
Ž .Advances in Applied Mathematics 23, 234]254 1999
Article ID aama.1999.0653, available online at http:rrwww.idealibrary.com on

The Frequency Interpretation in Probability

Charles Friedman

Math. Dept. RLM 8.100, Mail Code: C1200, Unï ersity of Texas, Austin, Texas 78712
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Ž .We formulate and discuss the notion of generic sequence and random sequence
associated with a sequence of random variables. These are substantial generaliza-
tions of the notion of ‘‘collective’’ introduced by R. von Mises as an attempt to give
an operational meaning to various probabilistic ideas. The definition of collectives
lacked a precise formulation, and A. Church and others attempted to give a
rigorous meaning to the theory by utilizing ideas from the theory of computability.
Nevertheless, the theory had major flaws. Even though some important contribu-
tions to special cases were made by P. Martin-Lof, the whole circle of ideas has¨
languished due to lack of generality. The theory presented in the present article
resolves many of these problems, and provides a coherent framework for the
relevant ideas. Q 1999 Academic Press

1. INTRODUCTION

The difficulties involved in the interpretation of probabilistic notions in
Ž .statistics and in many other area also are well known, and the attempts to

resolve these problems have by now a substantial history. In The Founda-
w xtions of Statistics 6 , L. J. Savage notes ‘‘ . . . as to what probability is and

how it is connected with statistics, there has seldom been such complete
disagreement since The Tower of Babel.’’ Closely connected to probabilis-
tic foundations and of especial importance in statistics is the concept of
randomness, concerning which no less a scholar than H. Cramer admits in´

Žw x.his Mathematical Methods of Statistics 2 that ‘‘It does not seem possible
to give a precise definition of what is meant by the word random.’’ Of

Žcourse, one may define a random sample from X where X is a random
.variable as a sequence of random variables which are independent and

have the same distribution as X. However, if one has a sequence of data
values and wonders in what sense it can be considered random, the cited
definition is not particularly helpful; indeed, it is somewhat unclear what

Žrandomness of a particular sequence even means although various ap-
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.proaches to this notion are now known . Our purpose in the present article
is to provide a definite meaning for this notion and for the related notion
of the frequency interpretation of probability which seems more general
than previous attempts at such definitions. In fact, we shall show that there
exist sequences of data values that model ‘‘all’’ relevant properties associ-
ated with a sequence of random variables. The adjective ‘‘all’’ in the
preceding will be understood as referring to all properties that hold with
probability 1 and may be described by algorithm. This notion seems quite
useful in the theory of probability, but it seems to have been exploited very
infrequently.

Throughout the present article, nothing inconsistent with the classical
theory of probability will appear; the only novelty will perhaps be the point

Žof view. It should be remarked that there are notions of randomness that
are distinct from the usual probabilistic one, but we will not be at all

.concerned with these here.
Before presenting our theory, we discuss some of the history of these

ideas.

2. BACKGROUND

In order to restrict attention to a specific context, suppose we contem-
plate tossing a coin. What does it mean to say that the probability of

1obtaining a head is ? It might be claimed that this reflects our complete2

lack of knowledge concerning the outcome; however, it could be that the
coin is weighted in a way which significantly affects the outcome or it
might be 2-headed, etc., in which case it seems that the cited probabilistic
prediction is just wrong. Additionally, one can argue that there is nothing
probabilistic at all occurring; the coin will be acted on by various forces,
and the laws of mechanics will determine the outcome. There is probably
no easy answer to these objections if we only consider a single toss. There
are situations involving a single occurrence when a subjective or ‘‘per-
sonalistic’’ concept of probability seems useful: for example, with regard to
questions such as ‘‘What is the probability that a successful brain trans-
plant will be performed on a human in the next year?’’ But the subjective
approach seems less compelling in the coin tossing situation, although one
could make some argument for its applicability. In any case, we shall have
nothing more to say concerning this approach. The classical a priori
approach to the coin example would involve selecting mutually exclusive
events which are ‘‘equally likely,’’ in this case the events that head or tail

1Ž .occur, and assigning them equal probabilities . Evidently, this con-2

tributes nothing new to the understanding of the situation, the term
‘‘equally likely’’ being merely a substitute for the arbitrary assignment of
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1 Žprobability . The axiomatic point of view espoused by Kolmogorov and2
.others avoids any attempt to assign a ‘‘meaning’’ to such probabilistic

� 4notions. One considers a sample space, S s H, T , and a function P
defined on ‘‘events,’’ which is in the present situation determined by the

1Ž . Ž .values P H s P T s . This is a purely mathematical setup; it can be2

used to compute various things, but what it all ‘‘means’’ is an unmeaning-
ful or perhaps inappropriate question.

If instead of a single toss we consider a repetition of this action, it seems
that a new interpretation of the probabilities discussed is possible. If we

Ž .adhere to the frequency or a posteriori interpretation of probability, we
1Ž .attempt to assign meaning to the assertion P H s by some statement2

such as ‘‘In a long sequence of tosses, we expect the relative frequency of
1Ž .heads i.e., a headsra tosses to be about . This seems meaningful for a2

few seconds, but then we realize that the word ‘‘expect’’ involves the
probabilistic notions that we failed to understand in the first place now
appearing in more complex manifestation, the word ‘‘about’’ is difficult to
quantify, and in addition, a whole new set of unpleasant question are
presented. For example, how is the tossing to be performed? Clearly, if
one tosses in exactly the same way each time and the surrounding
conditions are identical, then the laws of physics imply that the identical
result will always occur. On the other hand, if one tosses in such a way that
1 of the outcomes are heads, then that’s what happens; what does this all3

have to do with probability? Furthermore, even after performing a long
sequence of tosses, it seems difficult to come to any probabilistic conclu-
sion without referring to concepts equivalent to those whose meaning we
wish to understand. For example, we could toss a coin 1000 times with the
result being, say, 463 heads. What then? Does this reinforce the belief that

1Ž .P H s ? Now it is certainly true that there are statistical tests of the2
1Ž .hypothesis that P H s , but these make use of a large body of proba-2

bilistic theory; in using these, we can test the hypothesis, but without
explaining what the hypothesis means!

For the practical working statistician this may be largely irrelevant, but
from a theoretical and foundational viewpoint it appears incomplete and
unsatisfying. In a final attempt to resolve the problem under discussion,

1Ž .one might say that for the coin tossing situation P H s simply means2

that we believe the sequence of outcomes will be one for which the
1asymptotic relative frequency of heads is , i.e., we use such a sequence as2

a model for the probabilistic concept. The main problem with such an
approach is that many sequences with the given asymptotic property fail to
satisfy other conditions that would be expected of a sequence of indepen-
dent tosses of a fair coin; it seems that to be a good model, ‘‘all’’ such
conditions should hold; but is this possible? If not, then the idea of a
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model is somewhat suspect; one might need different models for many
different properties.

Ž w x w x.In the early 1900’s Richard von Mises see, e.g., 7 or 4 proposed a
remarkable and innovative framework in which to attack these problems.

1 Ž .He suggested that the notion of probability and other probabilities as2

well as the notion of randomness could be defined in terms of properties
of a representative sequence of outcomes which he called a ‘‘collective.’’ In
particular, consider the sequence of outcomes of a series of coin tosses

� 4which we represent as an infinite sequence, x , n s 1, 2, . . . , of 0’s andn
Ž1’s, the 1’s denoting that a head has occurred, the 0’s the contrary. Of

course, in an actual experiment, the outcomes form a finite sequence, but
.we are imagining a sequence of tosses which continues indefinitely. In

order for such a sequence to be termed a ‘‘collective’’ for the ‘‘fair’’ coin
tossing experiment, it must satisfy the property that the asymptotic relative

1frequency of 1’s is . This is not enough, however, since a sequence such2

as: 1 0 1 0 1 0 1 0 1 0 . . . satisfies this asymptotic condition, but does
not have the quality of ‘‘randomness’’ that one expects. Von Mises also
required that for any method of selecting a subsequence, x of the xn ni
Ž .with n - n - . . . in which the choice to include or not include a given1 2
x can depend only on x with i - n, the asymptotic relative frequency ofn i

11’s in the chosen subsequence should again be . The idea is that a2

gambler making bets at even odds on whether a given next toss will be
heads or not should not be able to formulate any scheme involving when to

Žbet which would provide an advantage. Such a scheme might be some-
thing of the sort: ‘‘whenever 5 heads occur consecutively bet that the next
is not a head, and if head and tail alternate for more than 10 tosses, don’t

.bet for the next 5 tosses,’’ etc. It would be very nice if this made sense,
because then one could present the collective as a model of the concept ‘‘a

1random sequence of 0’s and 1’s with probability of occurrence of 1.’’ The2

problem is that if ‘‘all’’ schemes are allowed, then there are no collectives
because there is always a choice of subsequence for which the asymptotic

1relative frequency of 1’s differs from }just pick the terms equal to 1!2

The notion that the choice to include or not include a given x ‘‘cann
depend only on x with i - n’’ really has no meaning in this situation;i
what does ‘‘depends only on’’ mean? Think of the situation of a gambler
deciding whether and how to bet on the next toss; he might get lucky and
always guess to his advantage. An attempt at a solution to this difficulty

Žw x.was suggested by Alonzo Church 1 : the choice of subsequence should
Žbe required to be given by an algorithm an effectively computable func-

.tion, i.e., one which can be coded in some programming language . In this
case, the notion ‘‘depends on’’ makes good sense; a computed result

Ž .depends only on some numbers if it uses them and nothing else as input.
It follows rather easily from the fact that the totality of algorithms is
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Žcountable that, with this definition, collectives exist and form a set of
probability 1 with respect to the canonical probability measure in this

. Ž w xsituation. However, it was soon pointed out by J. Ville see 4 for some
.discussion and references that collectives in the above sense exist for

nwhich the frequency of 1’s in the first n terms is always G ; unhappily,2
Žthis is a property which holds with probability 0 again with respect to the

.canonical probability . Similarly, there are collectives for which the Law of
the Iterated Logarithm fails to hold. These objections essentially put an
end to the attempts to offer collectives as a model of probabilistic notions.
In retrospect, it seems clear that the definitions made were quite inade-
quate in that they focused on a few properties that ought to hold for
random sequences but omitted many others. For example, the restriction

Žto subsequences x with n - n - ??? is artificial in general althoughn 1 2i

perhaps appropriate in the situation envisioned of a gambler betting on a
.sequence of coin tosses ; there is no reason to exclude ‘‘subcollection’’ xni

generated by an algorithm for which the n are merely assumed to bei

distinct and for which the successive choices of terms depend only on
previously examined terms. In addition, it ought to be the case that if such

Ž .a subcollection is chosen algorithmically , then not only should the
1asymptotic relative frequency of 1’s still be , but if one looks at successive2

blocks of terms of some fixed length k, say, these should be asymptotically
uniformly distributed over the 2 k available possibilities. Even if one
required such conditions to hold, it would additionally be necessary to
exclude examples of the type exhibited by Ville; these exhibit ‘‘unlikely’’
behavior which is not excluded by conditions on asymptotic relatï e fre-
quencies. Furthermore, none of these ideas apply directly to more general
situations in which one has a sequence of data points which are real
Ž .rather than just 0’s and 1’s ; we would also like to make sense of the
notion of ‘‘generic’’ sequences which have all ‘‘expected’’ properties of the

Žsampled values of general sequences of random variables which might not
.be independent, for example . We will, in fact, address this general

Žsituation in the section to follow. For the case of binary sequences and
.somewhat more generally , however, there is a theory which provides a

meaning for some of the probabilistic notions discussed; this is the theory
Ž . Ž w xof Kolmogorov or algorithmic complexity see 4 for an extremely
.extensive coverage . We briefly describe this idea as discussed in an article

w xof P. Martin-Lof 5 .¨
Let x be a sequence of 0’s and 1’s, and let A be a partial recursive

Ž .function a ‘‘program’’ . The complexity of x relative to A is the minimum
number of dyadic symbols necessary to compute x using A; symbolically,

Ž . Ž .K x s min l p . This depends on A, but if one chooses A to be aA AŽ p.sx
Žuniversal partial recursive function the partial recursive function com-
.puted by a universal Turing machine , then for any other partial recursive
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Ž . Ž .B, K x F K x q C, where C is a constant depending only on A andA B
B. Let A be such a universal function and denote K by K. One thenA

� 4defines a sequence x , k s 1, 2, . . . of 0’s and 1’s to be ‘‘random’’ ifk
Ž . ŽK x , . . . , x G n y C for infinitely many n. One might contemplate1 n

requiring this for all n, but it turns out that no sequences would satisfy
such a condition. There are alternate definitions of complexity with respect

w x .to which such a condition is appropriate. See 4 for a complete theory.
Such a definition is appealing in many ways; the random sequences are
defined to be the ones which are ‘‘most’’ difficult to describe algorithmi-
cally. Martin-Lof states the theorem that the random sequences in the¨
sense just defined belong to the complement of all constructï ely measur-

Žable sets of measure 0. A subset N of the binary sequences is a construc-
tively measurable set of measure 0 if for each e ) 0 there is a recursive
function f on the natural numbers whose values are finite binary se-

` Ž Ž .. Ž .quences and N : U s D U f k where U a , . . . , a is the set of« ks1 1 n
Ž . .sequences beginning with a , . . . , a and U has product measure - e .1 n «

Now an effectï e statistical test of randomness can be identified with a
property which holds for all infinite binary sequences except those in a

Ž .constructively measurable set of measure 0 canonical measure still , so it
Žfollows that the random sequences obey all effective i.e., given by algo-

.rithm statistical tests of randomness. However, as mentioned above, there
is some difficulty in extending both notions}the K complexity and Mar-
tin-Lof’s idea of requiring all effective statistical tests of randomness to¨
hold}to sequences of values of more general random variables. We would
like to be able to define a notion of ‘‘generic’’ sequence of values
associated with a sequence of random variables which would serve as a
model for all probabilisticrstatistical notions associated with the given
random variables. We shall do this in the next section in a manner inspired
by both von Mises and Martin-Lof. It is interesting to note that H. Cramer¨ ´

w xin his classic text ‘‘Mathematical Methods of Statistics’’ 2 comes close to
enunciating the notion we have in mind, at least in the case of sequences

Žof independent random variables although in the final analysis, one must
probably consider his point of view to be the axiomatic one mentioned

.earlier . We will quote from Cramer’s text, changing notation slightly in a´
Ž .few places e.g., replacing German script letters by Latin counterparts .

Cramer enunciates the frequency interpretation of probability in no uncer-´
tain terms, in stating ‘‘Whenever we say that the probability of an event E
with respect to an experiment EE is equal to P, the concrete meaning of
this assertion will thus simply be the following: In a long sequence of
repetitions of EE, it is practically certain that the frequency of E will be
approximately equal to P.’’ A bit later he considers the notion of random
variable: ‘‘Consider a determined random experiment EE, which may be
repeated a large number of times under uniform conditions. We shall
suppose that the result of each particular experiment is given by a certain
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number of real quantities j , j , . . . , j , where k G 1. We then introduce a1 2 k
Ž .corresponding variable point or vector j s j , j , . . . , j . . . We shall1 2 k

call j a k-dimensional random ¨ariable. Each performance of the experi-
ment EE yields as its result an obser̈ ed ¨alue of the variable j . . . ’’ There
appears to be almost an identification of the ‘‘random variable’’ with the

Žsequence of values obtained by experiment rather than with some func-
.tion on a sample space as in the axiomatic approach . Next we are told

‘‘Let S denote some set . . . and let us consider the event j g S. We shall
assume that this event has a definite probability P in the sense explained

Ž .in 13.5’’ the frequency interpretation described above . ‘‘The number P
Ž . Ž .will . . . be denoted by . . . P s P S s P j g S .’’ A paragraph later an

axiom is stated to the effect that ‘‘To any random variable j . . . there
Ž .corresponds a set function P S uniquely defined for all Borel sets

Ž .S . . . such that P S represents the probability . . . of j g S.’’ It is not
exactly clear how to interpret this, but if taken at face value it seems
difficult to escape the conclusion that is being asserted that all probabili-

Ž .ties of the form P j g S can be obtained from the empirical distribution
of the sequence of data values, i.e., as asymptotic relative frequencies
associated with the sequence. This, of course, is too much to expect. It is
true that if we have a sequence of independent, identically distributed,

Ž .random variables or vectors X , then for each measurable set S, almosti
all sample sequences have the property that the asymptotic relative fre-

Ž . Žquency with which its terms belong to S is P X g S . This follows fromi
.the strong law of large numbers as will be discussed later. However, there

are uncountably many S, and this likely precludes the existence of se-
Ž .quences for which the condition holds for all Borel S. In fact, if we take

for S the set of points in the given sequence of data values, then
necessarily the asymptotic relative frequency with which these data points
belong to S will be 1! However, in general, it will not be the case that this
Ž .countable set S has probability 1. We could eliminate this difficulty by
dealing with only countably many S, but as indicated earlier, this still will
not provide a theory in which data sequences exist having all desirable
properties, many of which depend on properties more delicate than asymp-

Ž .totic relative frequencies recall the discussion of Ville’s examples above .
In the next section we will show that associated with a sequence of

random variables there exist sequence of data values which have ‘‘all’’
expected generic properties, and in fact such sequences have probability 1.

3. GENERIC SEQUENCES

In the present section we shall use the term algorithm in its usual sense
Ž .}i.e., referring to an algorithm representable as a finite program in



THE FREQUENCY INTERPRETATION 241

some programming language in which general recursive functions may be
Ž .computed. This includes all standard languages. We often use the term

program as a synonym for algorithm. The programs of interest here will be
ones which take real numbers as input. Of course, using standard encoding
and storage of numbers, only a finite precision is possible so, in fact, all
input will consist of rational numbers. We do not place any bounds on the
precision used, but this is always assumed to be either built into the
program or determined by the form of the numbers input. For example, it

Žmight be determined that all input is rounded in some specific way i.e., up
.or down to 10 digits by the program; alternately, it could be that the input

is rounded to 10 digits before it is accessed by the program. In any case,
the precision is assumed to be part of the algorithm or program. This is
just the situation which must hold in practice for any computations
performed on real computing devices. Whenever we speak about the input
of some real number to a program, we mean that the number is accessed
by the program according to the precision implicit in the program. How-

Ž .ever and this is crucial , we do not restrict the real numbers under
discussion to be computable, i.e., we do not require that there be an

Žalgorithm which computes the numbers to arbitrary precision. If we
consider some number x which is not computable, it still makes sense to
contemplate the behavior of programs when input various approximations
of x, even if such approximation are not actually obtainable by an

.algorithm.
Now suppose that we have a sequence of random variables

� 4 ŽX , X , X , . . . on some probability space S, P i.e., S is a sample space,1 2 3
.and P is a probability on S . Suppose also that x , x , x , . . . is a sample1 2 3

Ž Ž . .sequence i.e., x s X s , some s g S . We want to define what it meansi i
for x , x , x , . . . to be a generic sequence for the sequence of random1 2 3
variables X , X , X , . . . . Consider a program which behaves in the follow-1 2 3

Ž .ing way: Suppose a , a , . . . is a sequence of real numbers some of the1 2
terms of which will be used as inputs to the program. The program first
outputs a natural number n indicating that a should be input, after1 n1

which it computes and outputs a natural number n indicating that a is2 n2

to be input next, then computes a natural number n indicating that a3 n3

should be input, etc. We do not assume that the n are increasing or evenj
Ždistinct although the case of distinct n is probably the most interestingj

.and relevant . Assume also that sometime after a has been input, then j
Ž .program computes and outputs some value f a , . . . , a , where f is aj n n j1 j

function on some domain in R j. Suppose that it is the case that

P lim sup f X , . . . , X s a s 1 3.1Ž .Ž .j n nž /1 j
jª`
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Žwhere a is a real number. Note that the indices j form an increasing
subsequence of the natural numbers, and the limit as j ª ` is taken as j
increases through this subsequence. It is not assumed that infinitely many
f are computed for all sequences a , but this is, of course, assumed to bej i
true for almost all sample sequences. Note also that the f computed andj

.the n depend on the sample sequence .j

DEFINITION 3.2. The sequence x , x , x , . . . is generic for the se-1 2 3
quence of random variables X , X , X , . . . if for all algorithms of the type1 2 3

Ž .described and satisfying a condition of the form 3.1 , we have

lim sup f x , . . . , x s a . 3.3Ž .Ž .j n n1 j
jª`

Ž .From 3.1 and the fact that there are only countably many algorithms it
Žfollows that the generic sequences ha¨e probability 1 or more properly, the

Ž . Ž .sample points s g S for which X s , X s , . . . is a generic sequence have1 2
.probability 1 .

The generic sequences are precisely those that satisfy all condition
expressed by algorithm that are satisfied with probability 1 in the set of
sample sequences for the sequence of random variables X , X , X , . . . .1 2 3
This statement is one that undoubtedly cannot be ‘‘proved’’ since the
meaning of the phrase ‘‘all condition expressed by algorithm’’ is not
definitely specified, but a little thought indicates that the claim is justified.

Remark. The definition of generic sequence can be phrased in many
Ž . Ž .different but equivalent ways. The precise form of the equation 3.1 , 3.2

has been chosen for convenience and ease of application. Obviously, one
could replace the ‘‘lim sup’’ with ‘‘lim inf’’ in those equation with no

Ž .change in meaning since lim sup a s ylim inf ya . It followsnª` n nª` n
that if x , x , . . . is a generic sequence for the sequence of random1 2
variables X , X , . . . , and we have a program of the type described above1 2
for which

P lim f X , . . . , X s a s 1Ž .j n nž /1 jjª`

then we have

lim f x , . . . , x s a .Ž .j n n1 jjª`

In order to relate the notion of generic sequence to those considered in
the previous section, we consider the particular case of generic sequences
associated with a sequence of independent, identically distributed random
variables.
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DEFINITION 3.4. Suppose X , X , . . . are independent, and identically1 2
Ž Ž . Ž ..distributed with common distribution dF i.e., P X F x s F x whichi

Ž .we will always assume has finite expectation and variance. In this case a
sequence x , x , . . . which is generic for the X is called a random1 2 i
sequence associated with dF.

ŽIt will often be the case that dF is a uniform distribution either on
some finite subset or an interval of the real numbers; in the former case
dF is usually termed a discrete uniform distribution; such a dF assigns equal

.weight to each point in the subset .
Now consider the case of a random sequence x , x , . . . associated with1 2

� 4the uniform distribution on the two point set 0, 1 . We claim that such a
sequence provides the correct generalization of the notion of ‘‘collective’’
introduced by von Mises. First, it is clear that the asymptotic relative

1Ž .frequency of 0’s or 1’s in the sequence of x is since one could takei 2
1Ž . Ž . Ž . Ž . Žf x , . . . , x s x q ??? qx in 3.1 , 3.3 . There is a subtlety concern-j 1 j 1 jj

ing the storage space available for such a program which we shall discuss
.below. However, von Mises required that the asymptotic relative fre-

1quency of 0’s should be for any subsequence x selected in such a wayn2 i

that the choice to include or exclude a given x depends only on x withn i
i - n. We remarked earlier that this notion of ‘‘depends only on x withi
i - n’’ makes sense if one requires that the choice of subsequence be
defined by an algorithm. Now we may easily contemplate a program of the
type described above in connection with the definition of generic se-
quences which takes as input the terms of a sequence a of 0’s and 1’s andi
selects a subsequence a with n - n - ??? where each n is computedn 1 2 ii

using as input only terms a with i - n . In addition, the program com-i i
1 Ž .putes the expression f s a q . . . a after each a has been input.j n n nj 1 j j

Now we want it to be the case for generic sequences x thati

1 1
lim x q . . . x s 3.5Ž .Ž .n n1 jj 2jª`

Žwhere the n are the indices computed by the program using the x asj j
.input . For this to hold we would need that

1 1
P lim X q . . . X s s 1. 3.6Ž .Ž .n n1 jž /j 2jª`

In this last equation the n depend on the sample point s g S, i.e., arej
Ž .random ¨ariables. Why does 3.6 hold? The relevant fact is the following

result.

THEOREM 3.7. Suppose X , X , . . . are independent and identically dis-1 2
Ž Ž . Ž ..tributed with common distribution dF i.e., P X F x s F x as in Defini-i
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tion 3.4. Let FF be the sigma algebra of measurable sets in the underlying
Ž .sample space S for the process, and let FF s FF X , X , . . . , X be the subk 1 2 k

Žsigma algebra generated by X , . . . , X i.e., FF is the smallest sub sigma1 k k
.algebra of FF with respect to which X , . . . , X are measurable . Suppose that1 k

n , n , . . . are natural-number-̈ alued random ¨ariables satisfying n - n -1 2 1 2
� 4. . . pointwise with probability 1, n s k q 1 g FF for each i and k G 1, andi k

� 4n s 1 is independent of FF . Then the X , i s 1, 2, . . . , are independent1 1 ni

and identically distributed with the same distribution as the X .i
Ž .Proof Sketch .

P X g A , i s 1, . . . , mŽ .n ii

s P X g A , i s 1, . . . , m , n s kŽ .Ý n i mi
k

s P X g A , i s 1, . . . , m y 1, X g A , n s kŽ .Ý n i k m mi
k

s P X g A , i s 1, . . . , m y 1, n s k ? P X g AŽ .Ž .Ý n i m k mi
k

s P X g A , i s 1, . . . , m y 1 ? P X g A ,Ž .Ž .n i k mi

� 4where the third equality follows from the fact that the set X g A isk m
� 4 Ž Ž .independent of n s k . Note that P X g A is a constant indepen-m k m

.dent of k. Hence, the result claimed follows by induction on m.
w xWe remark that the article of Church 1 mentioned previously makes

w xuse of a theorem of Doob 3 which is very similar to the one just proved.

Remark. In the previous discussion we have considered a program
1Ž . Ž .which computes functions f x , . . . , x s x q ??? qx , etc. In the situ-j 1 j 1 jj

ation being considered the x are 0 or 1, and the value of f is a rationali j
number. Now it is generally assumed that the computing machines on
which our programs are executed have unlimited storage and workspace so
that arbitrarily large inputs can be accepted and operated on. The circum-
stance that, in fact, there is no such machine with unbounded storage does
not really create any logical difficulty since one can imagine the result of a
computation on such a machine without actually performing it. However,
we do not assume that the values of the function f are computed withj

Žcomplete precision although in the case of rational numbers this could be
.the case if unbounded storage and workspace were assumed . Rather, it

may be that rationals are converted to reals and computed in some
Ž .bounded precision as discussed earlier. If it is the case that f x , . . . , x isj 1 j

1 Ž . Žonly an approximate computation of x q ??? qx still considering the1 jj

case of a random sequence x , x , . . . associated with the uniform distribu-1 2
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� 4.tion on the two point set 0, 1 , then it will not necessarily be the case that
1Ž Ž . .P lim f X , . . . , X s s 1. However, this problem disappears if wejª` j 1 j 2

Ž .consider instead a program which computes values f x , . . . , x which arej 1 j
1 1 Ž .equal to whenever the finite precision value obtained for x q ??? qx1 j2 j

1 Žis within some fixed distance e of and 0 otherwise. e could be any2

small rational whose precision does not exceed that allowed and which is
greater than the error produced in rounding the values computed for the
1 Ž . .x q ??? qx . What we are saying here is that since approximate1 jj

calculation of the asymptotic relative frequency of 1’s will yield a value
1 Žapproximately equal to for almost all sample sequences strong law of2

. Ž .large numbers , this property will hold for particular random i.e., generic
sequences also. Since this must hold for any degree of approximation, the

1asymptotic relative frequency of 1’s in random sequences must be . The2

point is that there is no logical difficulty in the definition of generic
sequence; one must just consider appropriate algorithms when considering
the consequences of the definition.

A situation and reasoning similar to the above is relevant to the case of
Žmore general independent, identically distributed processes X whosei

values may be real numbers which are utilized by our algorithms only in
.some finite precision when considering consequences of the strong law of

1 Ž .large numbers for values such as lim x q ??? qx , etc., wherejª` 1 jj

x , x , . . . is a generic sequence. In such a situation only approximations of1 2
1 Ž .the values x q ??? qx can be computed by our programs, but the1 jj

resolution of this apparent difficulty is achieved as in the case discussed
above.

We will, in what follows, sometimes omit detailed discussion of the
nature of the appropriate ‘‘approximate’’ algorithms which must be consid-
ered in conjunction with the definition of generic sequence in order to
deduce some property of such sequences, especially when the reasoning
seems routine and obvious.

We now discuss some further properties of random sequences x , x , . . .1 2
� 4associated with the uniform distribution on the two point set 0, 1 . Some

Žof these concern adjacent blocks of length j: x , . . . , x j fixed,Žky1. jq1 k j
.k s 1, 2, . . . . We could just as well consider blocks of length j from a

subsequence x where the choice to include or exclude a given xn ni

depends only on x with i - n by invoking Theorem 3.7, but for the sakei
of simpler notation we shall no do this; it should, however, be kept in mind
that such a generalization holds for the examples to be discussed now and
for various later examples.

First, it follows from our definition of random sequence and the Strong
Law of Large Numbers that if we define the sequence of vectors w sk
Ž .x , . . . , x , k s 1, 2, . . . , then the empirical distribution of theŽky1. jq1 k j
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j Ž .w is uniform on the set of 2 binary i.e., with entries 0 or 1 vectors ofk
length j. That is, if e denotes any of these binary vectors,

1
yj� 4lim ? a w , k s 1, . . . , N N w s e s 2 . 3.8Ž .k kNNª`

1Ž Ž . � <Apply Definition 3.2 with f x , . . . , x s ? a w , k s 1, . . . , NN j 1 N j kN
4 .w s e .k

It is not clear to the present author whether or not the ‘‘collectives’’ in
Ž .the sense of von Mises and Church discussed above must satisfy 3.8 .

ŽIn any case, we will see below that other properties that should hold
for ‘‘random’’ sequences and which do not generally hold for collectives

.do hold for random sequences as we have defined them.
Next we indicate in what sense random sequences satisfy the Central

Limit Theorem. In order to do this, we first must phrase this theorem in a
Ž .form involving limits of the type in 3.1 , which is perhaps a bit unexpected

since the usual formulation of the Central Limit Theorem involves conver-
gence in distribution. Suppose X , X , . . . are independent and identically1 2
distributed with expectation m, variance s 2, and distribution dF s P .X
For each j G 1, k G 1, let

kj1
W s X y m . 3.9Ž . Ž .Ýj , k i'j s Ž .is ky1 jq1

Ž .Let A be a real interval, and denote the characteristic indicator function
Ž .of A by 1 . For fixed j, the 1 W are independent and identicallyA A j, k

distributed, and by the Strong Law of Large Numbers
N1 1

lim a W g A , k F N s lim 1 W sE 1 W a.e.� 4 Ž . Ž .Ž .Ýj , k A j , k A j , kN NNª` Nª` ks1

3.10Ž .

Ž Ž Ž .. .Note that the term E 1 W is independent of k. By the Central LimitA j, k
Žw x.Theorem 2

1 2yx r2lim E 1 W s e dx. 3.11Ž .Ž .Ž . HA j , k 'jª` 2p A

It follows that
N1 1

lim lim a W g A , k F N s lim lim 1 W� 4 Ž .Ýj , k A j , kN Njª` Nª` jª` Nª` ks1

1 2yx r2s e dx a.e. 3.12Ž .H'2p A
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Now suppose x , x , . . . is a random sequence associated with the se-1 2
quence X , X , . . . , and for j G 1, k G 1, let1 2

kj1
w s x y m .Ž .Ýj , k i'j s Ž .is ky1 jq1

ŽAssume that the function 1 can be computed by algorithm e.g., this willA
.be the case if the endpoints of A are rational numbers . Assume also that

Žm and s are computable i.e., that there are algorithms which compute
.arbitrarily good rational approximations of these numbers . Then it follows

easily from our definition of random sequence that
N1 1

lim lim a w g A , k F N s lim lim 1 w� 4 Ž .Ýj , k A j , kN Njª` Nª` jª` Nª` ks1

1 2yx r2s e dx. 3.13Ž .H'2p A

Ž .Remark. If A has rational endpoints, then the values 1 w can beA j, k
computed by algorithm exactly once one knows a sufficiently good rational
approximation of the w , provided that w is not an endpoint of A. Thisj, k j, k
is important because Definition 3.2 involves function f which can bej
computed by algorithm, and we want to apply this to a case in which the fj

Ž .involve 1 in the present example. The fact that 1 x is not determinedA A
by knowing approximate values of x if x is an endpoint of A does not

Ž .affect the truth of 3.13 due to the fact that points have probability 0 with
respect to the normal distribution.

Ž . Ž .Clearly, multidimensional vector analogs of 3.13 also hold if we
replace A by a rectangular region with rational vertices. Again, more
general regions could be utilized; we discuss this situation later.

Ž .In particular 3.13 holds in the case we have been discussing of random
sequences associated with the uniform distribution on the two point set
� 40, 1 .

The ‘‘Law of the Iterated Logarithm’’

Ýn x y 1r2Ž .is1 i
lim sup s 1 3.14Ž .'n log log n r2Ž .nª`

also holds for random sequences associated with the uniform distribution
� 4on 0, 1 because the corresponding theorem for the associated random

w xvariables holds a.e. 4 and one could take

Ýn x y 1r2Ž .is1 i
f x , . . . , x sŽ .n 1 n 'n log log n r2Ž .
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Ž .in Definition 3.2. Recall that 3.14 does not generally hold for ‘‘collectives’’
w xin the sense of von Mises and Church 4 .

Recall also that there are ‘‘collectives’’ for which the frequency of 1’s in
n w xthe first n terms is always G 4 . However, this clearly cannot occur for2

our random sequences since for the corresponding random variables X , ifi
we put

1 if X q ??? qX G kr2, all k s 1, . . . , n1 kf X , . . . , X sŽ .n 1 n ½ 0 otherwise

then

lim f X , . . . , X s 0 a.e.Ž .n 1 n
nª`

Ž w x .this follows from the Law of the Iterated Logarithm 4 , for example , and
then Definition 3.2 can be applied. Notice that the condition that ‘‘the

nfrequency of 1’s in the first n terms is always G ’’ is a more delicate2

condition than the conditions on relative asymptotic frequencies that
Žcollectives must satisfy since the former condition is one involving fre-

.quencies rather than relatï e frequencies .
We now consider in what sense the general frequency interpretation of

probabilities is a consequence of the properties of random sequences.
Suppose as above that X , X , . . . are independent and identically dis-1 2
tributed with expectation m, variance s 2 and distribution dF s P , andX
let x , x , . . . be a random sequence associated with dF. For fixed j and1 2
k G 1, let

W s X , . . . , X 3.15Ž .Ž .k Žky1. jq1 k j

and

w s x , . . . , x . 3.16Ž . Ž .k Žky1. jq1 k j

Let A be a measurable subset of R j and 1 its characteristic function.A
Ž .Then the 1 W are independent and identically distributed, and by theA k

Strong Law of Large Numbers

N1 1
� 4lim a W g A , k F N s lim 1 W s E 1 WŽ . Ž .Ž .Ýk A k A kN NNª` Nª` ks1

s P W g A a.e. 3.17Ž . Ž .k

Ž Ž . jThe W have distribution P s dF s the j-fold product dF = ??? =k W
.dF. We would like to conclude that the corresponding equation

N1 1
� 4lim a w g A , k F N s lim 1 w s P W g A 3.18Ž . Ž . Ž .Ýk A k kN NNª` Nª` ks1
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holds for the sequence w . However, in order to apply our Definition 3.2k
with f appropriate to the present situation, it seems necessary to makej
some restriction on A to ensure that the function 1 is computable byA

Žalgorithm as was done in the discussion involving the Central Limit
. Ž .Theorem above . Once we know that 3.18 holds for a reasonable collec-

tion of sets A, we will deduce that it holds for a much larger class of sets
by a separate argument. We introduce some terminology. Denote the

Ž . jsequence w of 3.16 by w. For a set A in R , letk

1
� 4fr w, A s a w g A , k F NŽ .N kN

fr w, A s lim inf fr w, AŽ . Ž .N
Nª`

fr w, A s lim sup fr w, A . 3.19Ž . Ž . Ž .N
Nª`

Ž . Ž . Ž .If fr w, A s fr w, A , then we denote the common value by fr w, A .
Ž . Ž .Finally, if fr w, A s P A , we call A a w-set. It follows easily from theseW

Ždefinitions that fr, fr, and fr are order-preserving and finitely additive i.e.,
Ž . Ž . Ž . Ž .if A and B are disjoint, then fr A F fr A j B s fr A q fr B , and

.similarly for fr and fr. Furthermore, the w-sets are closed under taking
Žfinite disjoint union and complements but not countable disjoint unions or

.arbitrary finite unions . Now j-dimensional rectangles A with rational
vertices and for which the boundary ­ A has P measure 0 are evidentlyW

Ž .w-sets, since the value 1 w can be computed exactly given a sufficientlyA k
good rational approximation to w if w f ­ A. Hence, finite unions ofk k

Žsuch rectangles are also w-sets. In this case finite unions are the same as
.finite disjoint unions. The following result exhibits a much larger collec-

tion of w-sets.

THEOREM 3.20. Suppose A is a P -measurable set and for e¨ery e ) 0W
Ž . Ž .there exist w-sets A , A with A : A : A and fr w, A y fr w, A F e .1 2 1 2 2 1

Then A is a w-set.

Proof. We have, for every e ) 0,

P A s fr w, A F fr w, A F fr w, A F fr w, AŽ . Ž . Ž . Ž . Ž .W 1 1 2

s P A F P A q e . 3.21Ž . Ž . Ž .W 2 W 1

Ž . Ž .Hence fr w, A exists and s P A .W
For reasonable discrete or continuous P , the w-sets compose a largeW

Ž .class. However, it is clear that in general not all measurable sets A will
be w-sets. For example, one could take A to be the set equal to the union

Ž .of all the points w ; in this case, evidently fr w, A s 1, although it mightk
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Ž .be that P A / 1. Of course, in such a situation the function 1 is notW A
computable by algorithm.

The fact that the w-sets are plentiful provides a strong justification of
the frequency interpretation of probabilities in the sense intuitively dis-
cussed by H. Cramer and mentioned earlier. Even more, as we have seen,´
the notion of generic and random sequences provides a model in which
‘‘all’’ useful probabilistic notion have an unambiguous meaning. Consider
the situation of a gambler betting on the results of a sequence of coin
tosses. If it is assumed that the sequence of results is a random sequence
Ž .associated with the uniform distribution on a two-point set then notions
such as ‘‘the probability of an H is 1r2,’’ ‘‘the distribution of H’s is
asymptotically normal,’’ and ‘‘the law of the iterated logarithm is satisfied’’
have a definite meaning within the model provided by the assumption.
Even the notion that if our gambler is presently losing, his luck must

Ž . Že¨entually change becomes a meaningful and true statement this involves
a straightforward generalization of the discussion above of binary se-
quences for which the frequency of 1’s in the first n terms is always

.G nr2 . One could ask whether the sequence of outcomes is ‘‘really’’ a
random sequence, but the question certainly has no real meaning in the

Ž .context of Mathematics or even science in general , but belongs more
Žproperly to Philosophy. We do make some remarks about this question

.later.
Generic sequences have another not unexpected property: ‘‘reasonable’’

functions of generic sequences are again generic. Suppose that the se-
quence x , x , x , . . . is generic for the sequence of random variables1 2 3

Ž .X , X , X , . . . , and suppose h x is a real function of one variable. We1 2 3
Ž . Ž .investigate when the sequence of h x is generic for the sequence h X .i i

For this to be the case, it must be that for algorithms of the type described
Ž .preceding 3.1 , with

P lim sup f h X , . . . , h X s a s 1 3.22Ž .Ž . Ž .ž /j n n1 jž /
jª`

we have

lim sup f h x , . . . , h x s a . 3.23Ž . Ž .Ž .Ž .j n n1 j
jª`

Ž Ž . Ž ..This would be the case if the function f h x , . . . , h x were functionsj n n1 j
Ž̃ .f x , . . . , x computed by an algorithm of the required type. This wouldj n n1 j

Ž .clearly be the case provided h x had the property that its value could be
computed by algorithm to any degree of accuracy given a sufficiently
accurate rational approximation of its argument. We might call such a real
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Žfunction ‘‘computable’’; evidently, many familiar functions such as
x' Ž . Ž ..x , sin x , e , log x are computable in this sense. If h is computable,

Ž Ž . Ž ..then one can combine an algorithm computing the f h x , . . . , h x inj n n1 j

Ž . Ž .response to input of approximations of the h x with an algorithmi
Ž . Ž .computing the h x approximately to get an algorithm computing thei

Ž̃ . Ž Ž . Ž .. Žf x , . . . , x s f h x , . . . , h x in response to input of approx-j n n j n n1 j 1 j

.imations of the x . It is easy to see that this line of reasoning can bei
Ž .extended to functions h x, y, . . . of several variables. For example, if

Ž .h x, y is a ‘‘computable’’ function of 2 variables, then the sequence
Ž . Ž . Ž . Ž .h x , x , h x , x , . . . is generic for h X , X , h X , X , . . . .1 2 3 4 1 2 3 4
Many other properties of generic sequences could be discussed. How-

ever, our primary aim in the present article has been to indicate the
relevance of this notion to the foundations of probability and statistics, and
we discuss this further in the following section.

4. COMPLEMENTS

As we have discussed, it is dificult to assign an operational meaning to
most probabilistic notions. This is due to the fact that real processes are
usually thought of as being intrinsically deterministic. For events that only
occur once and for which the idea of repetition is not really meaningful
Že.g., the event that a particular inmate is released from jail, or the event

.that a cure for cancer is found , a probabilistic interpretation seems
necessarily subjective. However, for other processes, such as tossing a coin,
which are repeated, or whose repetition can be en¨isaged, some probabilities
Ž .e.g., the probability of obtaining Head when tossing a coin can be given a
frequency interpretation. In order for such an interpretation to be directly
connected to what is actually occurring, the frequencies involved should

Žrefer to an actual sample sequence. Some of these involve relative
frequencies, but as we have seen, others are more delicate and involve

.absolute frequencies.
Ž .However, there are many often uncountably many events whose proba-

bilities should be interpretable as frequencies, and it often happens that
the sample sequences satisfying all these conditions have probability zero.
This was a difficulty in von Mises’s approach; in addition, his principle of
the impossibility of advantageous gambling systems expressed in terms of

Ž‘‘place selections’’ selecting subsequences depending only on what has
.occurred in the past really did not make good sense mathematically.

Church’s use of computable functions to define the place selection was just
Ž .what was needed, but did not go far enough recall Ville’s objections .
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Martin-Lof’s idea of effectï e statistical tests of randomness overcomes such¨
objections but, as formulated, only in the case of binary sequences. The
notion of generic sequence of the present article resolves all these problems
and in a quite general setting. When we are concerned with some process
for which repetition is sensible, then our model for the outcomes is a
generic sequence associated with some abstract sequence of random
variables. Then, as has been indicated previously, all algorithmically de-

Žscribed probabilistic properties which are ‘‘generic’’ i.e., hold with proba-
.bility 1 for the related abstract process hold for our model in some

Žconcrete sense which might involve ‘‘frequencies,’’ but for which an
.abstract notion of ‘‘probability’’ is no longer involved . E.g., for fair coin

tossing, our model is a binary sequence for which the relative frequency of
1Heads is really , the frequency of Heads in the first n tosses will2

nsometimes be significantly greater and sometimes significantly less than ,2

etc., etc. As remarked earlier, this implies that a gambler making even
money bets on the individual outcomes might be losing significantly for a

Ž .while, but assuming the coin is ‘‘fair’’ he can be sure that eventually he
Žwill be significantly ahead assuming that he lives long enough and his

.bankroll isn’t depleted forcing a halt . Of course, our supposition that the
sequence of outcomes is, in fact, a generic sequence is a supposition which
may or may not be true, but this is the case with models generally
Ž . Ž .including all the ‘‘laws’’ of physics . A difference from the usual axiomatic
probabilistic interpretation is that what is ‘‘true’’ for our model would be
said to hold with probability 1 in the axiomatic interpretation, but this

Ždistinction has no real significance in practice since presumably we will
not observe the future occurrence of events whose probability we now

.believe is 0 . What is significant here is the fact that there is no need to
resolve the dichotomy of the deterministic vs. probabilistic; the process
giving rise to a supposed generic sequence might well be deterministic
Ž .although not ‘‘algorithmic’’ . For example, in the case of a person tossing
a coin, one might envision the results as determined by some straightfor-
ward calculation involving the forces acting on the coin, but, of course, this
is not at all the case. The results are determined by the totality of effects
Ž . Ž .initial conditions and forces in the vicinity which may be quite extensive
of the experiment, including gravity, atmospheric effects, the emotions of
the experimenter, relativistic and quantum mechanical effects, etc. It is,
therefore, not at all clear that the sequence of results obtained by repeated
tossing can be produced by some algorithm; indeed, this seems rather
unlikely. It is also the case that there is no practical way to test whether a

Ž .sequence occurring in this way is actually generic random , since any
initial segment of a generic sequence can be completely arbitrary. For this
reason, a hypothesis that some sequence occurring naturally is generic
usually cannot be ‘‘disproved,’’ although we may have some suspicion one
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way or the other. Our model for the outcomes of successive spins of a
roulette wheel may involve the assumption that the sequence obtained is

Žrandom associated with the obvious sequence of independent random
. Žvariables . If the sequence appears predictable in some aspect e.g., some

.number occurs more than expected , this may be caused to reject the
model, but a definite conclusion probably cannot be reached. As we know,
the initial part of a random sequence may seem predictable, even though
this predictability disappears after a sufficiently long time. This is exactly
what makes the play so seductive to some; even with an ‘‘unbiased’’ wheel,

Žit is possible to be ahead for quite a long time although not indefinitely if
.the model is correct . In any case, the point is that the sequence of

outcomes is deterministic, but this seems compatible with the assumption
Ž .of randomness which now has a definite meaning .

It is natural to wonder whether the result of some physical process, e.g.,
tossing a coin repeatedly, might actually produce a random sequence of
the type defined above. Undoubtedly, this is not really meaningful in a
precise way; even the notion of an infinite repetition may have no real
meaning. However, we might understand the question as an inquiry
concerning the usefulness of the model and assign meaning in this way. In
the case of coin tossing, it seems reasonable that, even if the sequence of
outcomes is considered a random sequence, the associated probability of
obtaining a head is not 0.5, but rather some other value possibly quite
close to 0.5. Of course, if the difference is sufficiently small, it might be
unnoticeable and hence irrelevant. It seems just as likely, however, that
the sequence obtained is not random in the sense we have considered;
perhaps the relative frequency of heads does not have any limiting value,
but rather fluctuates indefinitely. Nevertheless, it might be that the range
of this fluctuation is eventually so small that the notion of a limiting value
is appropriate in the model considered. As remarked above, the connec-
tion between models and reality is generally problematical in this way.

We note, finally, that in the framework of statistics it is the notion of
Ž .random rather than generic sequence that is most relevant, since the

mathematical techniques employed generally apply to collections of inde-
pendent, identically distributed, random variables. In this regard, it is
should be realized that in many cases, all of the mathematical implications
of the usual axiomatic framework follow from the properties of a single
random sequence, since, as discussed above, the joint finite distributions of
the associated random variables are determined by the properties of a

Ž Ž . Ž .random sequence. See 3.17 , 3.18 and the following discussion. Recall
Ž .that 3.18 was proved only for w-sets A, but this is sufficient to determine

Ž . .P W g A for all measurable A for many distributions. In these cases,k
the model provided by the sequence of random variables is equivalent to
that provided by a random sequence.
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