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Ž . Ž .Let A be the nth Weyl algebra, and let G � Sp � � Aut A be a finiten 2 n n
group of linear automorphisms of A . In this paper, we compute the multiplicativen

�Ž G .structure on the Hochschild cohomology HH A of the algebra of invariants ofn
�Ž G .G. We prove that, as a graded algebra, HH A is isomorphic to the gradedn

algebra associated to the center of the group algebra �G with respect to a
filtration defined in terms of the defining representation of G. � 2002 Elsevier

Ž .Science USA

1. INTRODUCTION

1.1. Let us fix an algebraically closed ground field � of characteristic
zero.

1.2. For n � �, the nth Weyl algebra A is the one freely generatedn
by elements p and q , 1 � i � n, subject to the commutation relations ofi i
Heisenberg,

� � � �p , p � q , q � 0, � i , j;i j i j

� �q , p � 1, � i ;i i

� �q , p � 0, � i , j such that i � j.j i

1 This work was supported by a grant from UBACYT TW69, the international cooperation
project SECyT-ECOS A98E05, and a CONICET scholarship.
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It can be realized either as the algebra of algebraic differential operators
on the affine space � or as the Sridharan twisted enveloping algebra UU �n f
of an abelian Lie algebra � of dimension 2n with respect to any non-
degenerate Chevalley�Eilenberg 2-cocycle on �. It is a simple, left and
right Noetherian algebra of Gabriel�Rentschler Krull dimension n,
Gel’fand�Kirillov dimension 2n, and global homological dimension n.

� � �Ž .1.3. Sridharan 11 shows that the Hochschild cohomology HH An
�Ž .� H A , A 	 �, concentrated in degree 0, and, in fact, that thisn n

characterizes the Weyl algebras among the twisted enveloping algebras of
abelian Lie algebras. This result can be interpreted as the Poincare lemma´
for quantum differential forms. The same methods can be used to show

Ž . Ž .that, dually, HH A � H A , A 	 �, concentrated in degree 2n.� �n n n
Ž .1.4. Consider a finite subgroup G � Aut A and the corresponding1

algebra of invariants AG. As G varies, we obtain in this way a family of1
algebras, all of which are simple, left and right Noetherian, with
Gel’fand�Kirillov dimension 2, Krull dimension 1, and global homological
dimension 1; in particular, these numeric invariants do not allow us to
separate them.

� �Alev and Lambre 2 compute the 0-degree Hochschild homology of
Ž G .these algebras: they show that HH A is a vector space of dimension0 1

Ž . Ž .s G 
 1, with s G the number of irreducible representations of G. A
� � Ž .theorem of Alev 1 which describes Aut A implies that each of its finite1

Ž . Ž .subgroups is conjugate to a subgroup in SL � � Aut A , and the2 1
classification up to conjugation of these is classical; with this information

Ž .one can compute s G for each of the possible groups and conclude that
the algebras under consideration are in fact non-isomorphic in pairs, apart
from a few exceptions; for example, it is clear that there is a cyclic group
with the same number of classes as the binary icosahedral group.

1.5. If one considers more generally the algebras AG of invariants ofn
Ž . Ž .A under the action of a finite subgroup G � Sp � � Aut A �wen 2 n n

restrict our attention to linear automorphisms because we have no de-
scription of the whole automorphism group in this case�we again obtain
a family of algebras indistinguishable, for fixed n, on the basis of the above

� �numerical invariants alone. Alev et al. 4 obtain a generalization of the
Ž G . Ž G .above formula for HH A : they show that � � dim HH A is the0 1 k � k n

number of conjugacy classes of G whose elements have unity as an
eigenvalue with multiplicity exactly k.

We thus see that in general homology is not enough to separate this
algebra, at least without further analysis: one can easily show that these
numbers � can be computed in terms of the character of the definingk

� �representation and the power maps of the group G, and it is known 7
that there are pairs of non-isomorphic finite groups for which these data
coincide.
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1.6. In part, the interest in these computations comes from the wish
to understand the Poisson structures underlying the objects under consid-
eration.

The algebra A has a natural filtration, that of Bernstein, such that then
associated graded object gr A is a polynomial algebra on 2n variables,n
canonically endowed with a Poisson bracket deduced from the commutator

Ž .of A . The action of Sp � on gr A respects this structure, so thatn 2 n n
Ž .G Ž .gr A , for G � Sp � , is naturally a Poisson algebra. Moreover, onen 2 n

Ž .can show that if G � Sp � is a finite subgroup, the graded algebra2 n
associated to AG with respect to the restricted Bernstein filtration isn

Ž .Gexactly gr A , with the same Poisson structure.n
In particular, this means that we can regard the algebras AG asn

Ž .Gquantizations of the Poisson algebras gr A . This is the point of view ofn
� �3 , where the authors show that, in a precise sense, the 0-degree Hochschild

G Ž .Ghomology of A approximates the 0-degree Poisson homology of gr A .1 1
This idea cannot be transferred to the general case because we do not
have a definition of Poisson homology for non-smooth algebras directly

Ž .Gamenable to calculations and because gr A is non-smooth for mostn
Ž .finite subgroups of Sp � .2 n

� �1.7. It is a result of 4 that there is a duality between the homology
and the cohomology of the algebras at hand. In particular, we have

kŽ G . Ž .dim HH A � � for each finite subgroup G � Sp � . In this� n 2 n
k 2 n
paper we complete the computation of the Hochschild cohomology making

�Ž G .the algebra structure on HH A explicit. The final result is the follow-n
ing:

Ž .1.8. THEOREM. Let G � Sp � be a finite subgroup. Let G act natu-2 n
rally on the nth Weyl algebra A . The subspace V � A spanned by then n
standard generators is G-in�ariant for this action. Define d : g � � by0
Ž . gd g � 2n 
 dim V . For each p � 0, write F �G for the subspace of the� p

Ž .group algebra �G spanned by the elements g � G such that d g � p.
F �G is an algebra filtration on �G, so it restricts to an algebra filtration�

�Ž G .on the center ZZG of �G. There is a graded algebra isomorphism HH An
	 gr ZZG.

1.9. It is very easy to construct examples of the situation considered in
the theorem. If G is a finite group and V is a faithful G-module of degree
n, G acts faithfully on the algebra of algebraic differential operators on V,

Ž .which is isomorphic to A , so we can regard G � Aut A . One sees thatn n
Ž .�using the notation of the theorem�d g is simply two times the

codimension of the subspace of V fixed by g.
One particularly nice instance of this arises when we consider the

canonical action of the Weyl group corresponding to a Cartan subalgebra
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� of a semi-simple Lie algebra � on the algebra of regular differential
operators on �*, the dual space of �.

1.10. In the next section, we recall the construction of the multiplica-
tive structure on the Hochschild theory and indicate the reductions leading
to its determination in our particular case. In Section 3 we carry out the
various explicit computations needed for the proof of the theorem.

�Ž G .2. THE MULTIPLICATIVE STRUCTURE ON HH An

Ž .2.1. Let us fix from now on n � � and a finite subgroup G � Sp � .2 n
We consider the natural action of G on the nth Weyl algebra A by linearn
automorphisms.

�Ž G . � �2.2. The computation of HH A presented in 4 is based on then
fact that AG and the crossed product A � G are Morita equivalent; sincen n
Hochschild cohomology groups are invariant under this kind of equiva-

�Ž G .lence, in order to determine HH A one can instead choose to computen
�Ž . �Ž G .HH A � G . Now, the algebra structure on HH A can be defined inn n

terms of the composition of iterated self-extensions of AG in the categoryn
of AG-bimodules; since this procedure is clearly invariant under equiva-n

�Ž G . �Ž .lences, the algebras HH A and HH A � G coincide.n n
� �2.3. The next reduction depends on results of Stefan 12 and others,

which show that, in our situation, for each A � G-bimodule M there is an
p, q pŽ qŽ ..natural spectral sequence with initial term E 	 H G, H A , M2 n

�Ž .converging to H A � G, M . Since our ground field has characteristicn
zero, group cohomology is trivial in positive degrees, and this spectral

�Žsequence immediately degenerates, giving us natural isomorphisms H An
. �Ž .G� G, M 	 H A , M .n

We set M � A � G. It is easy to see that Stefan’s spectral sequence isn
a spectral sequence of algebras in this case�for example, by using the
resolutions given by the bar construction in order to compute the coho-
mologies of G and of A . The distribution of zeros in its initial termn
implies that there are no extension problems either in order to compute
the cohomology groups or to compute the product maps. We thus conclude

�Ž . �Ž .Gthat the isomorphism between HH A � G and H A , A � G isn n n
multiplicative; we will determine this last algebra.

2.4. Let us recall the construction of the multiplicative structure on
�Ž . � Ž .ethe functor H A , 
 � Ext A , 
 . We fix a projective resolutionn A nn

� e A nŽ .X � A of A as a A -module. Since plainly Tor A , A � 0 forn n n p n n
p � 0, X � � X � is an acyclic complex over A � A 	 A . It followsA n A n nn n� �from 5, Proposition IX.2.6 that it is a projective resultion of A as ann
Ae -module.n
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In particular, there is a morphism �: X � � X � � X � of resolutionsA n

lifting the identity map of A . If M and N are Ae -modules, the productn n

� : Ext e
� A , M � Ext e

� A , N � Ext e
� A , M � N 1Ž . Ž . Ž .Ž .A n A n A n An n n n

is induced by the composition

hom e X � , M � hom e X � , NŽ . Ž .A An n

��
� �

ehom X � X , M � NŽ .A A An n n

��
�

ehom X , M � N ,Ž .A An n

with � standing for the evident hom-� ‘‘interchange map,’’ up to the
canonical isomorphisms

H hom e X � , M � H hom e X � , NŽ . Ž .Ž . Ž .A An n

	 H hom e X � , M � hom e X � , N .Ž . Ž .Ž .A An n

Ž .2.5. When M � N � A � G, we can compose the map 1 with then
Ž . Ž .morphism induced by the product �: A � G � A � G � A � G.n A n nn

�Ž .We obtain in this way the internal product of H A , A � G .n n
The additivity of the functors involved and the decomposition A � Gn

	  A g of A � G as an Ae -module�here and elsewhere A g isn n n ng � G
the Ae -module obtained from A by twisting the right action by then n
automorphism g�have the consequence that this product is determined
by its restrictions

� : Ext e
� A , A g � Ext e

� A , A h � Ext e
� A , A gh ,Ž . Ž . Ž .A n n A n n A n nn n n

which we will compute in the next section.

3. EXPLICIT COMPUTATIONS

3.1. First of all, let us consider a filtered �-algebra A with a positive
ascending filtration such that the associated graded algebra gr A has no

Ž .zero divisors. For each x � A, we denote by s x the principal symbol of x
in gr A.
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Consider commuting elements x , . . . , x � A and write, for each k such1 n
that 0 � k � n, I and I � for the left ideals generated by x , . . . , x andk k 1 k
Ž . Ž . �s x , . . . , s x in A and gr A, respectively; in particular, I � I � 0. Let1 k 0 0

us suppose that we have, for 1 � k � n,

a � gr A , as x � I � � a � I � . 2Ž . Ž .k k
1 k
1

Let k be such that 1 � k � n, a � F A, and suppose that ax � I , som k k
1
that there are a � A for i � 1, . . . , k 
 1 with ax � Ýk
1 a x . Theni k i�1 i i
Ž . Ž k
1 . � Ž . Ž . Ž .s ax � s Ý a x � I , and, as s ax � s a s x because gr A is ak i�1 i i k
1 k k

Ž . Ž . �domain, we see from 2 that s a � I . We conclude that there existk
1
b � A, for each i � 1, . . . , k 
 1, and a� � F A such that a �i m
1
Ýk
1 b x � a�. We havei�1 i i

k
1 k
1

a�x � ax 
 b x x � ax 
 b x x � I .Ý Ýk k i i k k i k i k
1
i�1 i�1

By induction, this tells us that a� � I and, consequently, that a � I .k
1 k
1
We have shown that

a � A , ax � I � a � I , 3Ž .k k
1 k
1

for each k such that 1 � k � n, and we see that this is a condition that can
be tested up to an appropriate filtration.

3.2. Let A be the nth Weyl algebra over �, with generators p , q ,n i i
for i � 1, . . . , n. Let �: Ae � A be the canonical augmentation, and putn n
I � ker �. If x � A, we will write 	 x � 1 � x 
 x � 1; plainly, 	 x � I. A

� �trivial computation shows that 	 x, 	 y � 0 whenever x, y � A are suchn
� �that x, y � �1. In particular, the elements 	 p and 	 q , i � 1, . . . , n,i i

which generate I as a left Ae -module, commute.n
There is an isomorphism of algebras 
 : Ae � A uniquely determinedn 2 n

by the conditions


 p � 1 � p , 
 q � 1 � q , 
 1 � p � q ,Ž . Ž . Ž .i i i i i i�n

and 
 1 � q � p ,Ž .i i�n

Ž . Ž .for each i � 1, . . . , n. One has 
 	 p � 
p � q and 
 	 q � 
q �i i i�n i i
p , and these elements obviously commute. When we consider thei�n
Bernstein filtration on A , gr A turns out to be a polynomial algebra on2 n 2 n

Ž . Ž .variables x � s p and y � s q for i � 1, . . . , 2n; moreover, if i �i i i i
1, . . . , n,

s 
 	 p � 
x � y , s 
 	 q � 
y � x .Ž . Ž .Ž . Ž .i i i�n i i i�n

Ž .It is clear that in this case 2 is satisfied, so that in turn the elements
Ž .	 p , . . . , 	 p and 	 q , . . . , 	 q satisfy 3 .1 n 1 n
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We see that the left augmented algebra Ae with augmentation �
� �satisfies the hypotheses of Theorem VIII.4.2 of 5 ; in particular, if we let

V � n
� p  n

�q , we have a projective resolution of A as a lefti i ni�1 i�1
Ae -module of the form Ae � �

�V � A with differentials d: Ae � � pVn n n n
� Ae � � p
1V given byn

p
i�1d a � � � ��� � � � 
1 a 	 � � � � ��� � � � ��� � � .Ž . ˆŽ . Ý1 p i 1 i p

i�1

There are, accordingly, natural isomorphisms

Ext e
� A , M 	 H hom e Ae � �

�V , M 	 H hom �
�V , MŽ . Ž .Ž .Ž .Ž .A n A nn n

for each left Ae -module M, where, in the last term, homology is computedn
Ž d . Ž d�1 .with respect to differentials d: hom � V, M � hom � V, M such that

p�1
i�1df � � ��� � � � 
1 	 � f � � ��� � � � ��� � �Ž . ˆŽ . Ž .Ý1 p�1 i 1 i p�1

i�1

p�1
i�1� 
1 � , f � � ��� � � � ��� � �Ž . ˆŽ .Ý i 1 i p�1

i�1

for each f : �dV � M.
3.3. Keeping the notations introduced in the previous paragraph, let
Ž .g � Sp V , where we view V as a symplectic space in the usual way; there

is a unique decomposition V � V g  V g preserved by g and such that1 2
� 1 � g Ž g . Ž . g

g gg � Id and Id 
 g � GL V . Let d g � dim V . WheneverV VV V 2 2g 21 2

possible, we will suppress reference to the automorphism g in our nota-
tion.

Ž d .Let  � � V * � 0. The decomposition V � V  V induces a de-2 1 2
composition

�d V � � pV � �qV ; 1 2
p�q�d

in particular, we see that �dV can be identified with a subspace of �d V2
and, in this identification, admits a natural complement; we extend  to
the whole of �d V, prescribing it to be zero on this complement.

d Ž . Ž .We define  : � V � A g by setting  � �  � g. We will show that˜ ˜n
 represents a non-zero homology class of degree d in the complex˜

Ž � .hom � V, Ag considered above.
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Let us fix a basis � , . . . , � of V in such a way that � , . . . , � � V and1 2 n 1 d 2
� , . . . , � � V and choose indices 1 � i � ��� � i � 2n; we haved�1 2 n 1 1 d�1

d � � ��� � �˜ Ž .i i1 d�1

d�1
j�1� 
1 � ,  � � ��� � � � ��� � �Ž . ˜ ˆŽ .Ý i i i ij 1 j d�1

j�1

d�1
j�1� 
1 � ,  � � ��� � � � ��� � � g .Ž . ˆŽ .Ý i i i ij 1 j d�1 g

j�1

In the second equality, we see  as taking values in A , and we writen
� � Ž .x, y � xy 
 yg x .g

Ž .When i � d,  � � ��� � � � ��� � � � 0 for every j such thatˆd i i i1 j d�1
Ž .1 � j � d � 1, and this implies that, in this case, d � � ��� � � � 0.˜ i i1 d�1

If, on the contrary, i � d, necessarily i � j for each 1 � j � d andd j
Ž . � � ��� � � � ��� � � � 0 if 1 � j � d, so we have simplyˆi i i1 j d�1

dd � � ��� � � � 
1 � ,  � � ��� � � g .Ž . Ž .˜ Ž .i i i 1 d g1 d�1 d�1

As the values of  are in the center of A and � � V , this twistedn i 1d� 1
Ž .commutator vanishes, and, again, we have d � � ��� � � � 0. Hav-˜ i i1 d�1

ing considered each element in a basis of �d�1V, we conclude that
d � 0; i.e.,  is a d-cocycle.˜ ˜

Ž d
1 . Ž .Suppose now that there is an h � hom � V, A such that d hg � .˜
Ž .Then, writing h � h � � ��� � � � ��� � � � A , we haveˆi 1 i d n

d
i�1� �
1 � , h �  � � ��� � � � �1. 4Ž . Ž . Ž .Ý gi i 1 d

i�1

� �In particular, V , A � �1 � 0.2 n g
For each i � 1, . . . , n, let V i be the subspace of V spanned by p andi

q , and let Ai be the subalgebra of A generated by p and q . Abusing ai n i i
little of our notation, we see that V � n V i and A � �n Ai. Sup-ni�1 i�1
pose, without any loss of generality, that V and V are generated by p , q2 1 i i
for i � 1, . . . , d and for i � d � 1, . . . , n, respectively, and that each V i is

� ipreserved by g ; let us write g � g . We haveVi

d d
i 1 i i n� � � �V , A � V , A � A � ��� � V , A � ��� � A . 5Ž .gÝ Ýg2 n n ig

i�1 i�1

� �Theorem 4 in 2 states, among other things, that, for g an automorphism
� �of A different from the identity, A � �1  A , A . This implies that1 1 1 1 g

i � i i � Ž . � �A � �1  A , A and, using 5 , that �1 and V , A are transversalg 2 n gi
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Ž .subspaces in A . This contradicts 4 ; we have thus proved that  cannot˜n
be a coboundary in our complex.

3.4. In fact, this construction produces all d-cocycles with values in
� g � A g. To see this, let � : �d V � A g be one such cocycle; letn n
� , . . . , � be a basis of V as above with respect to which g acts1 2 n
diagonally. For each 1 � i � 2n, let � � � be such that g� � � � . Ifi i i i
1 � i � ��� � i � 2n and s satisfies i � d � i , we have that1 d�1 s s�1

0 � d� � � ��� � �Ž .i i1 d�1

d�1
j�1� 
1 � , � � � ��� � � � ��� � �Ž . ˆŽ .Ý i i i ij 1 j d�1 g

j�1

d�1
j�1� 
1 � , � � � ��� � � � ��� � �Ž . ˆŽ .Ý i i i ij 1 j d�1

j�1

s
j�1� 
1 1 
 � � � � ��� � � � ��� � � � .Ž . ˆŽ . Ž .Ý i i i i ij 1 j d�1 j

j�1

Since the first sum in the last member is zero, we see that, for 1 � j � s,

� � � ��� � � � ��� � � � 0.ˆŽ .i i i1 j d�1

� 4If now 1 � r � ��� � r � 2n and r � d, there exists t � 1, . . . , d �1 d d
� 4 � 4r , . . . , r . Let 1 � i � ��� � i � 2n be such that i , . . . , i �1 d 1 d�1 1 d�1
� 4 � 4r , . . . , r � t and suppose i � t. Our previous observation implies that1 d f

� � � ��� � � � � � � ��� � � � ��� � � � 0.ˆŽ . Ž .r r i i i1 d 1 f d�1

Ž .We see that � � � ��� � � vanishes unless r � d, and in this caser i d1 d

� � � if 1 � j � d. It is clear now that � is one of the cocycles con-r jj

structed the previous paragraph.
3.5. In our situation, and using the notation of the end of 3.3, we have

Ž � �.an iterated product cf. 5, XI.1
n

� �i i
i e e: Ext A , A g � Ext A , A g ,Ž .Ž .� � Ž A . i A n nn

i�1

� �which is an isomorphism in view of Theorem XI.3.1 of 5 . On the other
� �hand, we know from 4 that, for an algebra automorphism g of A ,1

dim Ext e
� A , A gŽ .� A 1 11

� �1, if g � Id and � 0 or if g � Id and � 2,A A1 1� ½ 0, in any other case.
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� Ž .eFrom these two facts, we easily deduce that Ext A , A g is trivialA n nn

except in degree d, where it is one-dimensional. Comparing dimensions,
we see that the map  �  is an isomorphism˜

d � � �

e� V * 
d 	 Ext A , A g . 6Ž . Ž . Ž .2 A n nn

� �Here M 
d denotes the dth suspension of a graded space M.
Ž .3.6. Let G � Sp V be a finite subgroup. The natural action of G on

V extends to a homogeneous action on the exterior algebra �
�V, on one

side, and, on the other, to an action by algebra automorphisms on An
and, thence, on Ae . With respect to these actions, each module in then
resolution Ae � �

�V � A is a G-module, and the differentials aren n
G-equivariant.

If M is a left Ae � G-module, there is an homogeneous action of G onn
Ž e � .ehom A � � V, M , which is natural with respect to morphisms M �A nn

M� of Ae � G-modules and which, under the isomorphism of �-spacesn
Ž e � . Ž � .ehom A � � V, M 	 hom � V, M , corresponds to the usual diagonalA nn

action of G. Passing to homology, we obtain an action of G on
� Ž . Ž Ž � ..eExt A , M 	 H hom � V, M .A nn

� Ž .eIn particular, Ext A , A � G is, in a natural way, a graded G-mod-A n nn

ule. In view of the decomposition A � G 	  A g of A � G as an n ng � G
left Ae -module and the considerations of the previous paragraph, we haven
an isomorphism

� dŽ g . g
eExt A , A � G 	 � V *g 
d g .Ž . Ž .Ž .A n n 2n

g�G

With respect to this isomorphism, the action of G can be described in the
Ž dŽ g . g . 
1following way: let g, h � G and  � � V *; left multiplication by h2

induces an isomorphism V h g h
1 � V g which, in turn, determines an2 2� Ž dŽ g . g . Ž dŽh g h
1 . h g h
1 .isomorphism h : � V * � � V *. In this notation, we have2 2

h  g � h�  hgh
1 .Ž . Ž .

The verification of this claim reduces to a simple computation.
A nŽ .3.7. Since obviously Tor A , A � 0, we know that� n n

A � �
�V � A � �

�V � An n n

	 Ae � �
�V � Ae � �

�V � A � A 	 AŽ . Ž .n A n n A n nn n

is a projective resolution of A as a left Ae -module. There is a morphismn n
of resolutions of A over 1 , � : A � �

�V � A � A � �
�V � A �n A n n n nn
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�
�V � A , given, in each degree d, byn

� a � � � ��� � � � bŽ .1 d

� � i , j a � � � ��� � � � 1 � � � ��� � � � b ,Ž . Ž .Ý i i j j1 p 1 q
p�q�d

Ž .i , j �Sp , q

Ž .if we let S be the set of p, q -shuffles in the symmetric group S andp, q p�q
Ž . Ž . Ž .if, for each such shuffle i, j , � i, j is the signature of i, j .

Given Ae -modules M and N, the productn

� : Ext e
� A , M � Ext e

� A , N � Ext e
� A , M � N 7Ž . Ž . Ž .Ž .A n A n A n An n n n

is as explained in Section 2. Explicitly, under the usual identifications, if
Ž p . Ž q .� � hom � V, M and � � hom � V, N , the product � � � �

Ž p�q .hom � V, M � N is such thatA n

� � � � � ��� � �Ž . Ž .1 p�q

� � i , j � � � ��� � � � � � � ��� � � .Ž . Ž . Ž .Ý i i j j1 i 1 q
Ž .i , j �Sp , q

If there is a group G acting like in paragraph 3.6, from general principles
or simply in view of this formula, we know that if M and N are

e Ž .A � G-modules, the product 7 is G-equivariant.n
3.8. In the situation of paragraph 3.6, choose an arbitrary G-invariant

inner product on V. It is easy to see that, for each g � G, V g and V g are1 2
mutual orthogonal complements in V. If g, h � G, we have

� � �g h g h g h g hV � V � V �V � V � V � VŽ .2 2 2 2 1 1 1

so that

� ��g h g h g h g hV � V � V � V � V � V . 8Ž .Ž .2 1 2 2 2 2

3.9. There is an isomorphism A g � A h 	 A gh of Ae -modules,n A n n nn

which we regard as an identification. Setting M � A g and N � A h inn n
Ž .7 , we have a product map

� : Ext e
� A , A g � Ext e

� A , A h � Ext e
� A , A gh . 9Ž . Ž . Ž . Ž .A n n A n n A n nn n n

Ž . Ž .From degree considerations, we see that this is trivial unless d gh � d g
Ž . Ž . g h g h� d h ; if this is the case, 8 implies that V � V  V . Let  �2 2 2

Ž dŽ g . g . Ž dŽh. h.� V * and 
 � � V * be nonzero forms, and consider a basis2 2
� , . . . , � of V such that � , . . . , � is a basis of V g, � , . . . , �1 2 n 1 dŽ g . 2 dŽ g .�1 dŽ g .�dŽh.
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is a basis of V h, and � , . . . , � is a basis of V g h. Let 1 � r �2 dŽ g .�dŽh.�1 2 n 1 1
Ž .��� � r � 2n be arbitrary indices. If r � d g thendŽ g .�dŽh. dŽ g .

˜ � 
 � � ��� � �˜Ž . Ž .r r1 dŽ g .� dŽh.

˜� � i , j  � � ��� � � 
 � � ��� � �Ž . ˜Ý ž / ž /r r r ri i i i1 dŽ g . dŽ g .� 1 dŽ g .� dŽh.
Ž .i , j �SdŽ g . , dŽh.

10Ž .

Ž .is zero because, for each i, j � S , � � d, so the second factordŽ g ., dŽh. r i dŽ g .
Ž . Ž .in each term of the sum vanishes. If r � d but r � d g � d h ,dŽ g . dŽ g .�dŽh.

Ž .similar reasoning shows that 10 is also zero.
Ž . Ž . ŽWe thus see that unless r � i for each 1 � i � d g � d h ,  �˜i

˜ ˜.Ž .
 � � ��� � � � 0; that is,  � 
 is one of the cocycles con-˜r r1 dŽ g .� dŽh.

structed in paragraph 3.3. It is not cohomologous to zero, because it is not
zero on �dŽ g h.V g h, since2

˜ � 
 � � ��� � �˜ Ž .Ž . 1 dŽ g .�dŽh.

�  � � ��� � � 
 � � ��� � � � 0.Ž . Ž .1 dŽ g . dŽ g .�1 dŽ g .�dŽh.

Ž .We conclude that 9 is either an isomorphism or zero, depending on
Ž . Ž . Ž .whether d gh � d g � d h or not.

Ž dŽ g . g .3.10. We can choose a non-zero element  � � V * for eachg 2
Ž 2 .g � G in the following way. Let � � � V * be the symplectic form on V;
� 2 g

gsince the action of G preserves � , � is a symplectic form on V for� V 22

Ž . Ž � 2 g .dŽ g .�2each g. In particular, the d g �2th exterior power  � � �� Vg 2

Ž dŽ g . g . Ž . Ž .� V * � 0�this makes sense because d g is even because g � Sp V .2
Ž . Ž . Ž .It is clear that when g, h � G are such that d g � d h � d gh ,  �˜g

 �  because V g  V h � V g h. Moreover, these elements are compat-˜ ˜h g h 2 2 2
� Ž .eible with the action of G on Ext A , A � G , in the sense thatA n nn

g �  
1 , because the action is symplectic.˜ ˜h g h g
� 4We thus see that in terms of the basis  both the structureg g � G

constants and the action of G become particularly pleasant.
3.11. Consider the filtration F �G on �G such that F �G is spanned� p

Ž . Ž .by the elements g � G such that d g � p. Equation 8 implies that this
is an algebra filtration on �G.

It is clear from the previous paragraph that the map

 � Ext e
� A , A � G � s g � gr �GŽ . Ž .˜g A n nn

is an algebra isomorphism. The compatibility of the chosen basis of the
domain of this map with the action of G tells us that this map is in fact
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G-equivariant and, hence, that there is an isomorphism of graded algebras
� Ž .G Ž .G

eExt A , A � G 	 gr �G .A n nn

3.12. Write ZZG for the center of �G, and consider for it the
Ž .Gfiltration induced by F �G. It is clear that �G � ZZG, so that gr ZZG ��

Ž .Ggr �G ; and in fact this is an equality, because passing to the associated
graded objects preserves the dimension. This proves Theorem 1.8.

4. SOME EXAMPLES

4.1. As mentioned in the Introduction, it is very easy to construct
examples of the situation considered in our Theorem 1.8. Indeed, let G be
a finite group and choose a faithful G-module V of degree n; G acts
faithfully on the algebra of regular algebraic differential operators on V,

Ž .which is isomorphic to A , so we can regard G � Aut A . One sees thatn n
Ž .�in the notation of the theorem�d g is simply two times the codimen-

sion of the subspace of V fixed by g � G.
4.2. As we remarked in the Introduction, natural examples of this

arise when one considers the action of the Weyl group corresponding to a
Cartan subalgebra � of a semi-simple Lie algebra � on the algebra of
regular differential operators on the dual space �*.

� �4.3. Let us write C G for the algebra of �-valued central functions
Ž � �. � �on G. It is well-known cf. 9 that C G is canonically endowed with the

structure of a �-ring with respect to which the Adams operations are given
kŽ .Ž . Ž k . � �by � f g � f g for k � 0, f � C G , and g � G.

� �� �Let t be a variable, and let p � C G t be the central function with
Ž .polynomial values such that, for each g � G, p g is the characteristic

� �� �polynomial of g in the representation V; define now q � C G t by
Ž . n Ž 
1 .setting, identically on G, q t � t p t . A simple computation shows

that, if we let � be the character of V, we have

d
k�1 kln q t � 
 � � t .Ž . Ž .Ýdt k�0

It is clear that p and q have 1 as a zero of the same multiplicity, so that
� �the function d � C G defined in Section 1.8 is given by

d � 2n � 2 res � k�1 � t k ,Ž .Ý1
k�0

where we have written res f for the residue at 1 of a function f1
meromorphic in a neighborhood of 1.

kŽ .4.4. This equation implies that the numbers dim HH A � G are� n
� �determined by the character � and the �-ring structure on C G . Since we

are working over a field of characteristic zero, this last structure is
determined by the Adams operations. These, in turn, depend only on the
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power maps, i.e., the maps induced on the set of the conjugacy classes of G
by exponentiation.

We thus see that if two groups G and G� are such that both their
Žcharacter tables and their power maps coincide such pairs are shown to

� �.exist in 7 and we choose corresponding faithful representations, which
Ž G . Ž G �.will of course have the same degree n, HH* A and HH* A will ben n

isomorphic as graded vector spaces and, in fact, as algebras, since the
matrix of structure constants of the center of a group algebra is deter-
mined by the character table.

4.5. We consider next in some detail the particular instance of Sec-
tion 4.1 in which G � S , the symmetric group on n letters, acts onn
V � � n by permutation of the canonical basis. This of course corresponds
to the situation arising from the Weyl group action as in Section 4.2 in the
case of Lie algebras of type A .n

� 44.6. For each n � 0, let S be the symmetric group on 1, . . . , n , andn
let i : S � S be the standard injection, under which S fixes n � 1.n n n�1 n
Let S � lim S be the injective limit, the restricted symmetric group on an� n
countable infinite number of letters.

4.7. A partition � is a non-increasing sequence of non-negative inte-
Ž .gers � which eventually vanish; let � be the set of all partitions. Ifi i�1

Ž .� � �, let l � stand for the number of non-zero terms in � and define
� �the weight of � to be � � Ý � . Let � be the set of partitions ofi�1 i n

weight n.
Ž .4.8. If � � S , the type of � is the partition � � listing the lengthsn

� Ž . �of the cycles in a disjoint cycle decomposition of � ; clearly, � � � n. If
Ž . Ž . Ž Ž .. Ž .� � � r , . . . , r , � i � � r , . . . , r , 1 , so that if we define the stable1 l n 1 l

�Ž . Ž .type of � to be the partition � � � r 
 1, . . . , r 
 1 we see that this1 l
is compatible with the injections i , and in consequence �� is defined onn

� �Ž . 4S . For � � �, we set C � � � S : � � � � ; it is easy to show that� � �

� 4C is precisely the decomposition of S into conjugacy classes.� �� � �

Ž . Ž .4.9. For n � 0, let ZZ � ZZ �S , and if � � �, c n � Ý gn n � g � C � S� n
Ž . � � Ž .� ZZ . Obviously we have c n � 0 if � � l � � n.n �

� Ž .4.10. If �, � � �, there are integers a n , � � �, such that��

c n c n � a� n c n ,Ž . Ž . Ž . Ž .Ý� � �� �
���

� Ž . � � � � � �with a n � 0 if � � � � � . These numbers have great combinato-��

rial interest, and explicit computations of specific cases can be found in the
� � � Ž .literature. In general, cf. 8 , a n depends polynomially on n and is��

� � � � � �actually independent of n when � � � � � .
� �4.11. Let BB � � t of polynomials which take integer values on

Ž .integers, and let ZZ be the possibly non-associative BB-algebra which as�
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� 4a BB-module is free on the set c and whose product is determined by� �� �

c c � a� c .Ý� � �� �
���

� � � � � �� � � � �

There are multiplicative �-linear morphisms ZZ � ZZ given by specializa-� n
Ž .tion c � c n on the basis and by evaluation of polynomials at n on the� �

coefficients, which collect to give a multiplicative map ZZ � � ZZ ,� n� 0 n
which turns out to be injective. This implies that ZZ is an associative�

algebra. Clearly, the kernel of ZZ � ZZ is generated by those c such that� n �

� � Ž .� � l � � n and the polynomials in BB which vanish on n.
� �4.12. Let F ZZ be the BB-submodule spanned by the c with � � n.n � �

We see at once that this defines an algebra filtration F ZZ on ZZ , and, in� � �

view of the last statement of paragraph 4.10, we can describe the associ-
� 4ated graded algebra as follows: let GG be the �-algebra with �-basis c� �� �

and product given by c c � Ý a� c ; then gr XX � BB � GG.� � �� �� � � �� � � � �� � � �

4.13. The epimorphisms ZZ � ZZ of paragraph 4.11 are compatible� n
with the filtrations on the objects involved, so they give epimorphisms on
associated graded objects; but it is easy to see that these are actually

Ž .determined by epimorphisms GG � gr ZZ , given by c � c n .n � �

Ž .4.14. Let us write, for � � r , c � c . It is not difficult to show thatr �

� 4the set c is algebraically independent in GG and generates it ratio-r r �1
nally.

4.15. Let � be the ring of symmetric functions with integer coeffi-
cients on a countably infinite number of variables, and, for each i � 0, let
h be the ith complete symmetric function, which is the sum of alli

�� 4 �monomials of total degree i. It turns out that � � � h . If � �i i�1
Ž .r , . . . , r � �, we set h � h ��� h .1 l � r r1 li�1 �� �� �4.16. Define u � Ý h t � � t , and define elements h � �i� 0 i i
so that t � Ý h� ui�1. Since the h freely generate �, we can define ai� 0 i i

Ž . �ring morphism � : � � � with � h � h . Now one can verify from theiri i
definition that the h� are also algebraically independent and generate �,i
so, in view of the symmetry of the construction, we see that � is actually
an involution. We extend the notation as in the previous paragraph to

� �4obtain a family h indexed by all partitions which span �.� �� �

² � :4.17. Let 
 
 be the bilinear form on � with values in � such
² � :that h m � � , where the m are the monomial symmetric functions,� � �� �

Ž . r1 r lobtained, for � � r , . . . , r , by symmetrization from x ��� x . Define1 l 1 l
� 4 ² �:functions g such that g , h � � .� �� � � � ��

4.18. Now we can give a very concrete description of the ring GG and,
using the fact that the kernel of the epimorphisms GG � gr ZZ is easilyn

Ž Sn.identifiable, of the algebras HH A . Indeed, it is a theorem proved inn
� � Ž .10, Example I.7.25 that the map 
 : � � GG is such that 
 g � c is a� �
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ring isomorphism. This allows us to do explicit computations in the
Ž Sn.algebras HH A , by translating the problem into one involving symmet-n

ric polynomials.
4.19. For each n � 0, let RS be the representation ring of S ; then n

sum RS �  RS is a strictly commutative graded ring with productnn� 0
determined by its restrictions RS � RS � RS , given by � � � �n m n�m

Sn� m Ž .ind � 	 � . There is a very natural isomorphism of rings �: RS � �,S 	Sn m

essentially corresponding to taking the character of representations. It
would be interesting to be able to explicitly relate elements and their

�Ž Sn.products in HH A to actual representations of the symmetric groupsn
using the composition 
 �� of isomorphisms at hand. Unfortunately, one
cannot expect to be able to restrict oneself to actual representations, since
already g corresponds under � to 
1 � RS , the opposite of the trivialŽ1. 1
representation of S , which, of course, is only a virtual representation.1
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