint
bivariate Poisson regression model using a Newton—Raphson
procedure. Karlis and Ntzoufras (2005) constructed an EM
algorithm to remedy convergence problems encountered with
the Newton Raphson procedure. Ho and Singer (2001) pro-
posed a generalized least squares method for maximizing the
log likelihood. Karlis and Tsiamyrtzis (2008) implemented a

4 JBPM: joint bivariate Poisson regression model.
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Bayesian inference that does not rely on the MCMC scheme.
Tsionas (2001), Ma and Kockelman (2006) and Choe et al.
(2012) considered a Bayesian approach based on the MCMC
technique to execute some computations.

Here we use the maximum likelihood method for estimating
the parameters. Consider independent observations (y,;, y,;) with
the i-th vector having the join bivariate Poisson distribution

S y2) = & DD oy y,)
where
min(yy;,92;) roa=r) g (=)
(p(ylhyZi) = ] )VBi)Lli | )\‘Zi 1"
= M=)y —r)!

Then, the corresponding score functions Uy = Hé‘;iL,

k=1,2,3, j=0,1, ..., [are
. [y — 1,¥2)

U= lyw|——=—1],

! ; )

- (@12 — 1) ]
Uy = dgwy | 0221 = |
! ,z:; ! L o1 Vi)

- _q’(yli*lvym'*l) ]
Uy =S gy | 22— 200 7 1) |
! ZI: I eWunya)

For the conditional Poisson regression models, we will only
consider the first conditional model (CM1), as the argument for
the second conditional model (CM2) is the same. The likeli-
hood of CM1 can be written as the product of two likelihoods;
the first one is that of the conditional model and the second is
that of the marginal model. Hence, assuming that the regres-
sion parameters are different, one can maximize each likelihood
separately with respect to the corresponding parameters. For
the CM1 we denote the parameters by ., k=1, 2, 3.

For the marginal Poisson regression model, let y,; be the
mean of Yy;, i=1, 2, ..., n. Then, using the standard Pois-
son regression model, we set:

/

logp; = Bio + Zﬂljw/'ia i=12 ..., n (8)
j=1

For the conditional regression model, the conditional den-

sity (4) of Yp|Yy;, i=1, 2, ..., ninvolves the parameters
py; and 4. We use the following link functions:

!

log Ay = By + Zﬁzl.wﬁ, i=1,2 ..., n 9)
=
I

logit(p,;) = B30 + Zﬂywﬁ, i=1,2,...,n, (10)
=1

The score functions Vk,:ag;iL7 k=1,2,3j=0,1,...,1

for each regression parameters are summarized as follows:

n
Vi = E D — mdwii,
=1

n ming) _
) i\ o
Vy =3 |-kt yu = "( ! )pu(l R -
i=1 2 =0
" miny2) .
Sl r ¥ yf.e”:,/ﬁ,—'
V= Z|:7y“p” +m Z r( , )1’1/(1 )" G :|W/i
pr 2N o 2
J=0, 1, ... L

By equating the score functionsin (11) to zero, one can obtain
the parameter estimates directly. We note that the likelihood
equations are non-linear and do not have a closed-form solution,
so they can be solved numerically.

The following theorem gives the relations between the score
functions of JBPM and CM1.

Theorem 1
Vl/' — U[/"‘ U3/‘ (12)
Vz/' — UQ/' (13)
Vi = Uy — Uy (14)

Proof: See the Appendix I.

Note that when we set Uy =0 for all k=1, 2, 3 and
j=0,1,..., 7 we get V;=0, for all k=1, 2, 3 and
j=0, 1, ..., [ and vice versa. This shows that the likelihood
invariance property holds when we have explanatory variables.

3. A bivariate zero-inflated model

The zero-inflated model is used when a count data set shows a
large proportion of zeros. A bivariate zero-inflated model can
be constructed by increasing the probability of the event
(y; = 0,y, = 0) and decreasing the other joint probabilities.

The zero-inflated joint bivariate Poisson model “ZIJBPM™>
is specified by the probability function:

4+ (1 = 7)fipp(0,05 41,42, 43) y;, =y, =0
(1 = )fipp (V1,25 s 22, 23) »y or y,7#0 ’
(15)

where fipp (11, ¥2; 41,42, 43) is the joint probability function
given in (1) and 0 < 7 < 1 is the mixing proportion.

This model was proposed by Karlis and Ntzoufras (2003,
2005) in order to allow for over-dispersion of the correspond-
ing marginal distributions. It was applied by Wang et al. (2003)
to analyze two types of occupational injuries and by BermCdez
(2009) in the automobile insurance context for a bivariate case.

One can easily see that the marginal distributions are no
longer simple Poisson distributions, but are now zero-inflated
versions. Note that one may define more complicated models
by assuming other kinds of inflations (Karlis and Ntzoufras,
2005). Moreover, one may add covariates to z, implying that
inflation depends on external factors.

For estimation of the parameters of ZIJBPM, we use the
maximum likelihood procedure as follows. Let (v, ¥y:),

i=1,2, ..., n be a random sample observed from
Z1JBPM. The likelihood function for the observed random
sample is given by:

L(m;, Miy 2ty 2303 Viis Yai)

= T+ (1 = 500,05 2 s 20)! (1 = 71

Szpem (V15 2) = {

X (V1p> Vais s P2is 431)) "'},

where a; = 1 if (y,;,1,;)7(0,0) and @; = 0 otherwise. In order to
fit this model, we used the link functions in (7) for /;;, and for
modeling the mixing proportion 7;, we used a logit link function:

!
logit(m;) = 7y, + Zﬂ/iwﬁ.
=1

5 ZIJBPM: Zero-inflated joint bivariate Poisson model.
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The maximum likelihood estimates (MLEs) of the parame-
OlogL =0 dlogL __ 0
> duy

ters can be obtained by solving equations =
=0for;j=0, 1,
The zero- mﬂated conditional model “ZICM”(’ is given by:
7+ (1= 1o (0,05, 4, )
(I =m)fem1:y2:0, 4, 1)

dlogL _ o and OlogL

T A 31multaneously.

n=xy=0
¥, or y,#0
(16)

where foy(yy,¥,) is the joint p.m.f of the conditional model
given in (5) or (6) and = is the mixing proportion.

For parameter estimations of  ZICMI, let
(315, ¥2), =1, 2 ..., nbearandom sample observed from
ZICM1. The likelihood function for the observed random
sample is given by

Saem(r,¥2) = {

L(7;, Aiiy iy 33 Y1y Vi)
= H{ TE! fCMl(O 0 pln/LZH le))

(ymyzﬁl’m iy Hy;))

(1 = m)fewn

where a; = 1if (v, 7,,)#(0,0) and ¢; = 0 otherwise. In order to
fit this model, we used the link functions, asin (8)—(10), for p,;, Ay
and p,,, respectively, and to model the mixing proportion x;, we
used a logit link function:

logit(m;) =y, + Z/,w,,

The MLEs of the parameters can be obtained by solving

: dlogL __ dlogL __ d LogL il LogL
equations o, =0, s, =0, %y =0 and ’ =0 for

j=0, 1, ..., [, simultaneously.

4. Experiment results

We conducted a simulation study to examine the performance
of the proposed conditional model compared with that of the
joint bivariate Poisson model and the double Poisson model.
We used three variables, namely gender, age and income from
Health Care Australian data (Cameron et al., 1988) as
covariates. For each of the following four cases we generated
1000 samples each of size 5190.

Case 1. Simulation from joint bivariate Poisson model.

We have simulated the data points (y,;,»,;) from the joint
bivariate Poisson regression model with 4;;, 4y;, 43; given by:

Jai = exp(ag + ot wi; + oawa; + o3ws;),
Jai = exp(ong + 0o Wi; + 0o Wa; + 0a3W3;),
Zai = exp(ozo + oz Wi; + oW + 033W3;).
We have used the following parameter values:
o9 = —1.9983, oy = 0.2268, o, = 0.6902,
o3 = —0.2004, oy = —2.1718, oy = 0.6436,
oy = 3.1092, oy = —0.07716, a3y = —3.0328,
031 = 019667 O3y = 212727 033 = —0.3984.
Case 2. Simulation from conditional model.

We generated the data points (yy;,y,;) from the conditional
regression model 1, assuming the following:

6 ZICM: Zero-inflated conditional model.

wy; = exp(Pio + Priwii + Brawai + Prswsi)-
Joi = eXp(Pag + Baywii + Prawai + Bazwsi),

logit(py;) = B30 + Baiwii + Bawai + Bazwai.
Then,

23 = Pri * My

21i = Wy; — A3

We have used the following parameter values:

B = —1.71473, B, = 0.21565, f,, = 1.23798,
Pz = —0.27726, B,y = —2.1658, B, = 0.6316,
By =3.1162, B, = —0.08287, f5, = —1.2005,
By = 0.1642, B3, = 1.4778, B33 = —0.08393.

Case 3. Simulation from zero-inflated joint bivariate
Poisson model.

We have simulated the data points (y,;,»,;) from the zero-
inflated joint bivariate Poisson regression model with
iy A2, A3 and m; given by:

A1i = exp(ao + o wi; + oW + dizws),
Aoi = exXp(oi0 + 021 Wi + %oaWa; + 03w3i),
A3i = exp(oo + 031w + A3 Wa; + d33ws;),
logit(m;) = y.
We have used the following parameter values:

oo = —1.4601, oy = 0.2223, oyp = 0.7534, o3 = —0.1644,
opo = —1.6012, oy = 0.5709, 0 = 2.8359, a3 = —0.03434,
oz = —2.7627, o3 = —0.2254, 03, = 1.9464, o33 = —0.5794,
y = —0.7853.

Case 4. Simulation from zero-inflated conditional model.

We generated the data points (y,;, v,;) from the zero-inflated
conditional regression model 1, assuming the following:

i = exp(Bio + Buwii + Brawa + Brywsi).
Zoi = €xp(Bag + Boyrwii + Prawai + Pr3wai),

logit(py;) = Bao + Baywii + Bpwai + Bagwsi, logit(m;) = 7.
Then,

A3 =Py * Mg

A =y — 43

We have used the following parameter values:

B =—1.2134, B, =0.1149, B, = 1.034, B, = —0.257,

Bro = —1.6096, B,y = 0.5437, P, = 2.8886, B3 = —0.04059,
By = —1.2839, By = —0.1031, By, = 0.6529, By; = —0.2774,
7= —0.789.

Table 1 illustrates the means and standard deviations of the
AIC for the fitted models under the four cases. Bias and mean
square error (MSE) of the estimated parameters are presented
in Table 2. Table 1 shows that the average values of the AIC
for the joint bivariate Poisson model are almost identical with
those obtained from conditional model 1 irrespective of the
mechanism of data generations. On the other hand, when the
data are generated from zero-inflated models, the fitted models
ZIDPM, ZIJBP and ZICM1 perform better than their non-
inflated counter parts, as expected.
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Table 1 Mean and standard deviation (between brackets) of the AIC results of fitted models for simulated data.

Model Case | of Case 2 of Case 3 of Case 4 of
simulation simulation simulation simulation
Non Inflated Double Poisson Model (DPM) 18,329.47 18,326.61 19,489.94 13,011.69
Models (173.721) (172.173) (195.289) (262.769)
Joint bivariate Poisson Model (JBPM) 18,087.63 18,083.14 19,016.7 12,182.46
(172.2957) (170.814) (195.479) (244.162)
Conditional Model 1 (CM1) 18,081.69 18,077.37 19,009.95 12,179.54
(172.263) (170.517) (195.799) (243.163)
Zero Inflated Zero Inflated Double Poisson Model 18,308.27 18,303.82 18,339.16 10,643.36
Models (ZIDPM) (170.587) (169.269) (189.619) (220.716)
Zero Inflated Joint bivariate Poisson Model 18,079.63 18,075.14 18,241.29 10,537.24
(Z1JBPM) (172.29) (170.814) (189.959) (220.085)
Zero Inflated Conditional Model 1(ZICM1) 18,079.82 18,070.19 18,241.37 10,535.97
(172.29) (170.819) (189.955) (220.005)

To perform official test for the hypothesis that there is no
significant difference of the AIC’s, we preformed Vuong test.
Vuong (1989) set the information criterion in a testing frame-
work in which the null hypothesis is that the two competing
models are equally close to the true model. Under the null
hypothesis that the models are indistinguishable, the test statis-
tic is asymptotically distributed standard normal. We applied
the Vuong test to investigate if there is statistically significant
difference between the joint bivariate Poisson model and the
conditional model 1 in terms of AICs. We also performed the
test to compare the zero inflated models. In all cases the Vuong
test confirmed that there is no significant difference between the
two models. The smallest p-value obtained was 0.529. Both
models always perform better than the double Poisson model.

In general, the simulation study confirmed the expected
similarity of the results obtained under joint and conditional
bivariate Poisson models. This concludes the invariance prop-
erty holds when we have explanatory variables as expected
from the results of Theorem 1.

5. Applications

5.1. First application

The data analyzed here were originally employed by Cameron
et al. (1988) in their analysis of various measures of health-care
utilization, using a sample of 5190 single-person households
from the 1977-1978 Australian Health Survey. The data were
obtained from the Journal of Applied Econometrics 1997 data
archive.

Here, we model two possibly jointly dependent variables of
health service utilization measures: (1) the number of consulta-
tions with doctors during the two-week period prior to the sur-
vey (Y7); and (2) the number of prescribed medicines used in
the past 2 days (Y;).Three variables have been used as covari-
ates, namely gender (1 female, 0 male), age in years divided by
100 (measured as midpoints of age groups) and the annual
income in Australian dollars divided by 1000 (measured as
midpoint of coded ranges). More details on the data can be
found in Cameron et al. (1988).

We have fitted four different models for: joint bivariate
Poisson, conditional models 1 and 2, zero-inflated joint

bivariate Poisson and zero-inflated conditional Poisson models
1 and 2.

Model (A) covariates: age, gender, income and age * gender
with gender as a covariate on the covariance term.

Model (B) covariates: age, gender, income and age * gender
with a constant covariance term.

Model (C) covariates: age, gender and income with gender as
a covariate on the covariance term.

Model (D) covariates: age, gender and income with a
constant covariance term.

For the double Poisson and zero-inflated double Poisson,
we fitted models (A) and (C) without the covariance term.

“PROC NLMIXED” and “rootSolve” in SAS and R,
respectively, were used in fitting these models. Both packages
yielded the same results.

Tables 3 and 4 summarize the model details and the fit of the
bivariate models in terms of the AIC (Akaike Information Cri-
teria), number of parameters estimated and the execution time
required to fit the models using SAS and R packages. The results
show that the execution time of the conditional argument is less
than that of the joint model argument using SAS and R.

Table 3 indicates that estimating the two count events jointly
is better than estimating the two count events independently.

The model evaluation statistics for zero-inflated bivariate
count regression models are reported in Table 4. Since almost
54% of all observations occur when doctor visits and the number
of prescribed medicines are zero, a zero-inflated model would be
more appropriate. In comparing the model evaluation criterion
for Tables 3 and 4, one can conclude that the zero-inflated bivari-
ate models perform better than their counterparts in Table 3.

In comparing the AIC values of conditional models 1 and 2
with the corresponding values of the joint bivariate Poisson, we
observed that the results are essentially the same. This is also
confirmed using Vuong test. It turns out that all of the estimates
are practically identical across all three alternative models.
Hence, we can conclude that the proposed conditional model
is equivalent to the joint model and computationally simpler.

We found the best model, which includes all significant
parameters and has the smallest AIC, is model (C) of the condi-
tional model 2. An analysis of the maximum likelihood param-
eter estimates derived for this model is provided in Table 5.



Table 2 Bias and MSE of the estimated parameters.
Model True o0 o o2 o3 020 0] 0 023 30 31 o3 033 Y
JBPM x —1.9983 0.2268 0.6902 —0.2004 —2.1718 0.6436 3.1092 —0.07716 —3.0328 0.1966 2.1272 —0.3984 -
Bias —0.0047 —1.3E-05 —0.0061 0.0006 0.0019 —0.0028 0.0007 —0.0076 —0.0031 0.0012 —0.01491 —0.0137 -
MSE 0.0181 0.0083 0.0494 0.0138 0.0068 0.0019 0.0109 0.00289 0.0482 0.0145 0.091591 0.0379 -
CM1 True Bio B B Bis Bao Bai B Bas B30 Bai B3 B3 Y
b —1.71473 0.21565 1.23798 —0.27726 —2.1658 0.6316 3.1162 —0.08287 —1.2005 0.1642 1.4778 —0.08393 -
Bias —0.00202 —0.00402 0.007261 0.000424 0.00138 —0.00262 0.001554 —0.00681 0.002381 0.039676 —0.01463 —0.01341 -
MSE 0.008372 0.003128 0.016076 0.006666 0.006894 0.001941 0.010943 0.003058 0.091696 0.02406 0.088024 0.00018 -
ZIBPM  True o0 o1 a2 13 020 %1 o2 023 030 031 032 033 Y
x —1.4601 0.2223 0.7534 —0.1644 —1.6012 0.5709 2.8359 —0.03434 —2.7627 —0.2254 1.9464 —0.5794 —0.7853
Bias 0.0051 —3E—-05 —0.0189 —0.0167 —0.0025 0.0023 —0.0008 —0.0251 —0.00176 —0.0589 —0.01071 —0.00569 —0.0037
MSE 0.0206 0.0089 0.0591 0.0131 0.0083 0.0025 0.0135 0.0027 0.072317 0.0489 0.077094 0.084767 0.0027
ZICM1 True Bio B Bz Bi3 Bao Bai Baa Ba3 B30 B3 Baa B3 Y
b —1.2134 0.1149 1.034 —0.257 —1.6096 0.5437 2.8886 —0.04058 —1.2839 —0.1031 0.6529 —0.2774 —0.789
Bias 0.109267 0.146683 —0.11928 —0.00371 —0.00103 0.000364 0.002026 —0.05032 0.068698 —0.02123 0.237688 0.018441 0.002686
MSE 0.031875 0.036202 0.056103 0.015156 0.021908 0.006418 0.04057 0.00741 0.024504 0.006395 0.091596 0.014975 0.002135

S[OpPOW UOISSAIFAI UOSSIOJ IBLIBAIQ UQ
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Table 3 Model evaluation statistics of Bivariate Models for
Health Care Australia data.

Model Evaluation SAS R
criterion execution execution
time (s) time (s)
Par. AIC
Double Poisson A 10 20325.5 0.050 0.1
Model (DPM) Cc 8 20482.0 0.048 0.08
Joint bivariate A 12 19913.0 1.380 19.746
Poisson Model B 11 19942.0 1.180 18.530
(JBPM) C 10 20051.0 0.650 17.404
D 9 20079.0  0.700 15.850
Conditional Model A 12 19863.5 0.560 7.402
1 (CM1) B 11 19864.5 0.560 6.639
C 10 20007.4 0.470 6.738
D 9 20009.4 0.440 5.694
Conditional Model A 12 19865.4 0.560 8.114
2 (CM2) B 11 19878.8  0.590 7.308
C 10 20003.9 0.513 7.228
D 9 20022.5 0.500 6.466

Table 4 Model evaluation statistics of Zero-Inflated Bivariate
Models for Health Care Australia data.

Model Evaluation SAS R
criterion execution  execution
time (s) time (s)
Par. AIC
Zero Inflated A 11 19,306 0.56 7.899
Double Poisson C 9 19,438 0.48 7.032
Model (ZIDPM)
Zero Inflated Joint A 13 19,199 1.63 37.533
bivariate Poisson B 12 19,193 1.46 34.389
Model(ZIJBPM) C 11 19,334 1.07 28.821
D 10 19,332 0.73 26.508
Zero Inflated A 13 19,101 1.40 23.827
Conditional Model B 12 19,100 1.20 22.252
1(ZICM1) C 11 19,252 1.06 17.663
D 10 19250.1 0.64 16.031
Zero Inflated A 13 19,114 1.62 22.930
Conditional Model B 12 19,127 1.32 20.948
2(Z1ICM2) C 11 19,251.8 1.01 21.722
D 10 19,270.4 0.71 19.177

5.2. Second application

The data set was obtained from Dallah Hospital at Riyadh for
5000 persons insured directly at the hospital. At Dallah

Table 5 Results from fitting the conditional model 2 to the
Health Care Australia data.

Model (C)

Results from the fitted conditional model fy,y, (v112)

Parameter Covariate Coef. St.Er. Pr> |t

A Constant —1.8919 0.1201 <.0001
Gender 0.2851 0.08408 0.0007
Age 0.4500 0.1893 0.0175
Income —0.2581 0.1097 0.0187

)23 Constant —1.4588 0.09368 <.0001
Gender —0.5783 0.1244 <.0001

No. Parameter 6

Log-likelihood —3641.95

AIC 7295.9

BIC 7335.2

Results from the fitted Poisson model fy, (1,)

Parameter Covariate Coef. St.Er. Pr > ChiSq

1y Constant —1.87209 0.06550 <.0001
Gender 0.57601 0.03638 <.0001
Age 2.96270 0.08570 <.0001
Income —0.12539 0.05058 0.0132

No. Parameter 4

Log-likelihood —6349.994

AIC 12707.9879

BIC 12734.2058

Final results from the fitted model fy, |y, (v 132)fy, (2)

No. Parameter 10
Log-likelihood —9991.944
AIC 20,003.8879
BIC 20,069.4058

Hospital, there are three types of clinics: consultation clinics
with appointments (CONS), open specialist clinics without
appointments (OSC) and emergency clinics (AE). Here, we will
consider joint modeling of the number of patient visits to the
consultation clinics (Y;) and to the open specialty clinics (Y3)
during the year 2011. The explanatory variables are age and
gender. The sample correlation coefficient between the two
variables is 0.347. The percentage of zero visits to the CONS
and OSC clinics is 39.68% and 32.82%, respectively. Descrip-
tive statistics for these variables are given in Table 6.

We have used different groups of covariates. In model (A),
we used age and gender as covariates. Model (B): age, gender
and age * gender. Model (C): age, age? and gender. Model (D):
age, age’, gender and age * gender. Model (E): age, age®, gen-
der, age * gender and age® * gender. In model (F), we classified

Table 6 Summary statistics of Dallah data.

Statistic Number Mean St. dev Median Minimum Maximum
CONS 5000 2.8794 4.8740 1 0 57

OSC 5000 4.1154 5.6395 2 0 49

Age 5000 34.1340 23.2540 32 0 102
Gender 5000 0.5082 0.5000 1 0 1
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Table 7 Model evaluation statistics of Bivariate Models for Table 8 Model evaluation statistics of Zero-Inflated Bivariate
Dallah data. Models for Dallah data.
Model Evaluation SAS R Model Evaluation SAS R
criterion execution  execution criterion execution  execution
_ time(s) time (s) _ time(s) time (s)
Par. AIC Par. AIC
Double Poisson A 6 67,899.88 0.1 0.775 Zero Inflated Double A 7 64,419  0.29 10.495
Model (DPM) Poisson Model
B 8 67,885.72 0.1 0.679 (ZIDPM)
Cc 8 65,676.05 0.1 0.739 B 9 64,412  0.34 12.199
D 10 65,6773 0.08 0.683 C 9 62908 0.37 13.286
E 12 65,630.9 0.1 0.729 D 11 62,911 0.50 15.104
F 30 65,108.56  0.15 0.846 E 13 62,868  0.65 16.151
Joint bivariate A 9 66,908 0.89 8.378 Fosl 62,473 1.01 19.542
Poisson Model Zero Inflated Joint A 10 63,898 1.23 12.757
(JBPM) bivariate Poisson
B 12 66,894 2.20 9.568 Model (ZIJBPM)
C 12 64,758 2.66 11.861 B 13 64,067 3.07 30.02
D 15 64,759 3.83 14.842 C 13 62,355 3.54 32.910
E 18 64,716 5.49 43.014 D 16 62,358  5.47 42.003
F 45 64,189 15.60 51.042 E 19 62,513  4.89 45.723
Conditional A 9 66,904.89 0.64 3.302 F 46 61905 2322 68.4
Model 1 (CM1) Zero Inflated A 10 63,896 1.10 6.237
B 12 66,891.33  0.89 3.99 Conditional Model 1
C 12 64,713.41  0.97 4.164 (ZICM1)
D 15 64,714.25  1.17 4.728 B 13 64,066 2.83 7.830
E 18 64,677.63 294 5.25 C 13 62916 2.66 8.084
F 45 64,190.71  5.76 6.118 D 16 62,921  3.47 9.741
Condiionsl A 9 668299 085 4osy B odm smo ey
Model 2 (CM2) ’ : :
B 12 66,868.39 1.1 5.66 Zero Inflated A 10 63,897 1.29 8.397
C 12 64,759.65 1.19 5.98 Conditional Model 2
D 15 64,759.04  1.39 6.099 (ZICM2)
E 18 6471527 2.19 9.319 B 13 63,800 297 10.302
F 45 64,190.85  6.33 11.3 C 13 62,358  3.40 10.187
D 16 62,358 4.63 11.788
E 19 62,320 5.61 13.902
F 46 61913 15.78 14.590
the age into groups (<5, 5-10, 11-15, 16-20, 21-25, 26-30,
31-35, 3640, 4145, 46-50, 51-55, 56-60, 61-65, >66) and
used gender and age groups as covariates. eters estimated and the execution time required to fit the mod-
The model evaluation statistics for joint and conditional els using SAS and R packages are listed in Table 7, and those
Poisson models 1 and 2 regarding AIC, the number of param- for zero-inflated are reported in Table 8. Most of the results of
Table 9 Results from fitting the zero inflated conditional model 1 to the Dallah data.
Parameter Covariate Model (A)
Coef. St. Er. Pr>|t
W Constant 0.47620 0.022040 <.0001
Age 0.01580 0.000382 <.0001
Gender 0.17770 0.016970 <.0001
J2 Constant 0.37220 0.022830 <.0001
Age 0.02437 0.000364 <.0001
Gender 0.08910 0.017470 <.0001
y2 Constant —2.43820 0.126900 <.0001
Age 0.00942 0.001765 <.0001
Gender 0.28040 0.115200 0.0150
Mixing proportion Constant —1.69170 0.041470 <.0001
No. Parameter 10
Log-likelihood —31,938
AIC 63,896

BIC 63,961
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the joint bivariate Poisson model agree with the results of con- But, from the conditional density (4) we have
ditional models 1 and 2. min(yy ) i g
We found the best model, which includes all significant 1, L (y ! ) "] —p Y rE Pl
’ . . Ya2lV) = P P )
parameters and has the smallest AIC, is model (A) of the zero- i 021) ; r 3 % (r =)t
inflated conditional model 1. This fitted model s listed in Table 9.

where
6. Conclusion A3

e
In this paper, we used conditional argument to introduce a two- :
stage procedure for estimating the bivariate Poisson regression and 1 —p, = ,13/«}1/11'
model. Our study showed that this method has the same perfor- Substituting these results in the L.H.S, we get
mance as that of using the joint density. The conditional method - ) 2 Oarr1)
is simple as it partitions the joint likelihood into two univariate R Z:":f'g)(yn-yzf) ; )“3i/“1iﬂ ' A3 N
likelihoods. We also applied the two methods to two sets of real LHS=V,= Z i i My T (’ )E)’)z,(— i —1)!
data. The conclusion is that the two ways of modeling have the pm Sing) 25, A8 ) 0un)
same AIC but the execution times for the two-stage models are r=0 =)y —1)!
shorter. )

W/‘[ = Z;Q,'W/’,' {w — 1:| = Uz/‘ =R.H.S
Acknowledgments p PW1i>2)

. . . ) and the proof is complete.
This Project was funded by the National Plan for Science, Proof Eq. (14). Vs, = Uy, — Uy,
* N ] T ] J

Technology and Innovation (MAARIFAH), King Abdulaziz We have
City for Science and Technology, Kingdom of Saudi Arabia, T

Award Number (11-MATI1856-02). The authors thank the ref- Py = 3
erees for their constructive comments. Ai i

Hence,
Appendix I. Proof Theorem 1 D Jai
tor (2} —tog () = toe(ia) ~ Iog()
— P Ji
Proof Eq. (12). Vi; = U,; + Uy, = wlay — wla.
n v
RHS=U;;+ Uy = Z{i“wﬁ {M — 1} On the other hand
p— eV ¥21)
1y, —1 Pii _ T
+ )~3,‘M)ji |:go(yll s Voi ) _ 1:| } log (ﬁ) =W, ﬂg
P(V1is ¥20) !
but, from the recurrence relations of the bivariate Poisson dis- Therefore,
tribution (Johnson et al., 1997), we have wiBs = wlay —wla
Jiep O = Ly — 1541, 4, 4a) _N_ ﬂfiBP(J’l = Lyyi 21y 4o, 43) As the explanatory variables are independent, one gets
Va3 Ay A, A A3 7 Va3 A1y A, A )
Jigp (V1523 41, 22, 23) s A Jwe(n v A, Ao, 23) Byj =0z —ouj, j=0,1, ..., 1L
and, this is equivalent to Therefore,
e — Ly = 1) :i% _ @ P — 1, 1) ) dlogL dlogL duy OlogL Ouy
(1 Vai) i A @) By, T oy 0wy Owy; Oy

Substituting this result in the R.H.S, we get )
or equivalently

- @ i 13 i
RHS = Uy + Uy = Z{inwﬁ {M - 1} dlogL dlogL OdlogL
=1 ®(1is Y1) B = o on.
T W P A P — 1, 1) _ Y Y v
O Aai s (Vi Vo) and hence

= Z;D’n — A= Aailwi = [y — mwi = Vi = LH.S Vy = Uy — Uy

i=1

and the proof is complete. This completes the proof.

Proof Eq. (13). V5, = Uy A dix 11
ppendix

LHS=7V, = Z i F Yy — o ———— ) )
= sz,\YI,-(y2i|y][) The Appendix II involves the R and SAS language programs
min(yi;,y2) _ et that are written in order to obtain the estimates with different
i‘( ’f’ )p'i,-(l —p) ﬁ Wii. models where proposed within the Paper. The programs are
r=0 20

listed as follows:
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A.

B.

R-program for obtaining the estimates using the Joint
bivariate Poisson regression model (JBPM).
SAS-program for obtaining the estimates using the Joint
bivariate Poisson regression model (JBPM).

. R-program for obtaining the estimates using the condi-

tional regression model 1 (CM1).

. SAS-program for obtaining the estimates using the con-

ditional regression model 1 (CM1).

A. R code for obtaining the estimates using the Joint bivari-
ate Poisson regression model (JBPM).

library(rootsolve)# rootsolve involves command ‘“multiroot”
health <-read.table(*‘C://Users//Administrator//Documents//He
alth Care Aus. DATA//Heath Care Aus. csv.csv’,header=TR
UE,;sep=",") #Download the file in R

n<-5190

h <-matrix(,nrow =n,ncol = 1)

lambdal <-matrix(,nrow =n,ncol = 1)

lambda2 <-matrix(,nrow =n,ncol = 1)

lambda3 <-matrix(,nrow =n,ncol = 1)

y1 <-matrix(c(health[,13]), ncol = 1,nrow =n)

y2 < -matrix(c(health[,18]),ncol = 1,nrow =n)

x < -matrix(c(rep(1,n),health[,1],health[,2],health[,4]),nrow =n,
ncol=4)

bl <-matrix(,nrow =4,ncol=1) #The initial values of the
parameters

b2 < - matrix(,nrow =4,ncol=1) #The initial values of the
parameters

b3 <- matrix(,nrow =2,ncol=1) #The initial values of the
parameters

my < -pmin(y1,y2) #this gives min(y1,y2)

fn <- function (b)

{

lambdal <- exp(b[1]+ b[2]*x[,2] + b[3]*x[,3] + b[4]*x[,4])
lamnda2 <- exp(b[5]+ b[6]*x[,2] + b[7]*x[,3] + b[8]*x[,4])
lambda3 < - exp(b[9] + b[10]*x[,2])

for(i in 1:n){

al <- lambdal[i]

a2 <- lambda2][i]

a3 <- lambda3 [i]

nl <-yl[i]

n2 <-y2[i]

wl<-0.0

w2 <-0.0

for(z in 0:my[i]) {

wl <-wl+(a3"z*al"(nl-z)*a2" (n2-z)/(gamma(z + 1)*gamma
(nl-z+ 1)*gamma(n2-z + 1)))

w2 <-w2+(a3"z*al"(nl-z)*a2" (n2-z)*z/(gamma(z + 1)*gamma
(nl-z+ 1)*gamma(n2-z + 1)))

}

w3 <-w2/wl
h[i] <-w3

}

ul0=sum(-lamndal +yl-h)
ull=sum((-lamndal +y1- h)*x[,2])
ul2 =sum((-lamndal + y1-h)*x[,3])
ul3 =sum((-lamndal +y1-h)*x[,4])
u20 = sum(-lamnda2 +y2-h)

u21 =sum((-lamnda2 + y2-h)*x[,2])
u22 = sum((-lamnda2 + y2-h)*x[,3])

u23 =sum((-lamnda2 + y2-h)*x[,4])

u30=sum(-lamnda3 + h)

u3l =sum((-lamnda3 + h)*x[,2])

c(ul0=ulO,ull =ull,ul2=ul2,ul3=ul3, u20=u20,u21 =u2l,
u22=u22,u23=u23,u30=u30,u3l1 =u3l)

}

fit <- multiroot(f = fn, start=c(rep(0,10)))

# calculating log-likelihood function

hod <-c()

w<-c()

lamndal <-matrix(,nrow =n,ncol = 1)

lamnda2 < -matrix(,nrow =n,ncol = 1)

lamnda3 < -matrix(,nrow =n,ncol = 1)

root <-matrix(c(fitSroot),nrow = 5,ncol =2)

bhatl <-matrix(c(root[1,1], root[2,1], root[3,1], root[4,1]),

nrow =4,ncol = 1)

bhat2 < - matrix(c(root [5,1], root [1,2], root [2,2], root [3,2]),
nrow =4,ncol = 1)

bhat3 < - matrix(c(root [4,2], root [5,2]),nrow =2,ncol= 1)
lamndal <- exp(bhatl[1,1]*x[,1] + bhat1[2,1]*x[,2] + bhat1[3,1]*x
[,3]+ bhat1[4,11*x[,4])

lamnda2 < - exp(bhat2[1,1]*x[,1] + bhat2[2,1]*x[,2] + bhat2[3,1]*x
[,3]+ bhat2[4,1]*x[,4])

lamnda3 < - exp(bhat3[1,1]*x[,1] + bhat3[2,1]*x[,2])

for (k in 1:n){

al <- lamndal [k]

a2 <- lamndal2[k]

a3 <- lamndal3[k]

x0 <-yl[k]

y0 < -y2[k]

xymin < -min(x0,y0)

lambdaratio <-a3/(al*a2)

1 <-0:xymin

sums < - -lgamma(yl1[k]-i + 1)-lgamma(i + 1)-lgamma(y2[k]-i + 1)
+i*log(lambdaratio)

maxsums < -max(sums)

sums < -sums-maxsums

logsummation < -log(sum(exp(sums))) + maxsums

wlk] <- -sum(al +a2+a3)+ yl[k]*log(al)+ y2[k]*log(a2)+
logsummation

}

hod < -sum(w)

B. SAS code for obtaining the estimates using the Joint bivariate
Poisson regression model (JBPM).

proc nlmixed data = file name;

parameters b0l =0b11=0bl12=0b13=0b02=0b21=0b22=0
b23=0 b03=0 b31=0;

lambdal =exp(b01 + bl1*sex + bl2*age + b13*income);

lambda2 =exp(b02 + b21*sex + b22*age + b23*income);

lambda3 =exp(b03 + b31*sex);

f=0;

do r=0 to MIN(doctorco,prescrib);

f+exp(-(lambdal + lambda2 + lambda3))*(lambdal **doctorco)*
(lambda2**prescrib)*((lambda3/(lambdal*lambda2))**r)/
(fact(doctorco-r)*fact(prescrib-r)*fact(r));

end;

11=log(f);

model prescrib~general(ll);

run;
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C. R code for obtaining the estimates using the conditional
regression model 1 (CM1).

pl <-matrix(,nrow =n,ncol = 1)

h <-matrix(,nrow =n,ncol = 1)

lambda2 <-matrix(,nrow =n,ncol = 1)

mu < -matrix(,nrow = n,ncol = 1)

y1 <-matrix(c(health[,13]), ncol = 1,nrow =n)
y2 < -matrix(c(health[,18]),ncol = 1,nrow =n)
x <-matrix(c(rep(1,n),health[,1],health[,2],health[,4]),nrow =n,
ncol =4)

bl <-matrix(,nrow =4,ncol = 1)

b2 < - matrix(,nrow =4,ncol = 1)

my <-pmin(yl,y2) #this gives min(yl,y2)

fn <- function (b)

{

lambda2 < - exp(b[1] + b[2]*x[,2] + b[3]*x[,3] + b[4]*x[,4])
mu < - exp(b[5] + b[6]*x[,2] + b[7]*x[,3] + b[8]*x[,4])
pl <- mu2/ (1 + mu2)

for(i in 1:n){

al <-pl[i]

a2 <-lambda2][i]

nl <-yl[i]

n2 <-y2[i]

wl <-0.0

w2 <-0.0

for(z in O:my[i]) {

db <- dbinom(z,nl,al)

dp <- dpois(n2-z,a2)

wl <-wl+db*dp

w2 <-w2+z*db*dp

}

w3 <-w2/wl

hli] <-w3

i=i+1

}

ul0 =sum(-lambda2 + y2-h)

ull =sum((-lambda2 +y2- h)*x[,2])

ul2 =sum((-lambda2 + y2-h)*x[,3])

ul3 =sum((-lambda2 + y2-h)*x[,4])

u20 =sum(h- y1* pl)

u2l =sum((h - yl*pl)*x[,2])

u22 =sum((h - y1* p1)*x[,3])

u23=sum((h - yI* pl)*x[,4])
c(ul0=ulO,ull=ull,ul2=ul2,ul3=ul3, u20=u20,u2l =u2l,
u22=u22,u23=u23)

}

fit <- multiroot(f=fn, start=c(rep(0,8)))
#Calculating log likelihood function

root < -matrix(c(fitSroot),nrow = 4,ncol =2)
hod <-¢()

w<-c()

bhatl <-matrix(c(root[,1]),nrow =4,ncol = 1)
bhat2 < -matrix(c(root[,2]),nrow =4,ncol = 1)
lambda2 < - exp(x[,]%*%bhat1)

mu < - exp(x[,]%*%bhat2)

pl <-mu/(1 +mu)

for (k in 1:n) {

al <-pl[k]

a2 <-lambda2[k]

x0 <-yl[k]

y0 <-y2[K]

xymin < -min(x0,y0)

1<-0:xymin

sums < -lgamma(y1[k] + 1)-lgamma(i + 1)-lgamma(y1[k]-i + 1)-
lgamma(y2[k]-i + 1) +i*log(al) + (y1[k]-i)*log(1-al)

+ (y2[k]-i)*log(a2)

maxsums < -max(sums)

sums < -sums-maxsums

logsummation < -log(sum(exp(sums))) + maxsums
w[k] <- -a2 + logsummation

)

hod < -sum(w)

D. SAS code for obtaining the estimates using the conditional
regression model 1 (CM1).

proc nlmixed data =file name;

parameters

b10=0 bl1=0bl2=0 b13=0

etal0=0etall =0 etal2=0 etal3=0;

lambda2 =exp(b10+bl1*sex + bl2*age + bl3*income);
pl=exp(etal0+etall*sex +etal2*age +etal3*income)/(1 +exp
(etal0+etal l*sex +etal2*age +etal3*income));

f=0;

do r=0 to MIN(doctorco,prescrib);

f+ fact(doctorco)*(p1**r)*((1-p1)**(doctorco-r))*exp(-lambda2)
*(lambda2**(prescrib-r))/
(fact(r)*fact(doctorco-r)*fact(prescrib-r));

end;

11=log(f);

model prescrib~general(ll);

run;
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