Some notes on the Erdős–Szekeres theorem

A. Bialostocki, P. Dierker and B. Voxman

Department of Mathematics and Statistics, University of Idaho, Moscow, ID 83843, USA

Received 25 October 1988
Revised 19 December 1989

Abstract

In the spirit of the Erdős–Szekeres theorem of 1935 we prove some canonical Ramsey Theorems in the plane. In Theorem 1 we are concerned with the number of points in the interior of a convex n-gon. In Theorem 2 we consider a set of points in general position along with a function from the set of points into the plane and prove the existence of a certain canonical configuration. A one-dimensional analog of Theorem 2 is a reformulation of a known theorem concerning intervals on the real line.

1. Introduction

In their classic paper [5] Erdős and Szekeres proved the following theorem.

Theorem 0. For every integer n, $n \geq 3$, there exists an integer $f(n)$ such that if S is any set of $f(n)$ points in the plane, no three collinear, then there are n points in S which are the vertices of a convex n-gon.

The determination of $f(n)$ for $n \geq 6$ is still an open problem. Following the Erdős–Szekeres theorem it was conjectured that there exists a $g(n)$ such that if S is any set of $g(n)$ points in the plane, no three collinear, then there are n points of S which are the vertices of a convex n-gon which does not contain any other points of the set in its interior. The conjecture was proved in [7] for $n = 3, 4, 5$, and was disproved in [8] for $n \geq 7$.

It is natural to look for a weaker conjecture. We conjecture the following.

Conjecture. For every two natural numbers q and n, $n \geq 3$, there is a natural number $C(n, q)$ satisfying the following: Let S be any set of points in the plane such that no three points are collinear. If $|S| \geq C(n, q)$, then there are points of S
which are the vertices of a convex n-gon for which the number of points of S in its interior is divisible by q.

In this paper we follow the line of investigation initiated by Erdős and Szekeres and prove three theorems.

In Theorem 1 we prove the conjecture above for every n and q such that $n \equiv 2 \pmod{q}$ or $n \geq q + 3$.

In Theorem 2 we consider a set of points $S = \{x_1, x_2, \ldots, x_m\}$ in general position in the plane, E^2, along with a mapping $\alpha : S \to E^2$ such that $\alpha(x_j)$ for $j = 1, 2, \ldots, m$ does not lie on a line passing through two points of S. We prove the existence of a canonical subconfiguration of S, provided that the cardinality of S is large enough. The idea of searching for canonical subconfigurations in combinatorial structures on which a function is imposed goes back to problems in combinatorial set theory considered by Erdős and Hajnal [3], see also [4]. However, we are motivated by more recent results of Alon and Caro [1] and Caro [2].

While presenting Theorem 2 in a seminar, we were asked by Prof. J. Schönheim about the one-dimensional analogue of Theorem 2. It turns out that the one-dimensional case of Theorem 2 is a reformulation of the following: Given $(n-1)^2 + 1$ intervals on a line, there are either n pairwise disjoint or n intersecting intervals.

2. Preliminaries

Notations and definitions. (1) Let k, s, n_1, \ldots, n_s be positive integers. The Ramsey number $R = R_k(n_1, n_2, \ldots, n_s)$ denotes the minimum integer R for which the following holds: Let S be a set of cardinality m each of whose k-subsets is colored by one of the s colors $1, 2, \ldots, s$. If $m \geq R$, then there exists a color i, $1 \leq i \leq s$, and an n_i-subset of S all of whose k-subsets are colored i.

(2) A set of points of E^2 is in general position if no three points of the set are collinear.

(3) Let C be a convex polygon whose vertices are x_1, x_2, \ldots, x_n. The (?) line segments joining all pairs of vertices of C determine a cell decomposition of C. Two convex polygons are said to be isomorphic if there is an incidence preserving one to one correspondence between the zero dimensional (points), one-dimensional (line segments), and two-dimensional cells. Note that this definition is a modification of the definition of isomorphic arrangements of lines given in [6, p. 4].

Observations. (1) Let x_0, x_1, x_2 be three points in general position. Up to isomorphism, in the sense of [6, p. 4], there is only one arrangement of the three lines determined by x_0, x_1 and x_2. This arrangement partitions into seven parts as shown in Fig. 1.
Some notes on the Erdős–Szekeres theorem

(2) Let x_0, x_1, x_2, x_3 be the vertices of a convex quadrilateral. If no two of the lines determined by x_0, x_1, x_2, x_3 are parallel, up to isomorphism, in the sense of [6, p. 4], then there is only one arrangement of these six lines as shown in Fig. 2.

(3) Up to isomorphism of convex polygons there is only one convex 5-gon and two convex 6-gons, one of which is the regular hexagon.

3. Results and proofs

In view of [7] the conjecture presented in the introduction is true for $n = 3, 4, 5$ and every q. The following theorem resolves the conjecture for certain n and q.
Theorem 1. Let q and n be two natural numbers such that either

1. $n \equiv 2 \pmod{q}$
2. $n \geq q + 3$

then the following holds. There is a number $C(n, q)$ such that if S is any set of points of E^2 in general position and $|S| \geq C(n, q)$ then there are n points of S that are the vertices of a convex n-gon such that the number of points of S contained in the convex n-gon is $0 \pmod{q}$.

Proof. (1) $n \equiv 2 \pmod{q}$. Let

$$C(n, q) = f(R_3(n, n, \ldots, n))^{q \text{ times}}$$

where f is the Erdős–Szekeres function from Theorem 0. Let S be a set of points in the plane as described in Theorem 1. By Theorem 0 there are $R_3(n, n, \ldots, n)$ points of S which are the vertices of a convex $R_3(n, n, \ldots, n)$-gon P. Color the 3-subsets of the vertices of P by the q colors $0, 1, \ldots, q - 1$ corresponding to the number of points of S modulo q contained in the corresponding triangle. By the Ramsey Theorem there exists an n-subset Q of the vertices of P and an integer k, $0 \leq k \leq q - 1$, such that the number of points of S in each triangle with vertices from Q is $k \pmod{q}$. Since every n-gon can be partitioned into $n - 2$ triangles and $n - 2 = 0 \pmod{q}$ the result follows.

(2) $n \equiv q + 3$. Let n_1 and n_2 be integers such that $2 < n_1 < n < n_2$ and $n_i = 2 \pmod{q}$ for $i = 1, 2$. Let

$$C(n, q) = f(R_3(n_2, n_2, \ldots, n_2))^{q \text{ times}}$$

where f is the Erdős–Szekeres function from Theorem 0. Let S be a set of points in the plane as described in Theorem 1. As in the proof of part (1) we can assume that there exists an n_2-gon with vertices $x_1, x_2, \ldots, x_{n_2}$ (listed in a clockwise direction) and an integer k, $0 \leq k \leq q - 1$, such that the number of points of S in each triangle $x_i x_j x_k$ where $1 \leq i, j, k \leq n_2$ is $k \pmod{q}$. If there is a triangle with vertices x_i, x_j, x_k where $1 \leq i, j, k \leq n_2$ containing no points of S then $k = 0$ and the theorem follows easily. Therefore we may assume that each such triangle contains at least one point of S. Let $n - n_1 = s$ and consider the n_1-gon with vertices $x_1, x_3, \ldots, x_2s-1, x_2s+1, x_2s+2, x_2s+3, \ldots, x_{s+n_1-1}, x_{s+n_1}$. (From x_1 to x_{2s+1} every other vertex appears; thereafter every vertex appears.) Note that since $n_1 = 2 \pmod{q}$, the number of points of S in the n_1-gon is $0 \pmod{q}$. Consider the following s points y_1, y_2, \ldots, y_s where y_i is in the triangle $x_{2i-1} x_{2i} x_{2i+1}$ and has the property that the triangle $x_{2i-1} y_i x_{2i+1}$ contains no points of S. (The point y_i may be selected as the point of S in the triangle $x_{2i-1} x_{2i} x_{2i+1}$ closest to the line segment $x_{2i-1} x_{2i+1}$.) Now the n-gon

$$x_1 y_1 x_3 y_2 x_5 y_3 x_7 \cdots x_{2s-1} y_s x_{2s+1} x_{2s+2} \cdots x_{s+n_1}$$

is convex and contains a number of points of S congruent to zero modulo q.
Remarks. (1) For the case $n = 2 \pmod{q}$ we have proved a somewhat stronger result: If n and q are as above and S is any set of points of E^2 in general position and if T is any subset of S such that T is the set of vertices of a convex polygon then, provided $|T|$ is sufficiently large, there exists a convex n-gon P with vertices from T such that the number of points of S in P is $0 \pmod{q}$.

(2) For every integer t, $t \geq 3$ it is possible to locate $t - 2$ points in a convex t-gon in such a way that each triangle formed on the vertices of the t-gon contains exactly one point. Hence every n-gon formed on the vertices of the t-gon contains exactly $n - 2$ points. Consequently the stronger result mentioned in Remark (1) cannot be extended for $n \equiv 2 \pmod{q}$. The example alluded to is implicit in Theorem 2 and its proof.

(3) It was verified by computer that if S is any set of points of E^2 in general position and if T is any 6-subset of S such that T is the set of vertices of a convex hexagon then there is a convex quadrilateral, say P, with vertices from T, such that the number of points of S in P is even. Thus the number $R_3(4, 4)$ in the proof of Theorem 1 can be replaced by 6 for the case $n = 4$, $q = 2$.

Theorem 2. For every natural number n, $n \geq 5$, there is a natural number $A(n)$ satisfying the following property: Let $S = \{x_1, x_2, \ldots, x_m\}$ be a set of points of E^2 in general position and let $\alpha : S \to E^2$ be a mapping such that $\alpha(x_j)$ for $j = 1, 2, \ldots, m$, does not lie on a line passing through any two points of S. If $m \geq A(n)$, then there are n points of the set S, say $x_{i_1}, x_{i_2}, \ldots, x_{i_n}$ which are the vertices of a convex n-gon C with edges $x_{i_k}x_{i_{k+1}}$ ($x_{i_{n+1}} = x_{i_1}$). Moreover, one of the following holds:

(i) For $j = 1, 2, \ldots, n$ $\alpha(x_j)$ lies in the exterior of C.

(ii) There exists an integer j, $1 \leq j \leq n$, such that $\alpha(x_j)$ and $\alpha(x_{j+1})$ lie in the exterior of C and $\alpha(x_k)$ for $k \neq j, j + 1$, lies in the triangle determined by the three lines $x_{i_k}x_{i_k+1}$, $x_{i_k}x_{i_j}$, $x_{i_{j+1}}x_{i_{j+1}}$.

Proof. Let $A(n) = f(R(n))$ where

$$R(n) = R_3(n, n, 5, 5, 5, 4, \ldots, 4)$$

and f is the Erdős–Szekeres function from Theorem 0. Let $S = \{x_1, x_2, \ldots, x_m\}$ and let $\alpha : S \to E^2$ be as described in Theorem 2. If $m \geq f(R(n))$, then by Theorem 0 there are $R(n)$ points, say $y_1, y_2, \ldots, y_{R(n)}$, which are the vertices of a convex $R(n)$-gon. Color all the 3-subsets of $\{y_1, y_2, \ldots, y_{R(n)}\}$ by 39 colors named $0, 1(1,1), 1(1,2), \ldots, 1(6,6), 2, 3$, as follows. The set $\{y_r, y_s, y_t\}$ is colored by 0, 2, or 3 corresponding to how many of the points $\alpha(y_r), \alpha(y_s), \alpha(y_t)$ lie in the interior of the triangle $y_r y_s y_t$. If exactly one of the points $\alpha(y_r), \alpha(y_s), \alpha(y_t)$ lies in the interior of the triangle $y_r y_s y_t$, then according to Fig. 1 there are 36 possibilities for mapping the remaining two points into the six exterior regions determined by the three lines $y_r y_s, y_s y_t$ and $y_t y_r$. Let y_r, y_s, y_t be a clockwise
ordering of the vertices of the triangle $y_r y_s y_t$. Suppose that $\alpha(y_r)$ lies in the interior of triangle $y_s y_t y_r$ then let y_r correspond to x_0 of Fig. 1 and color \{y_r, y_s, y_t\} by $1_{(u,v)}$, $1 \leq u$, $v \leq 6$, if $\alpha(y_r)$ is in region u and $\alpha(y_t)$ is in region v.

Because a convex 4-gon can be partitioned by a diagonal into two disjoint triangles, it is impossible that the interior of each triangle will contain the images of three vertices of the 4-gon. Therefore there is no 4-subset of \{y_1, y_2, \ldots, y_{R(n)}\} all whose 3-subsets are color 3. Similarly, since a convex 5-gon can be partitioned by two diagonals into three disjoint triangles it is impossible that the interior of each triangle will contain the images of two vertices of the 5-gon. Thus, there is no 5-subset all whose 3-subsets are color 2.

In Fig. 2 we illustrate the 18 possible regions into which the plane is divided by the lines arising from the set of four vertices of a convex quadrilateral. A computer was used to find all mappings of the vertices of a convex quadrilateral into the 18 regions which result in a monochromatic coloring of all 3-subsets of the vertices using one of the colors $1_{(u,v)}$, $1 \leq u$, $v \leq 6$. The results obtained are presented in Table 1.

A straightforward manual check eliminates the possibility of having a 5-set all of whose 3-subsets are colored by one of the colors $1_{(1,1)}$, $1_{(4,1)}$, $1_{(5,1)}$, $1_{(3,3)}$, $1_{(5,5)}$, $1_{(3,6)}$ leaving only the four mappings associated with the color $1_{(5,5)}$. It turns out that only the eleven interior regions determined by the diagonals of the convex 5-gon are needed in the above elimination. A further manual check shows that if all 3-subsets of the vertices of a convex 5-gon are colored $1_{(5,5)}$ then the vertices of the 5-gon can be relabeled so that the 5-gon along with the images of its vertices under α is as shown in Fig. 3.

Let $n \geq 5$. It follows that there is a subset of \{y_1, y_2, \ldots, y_{R(n)}\}, say \{x_1, x_2, \ldots, x_n\} all of whose 3-subsets are colored either 0 or $1_{(5,5)}$. If all the 3-subsets are colored 0, then $\alpha(x_i)$ for $j = 1, 2, \ldots, n$ lies in the exterior of the

Table 1

<table>
<thead>
<tr>
<th>$\alpha(x_0)$</th>
<th>$\alpha(x_1)$</th>
<th>$\alpha(x_2)$</th>
<th>$\alpha(x_3)$</th>
<th>color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>$1_{(4,1)}$</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
<td>13</td>
<td>$1_{(5,1)}$</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>$1_{(5,5)}$</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>$1_{(1,1)}$</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>$1_{(3,3)}$</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>$1_{(5,5)}$</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>2</td>
<td>10</td>
<td>$1_{(3,5)}$</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>2</td>
<td>11</td>
<td>$1_{(3,6)}$</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>$1_{(5,5)}$</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>$1_{(3,5)}$</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>$1_{(3,6)}$</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>$1_{(4,1)}$</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>$1_{(3,1)}$</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>2</td>
<td>4</td>
<td>$1_{(3,5)}$</td>
</tr>
</tbody>
</table>
polygon determined by x_i, \ldots, x_k. Otherwise all the 3-subsets are colored $l_{(5,5)}$ and hence all 5-subsets and their images under α are as shown in Fig. 3. Now consider a convex n-gon all of whose 3-subsets are colored $l_{(5,5)}$. Since a convex n-gon can be partitioned into $n - 2$ disjoint triangles and since each triangle contains exactly one image point of a vertex, there are at least $n - 2$ image points of vertices in the interior of the convex n-gon. Furthermore, if a triangle $z_1z_2z_3$ contains the images $\alpha(z_1)$ and $\alpha(z_3)$, where z_1, z_2, z_3, and z_4 are vertices of the convex 4-gon, then consideration of the triangle $z_2z_3z_4$ leads easily to a contradiction. Hence exactly two vertices of the convex n-gon are mapped to the exterior of the n-gon. In view of the configuration illustrated in Fig. 3, the two points mapped to the exterior of the convex n-gon must form an edge, say $x_{ik}x_{j}$. Considering all the 5-gons $x_i x_{j} \ldots x_k x_{i}$, where $j = k + 2, \ldots, k - 3$ (addition is mod n), we get the configuration described in part (ii) of the conclusion of Theorem 2 and the proof of the theorem is complete.

Remark. Since every convex n-gon with a mapping satisfying (1) or (2) contains a k-gon satisfying (1) or (2) respectively for every k, $3 \leq k \leq n$ the assumption $n \geq 5$ in the statement of the theorem can be relaxed to $n \geq 3$.

The one-dimensional analog of Theorem 2 is the following.

Observation. Let $x_1 < x_2 < \cdots < x_s$ be s real numbers and let $f : \{x_1, x_2, \ldots, x_s\} \to \mathbb{R} \setminus \{x_1, x_2, \ldots, x_s\}$. If $s \geq 2(n - 1)^2 + 1$, then there are n points among x_1, x_2, \ldots, x_s, say, $x_{i_1} = y_1 < x_{i_2} = y_2 < \cdots < x_{i_n} = y_n$ such that one
of the following holds:

(i) \(y_i < f(y_i) \) for \(i = 1, 2, \ldots, n \) and \(f(y_i) < y_{i+1} \) for \(i = 1, 2, \ldots, n - 1 \),

(ii) \(f(y_i) > y_i \) for \(i = 1, 2, \ldots, n \),

(iii) \(y_i > f(y_i) \) for \(i = 1, 2, \ldots, n \) and \(f(y_i) > y_{i-1} \) for \(i = 2, 3, \ldots, n \),

(iv) \(f(y_i) < y_i \) for \(i = 1, 2, \ldots, n \).

This observation is almost a reformulation of the following theorem.

Theorem 3. Given \((n - 1)^2 + 1\) intervals on a line, there are either \(n\) pairwise disjoint or \(n\) intersecting intervals.

In turn, Theorem 3 is an easy consequence of Dilworth's theorem along with Helly's theorem in dimension one.

References

