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A b s t r a c t - - M a x i m u m  parmmony and maximum likelihood are two contrasting approaches for 
reconstructing phylogenetic trees from sequence and character data. We establish analytic links 
between these methods (extending connections reported earlier) under the simple Poisson model of 
substitutions in two settings. First, we show that if the underlying state space is sufficiently large, 
then the maximum likelihood estimate phylogenetic tree is always a maximum parsimony tree for 
the data. Second, we show that a sufficiently dense sampling of sequences ensures that the most 
parsimonious likelihood tree is always a maximum parsimony tree. @ 2004 Elsevier Ltd. All rights 
reserved. 

K e y w o r d s - - T r e e s ,  Maximum likelihood estimation, Maximum parsimony method, Stochastic 
models. 

1. P R E L I M I N A R I E S  

Evolutionary relationships in biology m'e typically represented by trees, for which some set X of 

present-day species appear as a subset of the vertices. A central problem in molecular systematics 

is how to infer such trees from character data--that is, from functions from the set X into some set 

of states. In this paper, we establish new links between two such tree reconstruction methods-- 

one of which (maximum likelihood) is based explicitly on an underlying Markov model for the 

evolution of characters on a tree, while the other (maximum parsimony) is based on a minimality 

principle.  

We begin  by recall ing some background  and  def ini t ions  t h a t  are r equ i red  to  s t a t e  our  resul ts .  

T h r o u g h o u t  th is  paper ,  X will deno te  a set  of  n ex t an t  species  or individuals .  A character (on X ,  
over a set R of character states) is any func t ion  X from X into  some finite se t  R. T h r o u g h o u t  

th is  paper ,  we let r deno te  the  size of  R. 
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Suppose we have a tree T = (V, E). We say that  T is a tree on X if X is a subset of V, and 
all vertices of T of degree 1 or 2 are contained in X. If, in addition, X is precisely the set of 
leaves of T, we say that  T is a phylogenetic X-tree, and if, furthermore, every vertex of T has 
degree 3, we say that  T is fully resolved. Two phylogenetic X-trees are regarded as equivalent if 
the identity mapping from X to X induces a graph isomorphism between the two trees. Further 
background and mathematical details concerning phylogenetic trees can be found in [1]. 

The maximum parsimony method for reconstructing a tree on X from a collection of characters 
on X can be described as follows. Suppose we have a tree T -- (V, E) on X, and a function 
)~ : V --* R. Let ch(~,T) := ]{e = {u,v} E E : :~(u) ~ )~(v)}l. Given a character X : X -~ R, the 
parsimony score of X on T is defined by 

l(x, T) := rain {ch(~, T)}, 
y~:V~R,~[X=x 

where )~ I X denotes the restriction of ~ to X. Suppose we are given a sequence C = (X1 . . . . .  Xk) 
of characters on X. The parsimony score of C on T, denoted I(C,T), is defined by 

k 

z(C,T) := 
i----1 

Any tree T on X that  minimizes l (g ,T)  is said to be a maximum parsimony (MP) tree for g, 
and the corresponding/-value is the parsimony or "MP" score of C. 

We now consider the simplest tree-based model for the evolution of characters over a set R, 
which we will refer to here simply as the Poisson model on R (with parameters (T, p)). In this 
model, one has a tree T on X. Let us select any element x0 E X as a reference vertex and direct 
all edges of T away from x0. We will regard the value from R assigned to vertex x0 as being 
given (it would make little difference to the arguments below if we allowed the state at x0 to 
be random). The model then assigns states from R recursively to the remaining vertices of the 

tree according to the following scheme: if e = {u, v} is an edge of T directed from u to v and u 
has been assigned state ~, then, with probability 1 - p ( e ) ,  we assign v state ~, otherwise, with 

probability p(e) we select uniformly at random one of the other r - 1 states (different to a)  and 
assign this state to v. The assignments are made independently across edges, and the value p(e) 
is called the substitution probability associated to edge e. I t  is natural to constrain p(e) to lie 
in the interval [0, (r - 1 ) / r ] - - the  reason for the upper bound is that,  if we realise this model by 
a continuous-time Markov process, then the probability of a net substitution over any period of 
time is always less than (r - 1)/r.  We will say that  the mapping e --* p(e) is admissible if the 
p(e) values all lie within this allowed interval. 

When r -- 4, this model is essentially the same as what is often referred to as the Jukes-Cantor 
model [2]. For general values of r, this model has more recently been studied by Lewis [3] as a 
starting framework for likelihood analysis for certain morphological characters. It  has also been 

referred to in the bioinformatics literature as the 'Neyman r-state model' and the 'Cavender- 
Farris-Neyman model'. 

Given the pair (T,p) where T = (V,E) is a tree on X,  and p is an admissible assignment of 

transition probabilities, and given a map ~ : V --* R, let ~(~ I T,p) denote the probability that  
the vertices in T take values specified by )~ under the Poisson model on R with parameters (T, p). 
More formally, P(~ I T,p) = ~(N,ev_{~o}{~(v) -- ~(v)}l), where ~?(v) is the random variable 
state assigned to v under the model. By the assumptions of the model, we have 

P ( ~  I T,p) = H p(e) H (1 -p(e)) .  (1) 
r - 1  

{u,v}eE:~(u)~(v) {u,v}eE:~(u)=~((v) 
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Given a sequence g - - -  (X1,... ,Xk) of characters on X, we put 

k k 

IP(C[T,P)=I- I ~ IP(:f~]T,p), F(C[T,p)mP=l-Imax(~O~[T,p)]Z~c(i)), 
i = l  )~iEc(i) i = l  

L (T lC)  = sup(P(C I T,p)),  Lmp(T[C) = sup (]P(C[T,p)mp), 
P P 

where c(i) :=  {~i : V ~ R : ~i [ X = X~}, and the supremum is taken over all admissible choices 
of p. Recall tha t  L(T ] C) is referred to as the likelihood or "ML" score, and Lmp(T [ C) as 
the most-parsimonious likelihood or "MPL'score,  of T given V (cf. [4,5]). Note tha t  ]P(C I T,p) 
is the probability of generating the k characters by independent and identical evolution under 
a Poisson model with parameters (T,p). A tree T on X is said to be a maximum likelihood 
(ML) tree or a most-parsimonious likelihood (MPL) tree for g if L(T [ C) > L(T' [ g) or 

Lmp(T [ C) > Lmp(T' [ C), respectively, holds for all other trees T '  on X. The problem of finding 
an MPL tree given only g was recently shown to be NP-hard in [6] (where the method is referred 

to as 'ancestral maximum likelihood'). We say that  an MP, ML, or MPL tree for g is irreducible 
if we cannot collapse any edge of T to obtain another such tree for C. 

2. LINK ONE: L A R G E  S T A T E  S P A C E  

Maximum parsimony has already shown to be a maximum likelihood estimator for phylogenetic 
trees under a 'no-common mechanism' model in which each character evolves independently under 
a Poisson model on R but where p in the parameter pair (T,p) for this model can vary freely 
between the characters (for details, see [7] which extended the result for r = 2 that  was described 
in [8]). In this section, we describe quite a different link. In contrast to the aforementioned link, 
we consider the 'common-mechanism' sett ing--here the two methods are in general quite different 
(they may select different trees, as Felsenstein [9] showed). However, when the number of states 

is sufficiently large, then once again maximum likelihood trees are always MP trees. This may 
be relevant to the use of certain genomic data  (such as gene order) for inferring phylogenies, as 
in this case the underlying state space may be very large. 

THEOREM 2.1. Suppose C = (X1,X~,.. . ,Xk) is a sequence of k characters on X over a state 
space R of size r >_ 4 nk. Under the model in which the characters evolve independently according 
to the same Poisson model on R, any ML tree for C is then an MP tree for C. 

PROOF. Suppose that  T, but not T '  is an MP tree for C. We will show that  ML will not select T '  
since T has a larger ML score than T '  given C. By assumption, we can write I(C, T ' )  - l + 6, 
where l = l(C, T) and 6 _> 1, and we may assume (without loss of generality) tha t  T '  = (V', E') 
is a fully resolved phylogenetic X-tree. We now invoke a key result from [7]: for any character 

X : X --~ R, we have 
sup ~ ]P(~ I T',p ') = r -z(x'T'), 
P' y~c(x) 

where c(x ) • {)~ : V' -* R : )~ ] X = X} and the supremum is over all admissible p'. Consequently, 
we have the following upper bound on the ML score of T~: 

L(T' I C ) = supP(g  I T',p') < r -~-~. (2) 
pl 

We show that  T '  cannot be an ML tree because this upper bound (given by (2)) on L(T' [ g) 
is strictly less than P(C [ T, p) for a particular p that  sets p(e) = A for all edges e of T (we will 
determine A shortly). Let T = (V, E) and, for each i E {1 , . . . ,  k}, let us select a map )Ci : V -~ R 
for which ch()~i, T) = l(xi,T).  Let Ii := l(xi ,T) and let e = IE]. By (1), we have 

F(2i IT ,  p) = \r---L~) (1 - A )  e-z ' ) ,  
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k 
and, since ~(CIT,  p) = l-L=1 ~ c ( ~ ) P ( X  I T,P), we have 

A ) E~%1 l, 

~(c IT, p) > (1 - / ~ ) ( r  - 1) 

k Thus, since l = ~-~4=1 l~, we have 

(1 - A)~k.  

]P(C IT, p) >_ (1 - A)(r - 1) (1 - A) ek. 

Now let us set A = (r - 1) / (2r  - 1), so tha t  A/(1 - A)(r - 1) = ?.-1, and 1 -- A = r/(2r - 1) > 1/2. 
Thus, 

I?(C IT, p) >_ r-t2 - 'k.  (3) 

Comparing (2) and (3), and noting that  fi > 1, we see tha t  

L(T I C) > P(C IT, p) > supP(C ] T' ,p')  = L(T'  I C) 
p' 

provided r > 2 ~k, and this certainly holds if r >_ 4 nk (since e < 2n - 3 < 2n), as required. This 
completes the proof. | 

3 .  L I N K  T W O :  D E N S E  S A M P L I N G  O F  S E Q U E N C E S  

Let S = {$1,$2, . . . ,S~}  be a collection of aligned sequences of length k on r > 2 states. 
Equivalent]y, we may view $ as a sequence Cs = (X1, . . . ,  Xk) where X{ is an r -s ta te  character 
on Z .  If we write Si as Si(1), . . . ,  Si(k), then S{(l) = Xl (i) for all i e {1 , . . . ,  n} and I E {1 , . . . ,  k}. 
Let dH denote the Hamming  metric on S, tha t  is, dtt(Si, Sj) = I{l : Si(1) # Sj(/)}[. We will 
suppose tha t  the sequences in £ are d is t inc t - - tha t  is, dH(Si, Sj) > 0 for all i # j .  Let G s  be 
the graph with vertex set £ and with an edge connecting any two sequences tha t  differ in exactly 
one coordinate. Equivalently, Gs = (£, E) where 

E = {(Si, S j ) :  dH(Si, Sj) = 1}. 

In the context of molecular genetics, G s  is the 'haplotype graph '  described, for example, in [10]. 

DEFINITION. We say that £ is ample if Gs is connected. 

The following lemma follows easily from the definitions. 

LEMMA 3 .1 .  I f  S is an ample collection of sequences, then the set of spanning trees of Gs is 
precisely the set o[ irreducible MP trees for Cs. Consequently, Cs has MP score n - 1. 

We now show tha t  when S is ample, then any spanning tree for Cs is also an MPL tree for Cs 
under this model. Tha t  is, we cannot improve the MPL score by introducing additional "Steiner 
points" (hypothetical ancestral sequences). As an aside, this result provides another case where 
a particular instance of an NP-hard problem has a simple, polynomial-t ime solution. We note 
also that  the Buneman complex [11] or, equivalently, the median network [12] of a collection of 
X-splits provides natural  examples of ample sets of sequences. 

THEOREM 3.2. Suppose that  S is ample. Then, under the model in which the characters evolve 
independently under the same Poisson model on R, the MP trees and the MPL trees for Cs 
coincide. 

PROOF. I t  suffices to show tha t  the set of spanning trees for Cs equals the set of irreducible MPL 
trees for Cs (by Lemma 3.1, and the observation tha t  the set of MP (respectively, MPL) trees 
for Cs is simply the set of all resolutions of the irreducible MP (respectively, MPL) trees for Cs). 
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Suppose tha t  T = (S, E)  is a spanning tree of Gs .  Then 

Lmp(T ] C) = ?(Cs ] T,P) = I-[ [ Pr (~e)l (1-- p(e))k-Z] , 
eEE 

(4) 

for some map p : E --~ [0, (r - 1)/r] .  It  is easily checked tha t  the  map  p tha t  maximizes the 
expression on the r ight-hand side of (4) assigns the values p(e) = 1/k for all e E E (and this is 

admissible, since we may assume k >_ 2). In view of I E ]  = n - 1, this implies 

( 1 (_~)k-1) n-1 
Lmp(T C8) = k(r-- 1) 1 - (5) 

Now, suppose tha t  T '  = (W, E ' )  m any irreducible MPL tree for Cs under a Poisson model  on R, 

select maps 2i tha t  extend Xi (i = 1 , . . . , k )  so tha t  Lmp(T' I C) = supp, I-Iki=l?(2i [ r' ,p') 
(which is possible as there are only finitely many such 2~), and put  2(v) :=  (2~(v))~=l,...,k for 
each v E V'. Then,  S ___ {2(v) : v  E V'}. Write E '  = {el, e 2 , . . . ,  e,~} where m :=  IE'I. For an 

edge e~ = (u, v) ~ E% let 

dH(2(u), 2(v)) and 
Yl = k 

h~ = min {y~, r r - - 1 }  • 

These h~ values provide the opt imal  admissible subst i tut ion probabil i t ies  for maximizing the MPL 

score of T '  given C. Thus, if we let L = - l o g ( L m p ( T ' l C s ) )  , then 

m 

L = k E f(h~), (6) 
i=l 

where, for h e [0, (r - 1)/r] ,  

f (h )  = - l o g  ~ ( I  - h)  z -A . 

Note tha t  f is an increasing function on [0, (r - 1)/r] .  So, A~ > 0 (by the irreducibil i ty 
m h _ assumption on T') and the definition of hi implies tha t  hi _> 1/k for each i and so ~ = 1  f ( ~ )  > 

mf(1/k)  > (n-1) f (1 /k) .  Thus, Lmp(T' [ Cs) <_ Lmp(T[Cs) with equali ty precisely i f m  = n - 1  
and hi -- 1/k for all i. Yet, m = n - 1 implies tha t  T '  is a spanning tree for Gs ,  and hi = 1/k 
implies Lmp(T'  [ Cs) = Lmp(T [ Cs) in view of (5), so T '  has the  same MPL score as any 

irreducible MPL tree. This completes the proof. | 
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