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SUMMARY

Themurine epidermis with its hair follicles represents
an invaluable model system for tissue regeneration
and stem cell research. Here we used single-cell
RNA-sequencing to reveal howcellular heterogeneity
of murine telogen epidermis is tuned at the transcrip-
tional level. Unbiased clustering of 1,422 single-cell
transcriptomes revealed 25 distinct populations of
interfollicular and follicular epidermal cells. Our data
allowed the reconstruction of gene expression pro-
grams during epidermal differentiation and along
the proximal-distal axis of the hair follicle at un-
precedented resolution. Moreover, transcriptional
heterogeneity of the epidermis can essentially be
explained along these two axes, and we show that
heterogeneity in stem cell compartments generally
reflects this model: stem cell populations are segre-
gated by spatial signatures but share a common
basal-epidermal gene module. This study provides
an unbiased and systematic view of transcriptional
organization of adult epidermis and highlights how
cellular heterogeneity can be orchestrated in vivo to
assure tissue homeostasis.

INTRODUCTION

The epidermis and its appendages form the outer layer of the

mammalian skin and shield the body from external harm (Fuchs,

2007). Its regenerative capacity along with its accessibility and

compartmentalized microanatomy has made the epidermis

one of the most important model systems for stem cell biology

(Hsu et al., 2014; Schepeler et al., 2014), and many paradigms

of tissue maintenance and regeneration have been established

or validated in the murine epidermis (Rompolas and Greco,

2014).

In mice, the epidermis consists of two main compartments

with distinct physiological functions: the interfollicular epidermis

(IFE), and the hair follicle (HF) including the sebaceous gland (SG)

(Niemann andWatt, 2002). Cells of the IFE constitute themajority
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of epidermal cells and form a squamous, stratified, multilayered

epithelium that plays the key role in securing the skin barrier

function (Fuchs, 1990). In contrast, the main role of HFs lies in

producing the hair shaft to maintain the murine fur. While the

cells of IFE and SG are constantly replaced, the HF is subjected

to cycles of rest (telogen), growth (anagen), and degeneration

(catagen). The telogen HF exhibits a characteristic micro-

anatomy including the bulge and hair germ fuelling hair growth,

the isthmus and junctional zone encompassing the opening of

the SG, and the infundibulum connecting the HF to the IFE (Fig-

ure 1B). The lower part of the HF closest to the hair-growth

inductive dermal papilla is often referred to as the proximal

part, and consequently the upper HF as distal (Müller-Röver

et al., 2001).

The cellular composition of the epidermis has been extensively

studied during the last decades. It has been shown that the ker-

atinocytes of the IFE can be morphologically, molecularly, and

functionally divided into basal cells, suprabasal spinous, and

granular layer cells, which each play distinct roles in producing

and maintaining the skin barrier (Fuchs, 1990). In a similar

fashion, it has been established how SG cells differentiate to

fulfill glandular functions or how HF keratinocytes maintain the

hair shaft (Niemann and Horsley, 2012). More recently, reporter

constructs and lineage tracing studies have characterized

stem cell and progenitor populations in the IFE, the SG, and

sub-compartments of the HF (Alcolea and Jones, 2014;

Kretzschmar and Watt, 2014; Petersson and Niemann, 2012).

The molecular relationship between the different stem and

progenitor populations and ‘‘non-stem cell’’ populations is, how-

ever, still insufficiently addressed.

A large number of studies have investigated the transcrip-

tomes of cell populations in the human and murine epidermis

in vivo and in vitro. While a few pioneering studies were per-

formed at single-cell resolution but were limited by low sensi-

tivity or small numbers of analyzed genes (Jensen and Watt,

2006; Tan et al., 2013), most of the studies relied on bulk-sam-

pling techniques and cell enrichment using pre-defined

markers (Blanpain et al., 2004; Brownell et al., 2011; Füllgrabe

et al., 2015; Greco et al., 2009; Jaks et al., 2008; Janich et al.,

2011; Mascré et al., 2012; Page et al., 2013; Snippert et al.,

2010; Tumbar et al., 2004). As nearly all of these studies

were restricted to certain subpopulations or compartments of

the epidermis, it has been difficult to directly compare results
mber 28, 2016 ª 2016 The Authors. Published by Elsevier Inc. 221
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Figure 1. Defining the Main Epidermal Cell Populations

(A) Overview of the experimental workflow.

(B) Illustrated microanatomy and compartmentalization of the murine epidermis including HF and SG, colored according to main populations (C).

(C) Identity and marker genes of cell populations defined during first-level clustering.

(D) Epidermal cell transcriptomes (n = 1,422) visualized with t-distributed stochastic neighbor embedding (t-SNE), colored according to unsupervised (first level)

clustering (C).

(E) Expression of group-specific marker genes projected onto the t-SNE map.

(F) Immunostaining or single-molecule FISH for group-specific genes. Protein or mRNA (symbols italics) expression is pseudocolored corresponding to groups

shown in (C). Cell nuclei are shown in white. Scale bars, 20 mm. See also Figure S2J.

(G) Hierarchical clustering (Ward’s linkage) of gene expression data averaged over each group.
across studies and to analyze epidermal heterogeneity in a sys-

tematic fashion. In contrast, recent advances in single-cell RNA-

sequencing (RNA-seq) technologies have made it possible to

profile large numbers of cells in parallel (Hashimshony et al.,

2012; Islam et al., 2014; Picelli et al., 2013) in order to compre-

hensively dissect the cellular composition of complex tissues
222 Cell Systems 3, 221–237, September 28, 2016
(Sandberg, 2014). In addition to unveiling novel epidermal cell

populations, high-throughput single-cell transcriptomics of the

epidermis may also reveal heterogeneity within previously

described populations in the murine skin (Jaks et al., 2010;

Kretzschmar andWatt, 2014). However, such studies are lacking

so far.



Here, we used quantitative single-cell RNA-seq to sequence

1,422 cells from the murine telogen epidermis to systematically

dissect the cellular heterogeneity of epidermal cells during tissue

homeostasis. We provide a high-resolution transcriptome map

that is available online, present potential novel transcriptional

regulators along the differentiation and spatial axes, and model

the impact of each axis on transcriptional heterogeneity.

RESULTS

Single-Cell Transcriptome Analysis of Mouse Epidermis
To study the transcriptional heterogeneity of the telogen

epidermis, we isolated epidermal cells from dorsal skin of

C57BL/6 wild-type mice during second telogen at around

8 weeks (Figures 1A, S1A, and S1B). The isolated cells of individ-

ual mice (n = 19 biological replicates) were, after one HF cell

enrichment step, directly loaded into 96-well microfluidic C1

chips (Fluidigm) and randomly captured for sequencing.

Because we expected higher cellular heterogeneity within HFs

compared to IFE (Figure 1B), we used SCA-1 microbeads to

enrich for HF cells and sampled HF (SCA-1�) and IFE/infundib-

ulum (SCA-1+) cell numbers in a 2:1 ratio (Figures S1C–S1E).

Although single-cell capturing in C1 chips showed a minor bias

for larger cells, the whole size range of both cell fractions was

represented in the dataset (Figure S1F). Through imaging of

the C1 chips, chambers containing more than one cell were

excluded. Next, we prepared and sequenced single-cell cDNA

libraries using a quantitative single-cell RNA-seq protocol (Islam

et al., 2014). Sequencing yield and quality was comparable to our

previous studies (Figures S1G–S1N) (Zeisel et al., 2015). Single

cells with <2,000 unique detectedmolecules failed to reach qual-

ity-control standards and were excluded, leaving 1,422 single-

cell transcriptomes in the final dataset (Figure S1K).

Unbiased Clustering Confirms Known Epidermal Cell
Populations
First, we dissected the global structure of the dataset through

unsupervised clustering with affinity propagation (Frey and

Dueck, 2007) based on the expression of high variance genes

(Figure S2A). Importantly, all clusters (representing distinct

groups of cells) were derived without considering a priori

knowledge from the literature. We robustly identified 13 highly

distinct main groups of epidermal cells, which we visualized in

two-dimensional space using t-distributed stochastic neighbor

embedding (t-SNE) (Van der Maaten and Hinton, 2008) (Figures

1C, 1D, and S2B–S2F): SG cells marked by Scd1/Mgst1, inner

and outer bulge keratinocytes characterized by expression of

Krt6a/Krt75 and Cd34/Postn, respectively, predominantly IFE-

derived basal cells with high expression levels of Krt14/Mt2,

two stages of differentiated cells marked by Krt10/Ptgs1 and

two stages of terminally differentiated keratinized layer cells

expressing Lor/Flg2, three distinct groups of upper HF cells

marked by different levels of Krt79/Krt17, and two immune cell

populations Langerhans cells (Cd207+/Ctss+) and resident

T cells (Cd3+/Thy1+). We subsequently used a negative binomial

Bayesian regression model to identify group-specific gene

expression signatures, and, as expected, each group of cells

expressed a distinct set of genes (Figures 1C, 1E, and S2G–

S2I; Table S1).
To confirm the existence of these cell populations with a

sequencing-independent method, we selected known and

newly derived marker genes and subsequently stained telogen

skin tissue sections using immunohistochemistry (IHC) and/or

single-molecule mRNA fluorescence in situ hybridization (FISH)

(STAR Methods). This also allowed us to map the defined popu-

lations to their spatial location in the telogen epidermis (Figures

1F and S2J). Interestingly, comparing transcriptional similarity

among the 13 epidermal groups revealed that the cell popula-

tions did not always cluster based on their physical location,

raising the question whether similar cellular functions render

cells more similar than location (Figure 1G). Overall, even though

the first round (first level) of clustering did not reveal novel pop-

ulations of cells, an outcome that is not unexpected given that

the murine epidermis is one of the best studied mammalian

organ systems (Fuchs, 2007; Niemann and Watt, 2002; Sche-

peler et al., 2014), it robustly recapitulated the expected main

epidermal structures and cell populations.

Subclustering of Main Populations Reveals New
Subpopulations
To further resolve cellular heterogeneity of HF and IFE cells, we

selected all cells that were in the first-level clustering defined

as having an outer bulge, inner bulge, upper HF, and basal IFE

signature, respectively, and subjected them to a second round

(second level) of unsupervised clustering (Figures S3A and

S3B). We divided the upper HF into seven, the outer bulge into

five, and the inner bulge as well as the basal IFE into three sub-

populations, respectively (Figures 2A–2G and S3C–S3L; Table

S2). To exclude that any population was merely the result of bio-

logical (e.g., variability between mice) or technical artifacts (e.g.,

variability in cell isolation, or cell doublets [Macosko et al., 2015]),

we used three different validation strategies (STAR Methods): (1)

verification that each cluster was formed by an adequate number

of biological replicates, (2) resampling approach to test robust-

ness of each cell cluster, (3) systematic staining of all populations

by IHC and/or FISH. The results show that cells of at least eight

different mice formed each cluster, the majority of clusters were

highly robust (Figures S3G–S3J), and all populations could be

identified by IHC and/or FISH staining.

Upper HF

The cells of the upper HF could be separated into four known

(uHF IV–VII), one indistinct (uHF III), and two new cell populations

(uHF I and uHF II) (Figures 2B, 2E, 2G, S3D, and S3L). The new

populations were located around the SG opening and could be

distinguished by Rbp1 expression as well as high levels of

Defb6 and Cst6. While uHF I cells showed additional expression

of unique markers such as Klk10 and could be located to two

suprabasal rings of cells around the SG opening, uHF II cells ex-

pressed a small subset of typical basal genes such as Krt14 (but

not Krt5) and could be linked to the SG duct. The other subpop-

ulations of uHF cells (uHF IV–VII) showed a typical uHF signature

(high levels of Krt17, Krt79, Cd44, Cd200, and Lrig1 in the more

basal cells) combined with expression of gene signatures linked

to the basal (Krt5, Krt14), suprabasal (Krt10, Ptgs1), and kerati-

nized layer (Flg2, Lor) of the IFE.

Outer Bulge

The outer bulge is the most well-investigated HF compartment

and is characterized by high expression of Cd34, Krt15, and
Cell Systems 3, 221–237, September 28, 2016 223
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Lgr5 (Blanpain et al., 2004; Cotsarelis et al., 1990; Jaks et al.,

2008;Morris et al., 2004). The degree of transcriptional heteroge-

neity within the outer bulge cells is, however, only partly explored

(Blanpain et al., 2004; Janich et al., 2011; Tumbar et al., 2004).

Subclustering cells with outer bulge signature revealed five sub-

populations (Figures 2C and S3E). Most of the cells of the outer

bulge belonged to either a Cd34hi, Postnhi, Lgr5hi, Krt24hi popu-

lation (OB I) located in the proximal part of the outer bulge and

the hair germ or a Cd34hi, Postnhi, Lgr5dim, Krt24dim population

(OBII) that wasmapped to the central part of the outer bulge (Fig-

ures 2G and S3L). The three additional OB-cell populations (OB

III, IV, and V) were demarcated at the distal end of the bulge area

and at the lower isthmus (Figures 2E, 2G, and S3L). OB III was

characterized by a unique signature of genes including Aspn,

Nrep, and Robo2 (Figures 2C and S3E), and, interestingly, this

population also showed the strongest expression of Gli1 and

Lgr6 in the HF indicating that this cluster includes cells from

both the Gli1+ population defined by Brownell et al. and the

Lgr6+ population described by Snippert et al. (Brownell et al.,

2011; Snippert et al., 2010). In contrast to OB III, the cells of

OB IV located distal to OB III did not express unique genes;

instead, they were marked by an overlapping outer bulge

(including Postn and Cd34) and upper HF signature (including

Krt79, Krt17, Lrig1, and Cd44) (Figure 2E). OB V is a population

of suprabasal cells, which expressed both an outer bulge signa-

ture and differentiation markers such as Krt10 and Ptgs1

(Figure 2E).

Inner Bulge

The majority of inner bulge cells belonged to a population (IB I)

solely expressing the typical inner bulge signature (e.g., high

levels of Krt6a, Krt75, Timp3, Fgf18). The second population

(IB II) consisted of cells expressing both inner bulge and outer

bulge markers and could be mapped to the outer bulge (Fig-

ure 2E). The third population (IB III) co-expressed an inner bulge

and a differentiation signature (e.g., Krt10, Ptgs1) and was map-

ped to the distal end of the inner bulge compartment (Figure 2E).

Overall, we were able to resolve 16 distinct subpopulations of

HF cells, of which many have not been previously described

(Table S3). Intriguingly, only three of those subpopulations—

the Gli1+ upper bulge population (OB III) and the upper HF pop-

ulations located around the SG (uHF I and uHF II)—were defined

by unique genetic signatures. In contrast, most heterogeneity in

the HF seemed to result from the combination of recurring ge-

netic signatures (Figures 2A–2D, S3C–S3F, and S3K; Table

S2), suggesting that the vast complexity of cellular identities

found in the HF might be the consequence of the coordinated

interplay of just a few classes of genetic signatures. As a conse-

quence, dividing lines (i.e., borders) between some populations

(Figure S5E) became less distinct, exemplified by the overlap
Figure 2. Subclustering of Epidermal Cell Populations

(A–D) Subclustering (second-level clustering) of epidermal cells from the IFE bas

panel: projection of subpopulations onto the t-SNEmap of the full dataset introduc

per subpopulation. Each bar represents a single cell, and the black line indicates

(E) Selection of immuno- and single-molecule FISH (symbols italics) stainings to

position of the populations: IFE BI (filled arrowhead)/BII (empty arrowhead); uHF

marks lower end of KRT15 gap). HS, hair shaft. SG, sebaceous gland. CH, club

(F) Identity and marker genes of cell populations defined during second-level clu

(G) Summary of the approximate location of each defined subpopulation in the I
of genetic signatures in OB IV (upper HF and outer bulge signa-

tures) and IB II (inner bulge and outer bulge signatures). Impor-

tantly, these observations were not limited to cells of the HF.

Basal IFE

While subclustering IFE basal cells, we found a subpopulation

that expressed low levels of upper HF markers such as Krt79,

the bulge marker Postn, and pan-HF markers like Sostdc1,

Aqp3, and Fst in addition to the IFE basal signature (Figures

2A, 2E, and S3C). This unique combination of signatures turned

out to mark basal cells of the infundibulum, the structure that

connects the HF to the IFE, which was never transcriptionally

resolved before. Moreover, we found two distinct basal IFE

populations (IFE BI and II; Figure 2E) both expressing high

levels of Krt14 and Krt5, and IFE BI additionally expressed high

levels of Avpi1, Krt16, Thbs1, and the transcription factor

Bhlhe40. Interestingly, Thrombospondin 1 (THBS1) was reported

to inhibit angiogenesis and to modulate cell adhesion, motility,

and growth (Guo et al., 1997), and BHLHE40 has been sug-

gested to take part in the control of the circadian rhythm and

counteract cell differentiation (Bi et al., 2015; Honma et al.,

2002; Sato et al., 2004).

In summary, the observation that overlapping gene signatures

frequently determine subpopulations justified the question

whether the cellular heterogeneity in the epidermis was best rep-

resented as a set of distinct, clearly delineated clusters, or can

be explained better by another model. Thus, we next sought to

identify and characterize the biological processes that may

give rise to HF and IFE keratinocyte heterogeneity.

Reconstruction of IFE Cell Differentiation by
Pseudotemporal Ordering of Single-Cell
Transcriptomes
Since the IFE is constantly renewed, it contains the whole

range of basal to terminally differentiated keratinocytes (Fuchs,

1990; Toufighi et al., 2015). An advantage of sequencing single

cells is that cells can be ordered along a path according to

their transcriptional profile using a network-based approach

(Trapnell et al., 2014). This allowed us to reconstruct the differen-

tiation processes by ordering IFE cells along a pseudotempo-

ral differentiation trajectory (Figures 3A and S4A). Increasing

cell diameters with differentiation (data not shown), and expres-

sion levels of the well-known markers Krt14 (basal), Krt10

(mature), and Lor (terminally differentiated) along the defined

pseudotime axis confirmed that our cell alignment was correct

and in accordance with epidermal stratification (Fuchs, 1990).

Mt4 marked a transitory stage, which we resolved in this study

(Figure 3B).

We identified 1,627 genes with statistically significant varia-

tion in expression levels along the differentiation trajectory
al (A), upper HF (B), outer bulge (C), and inner bulge (D) compartments. Upper

ed in Figure 1D. Lower panel: barplots showing the expression of marker genes

the average expression over each subpopulation.

visualize subpopulation localization within the tissue. Arrowheads highlight the

I (filled arrowhead)/II (empty arrowhead); OB III (filled arrowhead; dashed line

hair. Scale bars, 10 mm. See also Figure S3L.

stering.

FE, SG, and HF.
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(pseudotime-dependent genes, Figure S4B), and these genes

clustered into eight groups according to their expression pattern

during the differentiation process (Figures 3C and S4C), which

also were linked to distinct functional terms (Figure S4D). Basal

cells (group I) were defined by a low number of genes primarily

involved in extracellular matrix deposition and interaction, cell

proliferation, and tissue development. After a transitional stage

(II), in which the basal signature was slowly reduced while ribo-

somal genes peak (III), we saw a first wave of genes linked to

epidermal maturation, fatty acid metabolism and cholesterol

synthesis, cell-cell junction formation, and protein transport

(IV–VI). Toward the end of the cell’s life cycle, a second wave

of genes involved in cornified envelope formation, ceramide syn-

thesis, and proteolysis became active (VII and VIII) (Table S4). To

gain insight into the molecular regulation of epidermal differenti-

ation, we selected the 30 most pseudotime-dependent tran-

scription factors (TFs) and analyzed their expression patterns

during the differentiation process (Figures 3D and S4D). While

only a few TFs (e.g., Bhlhe40, Zfp36l2) could be linked to the

basal and intermediate signatures, we found a high number of

new (e.g., Casz1, Klf3, Lrrfip2, Mllt4) and previously described

(Gata3, Grhl1, Hes1, and Prdm1) (Kaufman et al., 2003;

Kretzschmar et al., 2014; Mlacki et al., 2014; Wang et al., 2008)

TFs that could play a role in the regulation of epidermal matura-

tion and terminal differentiation (Figure 3D). In sum, our single-

cell resolution data enabled the reconstruction of genetic

programs during IFE differentiation in unprecedented detail.

A Majority of HF Subpopulations Express Large Sets of
Pseudotime-Dependent Genes
Having defined the genetic program of differentiation in the IFE,

we next asked to what degree this differentiation program was

applicable to other epidermal cell populations. Interestingly, we

observed that the vast majority of epidermal cell populations ex-

pressed large numbers of pseudotime-dependent genes in

accordance with distinct stages in the differentiation process

(Figures 3E, 3F, S4E, and S4F). For instance, most outer bulge

subpopulations (OB I–OB V) robustly expressed a large subset

of basal genes, while the cells of the upper HF seemed to tra-

verse the complete differentiation program from basal (uHF IV)

over intermediate (uHF V) tomature (uHF VI) and terminally differ-

entiated (uHF VII). In order to further demonstrate that IFE andHF
Figure 3. Reconstruction of the Epidermal Differentiation Process

(A) Pseudotemporal ordering of IFE cells (n = 536) in t-SNE space, using aminimum

colored according to first-level clustering.

(B) Validation of pseudotemporal ordering of IFE cells using the known basal (Krt14

a transient marker defined in this study. Upper panel: gene expression in IFE cells

Lower panel: gene expression projected onto the t-SNE map shown in (A).

(C) ‘‘Rolling wave’’ plot showing the spline-smoothed expression pattern of pse

ordered according to their peak expression.

(D) ‘‘Rolling wave’’ plot showing the spline-smoothed expression pattern of the 3

ordered according to group membership (left) and peak expression as shown in (C

Bonferroni-corrected significance threshold of 0.001. TFs marked in bold have n

(E) Expression of differentiation-related genes in all epidermal subpopulations d

genes expressed over baseline with 95% posterior probability (negative binomi

(I–VIII). Populations where the pseudotime model is not applicable are shaded g

(F) Position of epidermal cells from each subpopulation plotted on the differen

pseudotime model is not applicable are colored light gray.

(G) Summary illustrating the differentiation status of cells in the HF and IFE.
cells share core differentiation gene signatures, we identified and

modeled the differentiation program independently in the upper

HF and found large congruency with IFE differentiation (Fig-

ure S4G). The few cell populations (TC, LH, SG, uHF I–III, and

IB I) that could not be robustly linked to a particular stage in

the differentiation program (Figures 3E, 3F, S4E, and S4F), ex-

hibited immune- and SG-related cellular functions, or underwent

an entirely distinct differentiation path like the inner bulge cells

(Hsu et al., 2011). Overall, the differentiation program that was

identified from analyses of IFE cells seemed universal for most

epidermal keratinocytes, summarized in Figure 3G, and ac-

counted for one of the largest sources of cellular heterogeneity

throughout the epidermis.

Identification of Spatial Gene Signatures along the
Proximal-Distal HF Axis
To further dissect sources of cellular heterogeneity in the HF that

are independent of the differentiation signature, we selected all

basal IFE and basal HF cells and projected them into t-SNE

space. Cells with IFE, uHF, OB, and IB signatures separated

into four overlapping clusters positioned along a path, which

was used to model a pseudospatial axis similar to the pseudo-

temporal ordering of the differentiation trajectory (Figures 4A

and S5A). Intriguingly, this pseudospatial ordering robustly re-

produced the spatial localization of basal subpopulations (Fig-

ure 2G) along the proximal-distal axis of the HF (Figures 4B

and 4E).

We identified 547 significantly pseudospace-dependent

genes and grouped these into eight spatial signatures (Figures

4C and S5B–S5D). A first group of pan-basal genes with peaked

expression in the IFE (I), a group of genes most highly expressed

in IFE basal (II), a group of genes shared by IFE and uHF basal

cells (III), an exclusive uHF signature (IV), a group of genes linked

to the Gli1+ population in the distal bulge region (V), an outer

bulge signature (VI), a pan-bulge signature (VII), and an exclusive

inner bulge signature (VIII) (Table S5). Screening for pseudo-

space-dependent TFs revealed that only a small number of

TFs were linked to IFE and uHF basal signatures (e.g., Ahr,

Ets2, Gata6, Tsc22d1) (Figures 4D and S5D). In contrast, TFs

were overrepresented in bulge signature genes that can be

roughly classified into three groups: TFs most strongly linked

to upper bulge signatures (e.g., Gli1, Runx1), the outer bulge
spanning tree. The longest path through the graph is highlighted and cells are

), mature (Krt10), and terminally differentiated (Lor) cell stagemarkers andMt4,

plotted along pseudotime and fitted with a cubic smoothing spline (black line).

udotime-dependent genes (n = 1,627) clustered into eight groups (I–VIII) and

0 most significantly differentiation-related transcription factors (TFs). TFs were

). P-values for pseudotime dependency are shown on the right. Red line marks

ot been previously described as relevant for epidermal stratification.

efined by either first- or second-level clustering. Bars show the percentage of

al regression model) in each of the populations for every differentiation group

ray.

tiation axis (defined by highest Pearson correlation). Populations where the
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Figure 4. Defining Spatial Gene Expression Signatures

(A) Pseudospatial ordering of basal cells (n = 486) in t-SNE space, using a minimum spanning tree. The longest path through the graph is highlighted and cells are

colored according to second-level clustering.

(B) Validation of pseudospatial ordering of basal cells using known and new IFE basal (Krt14), upper HF (Krt79), Gli1+ outer bulge (Aspn), general outer bulge

(Postn), and inner bulge (Krt6a) markers. Upper panel: gene expression in basal cells plotted along the pseudospace trajectory and fitted with a cubic smoothing

spline (black line). Lower panel: gene expression projected onto the t-SNE map shown in (A).

(legend continued on next page)
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(e.g., Tbx1, Lhx2), and pan-bulge or pan-HF TFs (e.g., Foxp1,

Sox9, Tfap2b). Overall, we identified well-known TFs in the HF

and a variety of putatively new regulatory factors in the HF and

IFE (Figures 4D and S5D). The fact that the proximal-distal axis

spanning from the inner HF bulge to the IFE could be robustly

recapitulated (Figures 4E and 4F) suggests that spatial cues

generate gradient responses in keratinocyte populations along

the proximal-distal axis (Figure S5E). Moreover, most spatial

signatures in the HF were expressed independently of the differ-

entiation state (Figures S5F–S5I). In sum, this analysis demon-

strated that spatial gene signatures have a large influence on

the overall cellular heterogeneity.

The Differentiation and Spatial Signatures Explain Most
Epidermal Heterogeneity
To quantitatively assess to what extent differentiation and spatial

gene signatures could explain the observed cellular heterogene-

ity in the epidermis, we modeled the gene expression profile of

each cell as a combination of differentiation and spatial signa-

tures, and five additional types of signatures (two SG signatures

and three immune cell related signatures) (Figure 5). We first

explored the positions of cells along the pseudotime- and pseu-

dospace-axis (pseudospacetime model, Figures 5A and S6A),

and most epidermal subpopulations were located in specific re-

gions in pseudospacetime (Figure 5B). We divided the pseudo-

spacetime model into 15 equally sized bins along each axis

and used bin-membership of cells as predictors in a negative

binomial regression model (STAR Methods). For each predictor,

we were able to define distinct gene sets, which were expressed

over the model baseline (i.e., the background expression found

in all cells of the data) (Figure 5A, upper and left-hand side panel,

and Figure 5C). To evaluate how well the model explained the

observed single-cell data, we compared the in silico transcrip-

tomes generated from the model for each cell with the experi-

mentally observed number of molecules. We computed the

numbers of molecules that were in agreement (explained mole-

cules), and the numbers of molecules in excess (overexplained

molecules) or lacking (underexplainedmolecules) in themodeled

compared to the observed transcriptomes per cell (Figures S6B

and S6C). In parallel, we used the same modeling strategy but

binned cells based on the first- or second-level clustering.

Intriguingly, the pseudospacetime model had an equally high

‘‘explanatory performance’’ as the first- and second-level clus-

tering data (Figures 5D and S6D), suggesting that the differenti-

ation and spatial signatures effectively covered all heterogeneity

identified across the main populations (first-level clustering) and

sub-populations (second-level clustering). The baseline signa-

ture explained around 50% of molecules in the dataset (Fig-

ure 5E), andwe next investigated the additional ‘‘explanatory po-

wer’’ of the respective signatures. The differentiation signature
(C) ‘‘Rolling wave’’ plot showing the spline-smoothed expression pattern of pse

ordered according to their peak expression.

(D) ‘‘Rolling wave’’ plot showing the spline-smoothed expression pattern of the 30

membership and peak expression as shown in (C). P-values for pseudospace d

nificance threshold of 0.001. TFs marked in bold have not been previously descr

(E) Peak positions of basal cell populations and IB I (defined in second-level cluste

of the cell populations confirms their spatial positioning in IFE and HF along the

(F) Summary illustrating spatial signatures in epidermal cell populations.
could resolve additional 25%, and, together with the spatial sig-

natures, more than 95% of transcriptome molecules could be

explained. The remaining signatures had minor roles, as they

were only important for certain cells such as immune cells

(Figure 5E). When analyzed from a cell population perspective,

the spatial signatures played larger roles in explaining gene

expression in basal cells, and the differentiation signatures ac-

counted for most of the non-baseline molecules in suprabasal

cells (Figure S6E). We conclude that the gene expression pro-

grams associated with differentiation and the proximal-distal

spatial axis explain most transcriptional heterogeneity within

the epidermis.

Stem Cells Share a Basal Transcriptional Signature
In the last two decades, numerous studies have described and

transcriptionally profiled distinct murine epidermal cell popula-

tions in the HF and the IFE with long-term self-renewal capabil-

ities (Blanpain et al., 2004; Brownell et al., 2011; Füllgrabe

et al., 2015; Greco et al., 2009; Jaks et al., 2008; Mascré et al.,

2012; Page et al., 2013; Snippert et al., 2010). These studies

have identified important gene signatures, but they were inher-

ently limited to measuring averages across cell populations

due to predefined marker-based sorting strategies. Therefore,

it is still unknown what distinguishes cells that express stem

cell and progenitor markers (SCMs) from cells that do not. To

this end, we selected cells expressing the established SCMs

Cd34, Lgr5, Lgr6, Gli1, Lrig1, or high levels of Krt14 (Krt14hi).

As expected, we found that most of the SCM+ cells exhibited a

basal phenotype (Figure 6A). We next selected all basal cells

(STAR Methods), projected them into t-SNE space (Figures 6B

and S7B), and marked Cd34, Lgr5, Lgr6, Gli1, Lrig1, or Krt14hi

cells on this t-SNE map to display their location (Figures 6B

and 6C). As a control, pre-sorted Lgr5-EGFP+ keratinocytes

(Jaks et al., 2008) were processed in the same way as the

1,422 cells in this study and found to occupy the same locations

in the t-SNE plot as Lgr5-expressing cells did in Figure 6C (data

not shown). Interestingly, we observed that, although showing

clear peaks in distinct compartments, the expression of most

SCMs was scattered over several basal compartments (Figures

6B, 6C, S7A, and S7B), and SCM expression alone was not suf-

ficient to clearly delineate basal cell populations in our dataset. It

needs to be determined whether or not these observations could

have implications when using SCM-promoter-based lineage

tracing (Kretzschmar and Watt, 2014). However, when analyzing

each heterogeneous SCM+ population for shared gene expres-

sion, we identified robust SCM-linked signatures that were inde-

pendent of differentiation stages (Figures S7C–S7F; Table S6),

underlining the strong impact of niches on gene expression.

As most of the SCMs were predominantly expressed in basal

cells (Figure 6A), we asked whether basal cells that expressed
udospace-dependent genes (n = 547) clustered into eight groups (I-VIII) and

most significant spatially expressed TFs. TFs were ordered according to group

ependency are shown on the right. Red line marks Bonferroni-corrected sig-

ibed as relevant for cellular heterogeneity along the proximal-distal axis.

ring) on the spatial axis visualized by kernel density estimation. The organization

proximal-distal axis.
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Figure 5. Modeling Transcriptional Heterogeneity Using Space and Time Signatures

(A) Pseudospacetime: matrix showing each cell’s (dots) identity along the differentiation- and spatial-axis, in which both axes were divided into 15 equally sized

bins. The numbers of genes expressed over baseline (95% posterior probability, negative binomial regression model) for each bin are shown in barplots (upper

and left panels). Cells with expression patterns that could not be placed along the differentiation- and spatial-axes are presented in a separated bar to the right.

(B) The pseudospacetime positions of cells from each cell population defined by either first- or second-level clustering, visualized as percentage of cells per bin.

(C) The number of genes expressed over baseline (95% posterior probability) for the additional signatures used for modeling the transcriptomes of all cells

(including SG-related and immune populations).

(D) Model accuracy for the model (including all signature model predictors) in comparison with model accuracy based on either grouping cells according to the

first- or second-level clustering or after shuffling the model-predictor matrix (negative control). The model accuracy was computed as the ratio of explained

molecules (present in both the simulated and observed) to the sum of explained and unexplained molecules. For each model, the mean and SD of the model

accuracy over each group are shown. See Figure S6D for results of each individual cell population.

(E) Percentage of molecules (averaged over all cells) explained by models of increasing complexity. The explained molecules are indicated in green, under-

explained in red, and overexplained in blue.
SCMs (73% of basal cells, Figure 6D) had distinct transcrip-

tional programs in comparison to basal cells without SCM

expression. SCM� basal cells were in general ‘‘less basal’’

than those cells expressing SCMs, as evident from projecting

these two groups of cells onto the differentiation axis (Figure 6E)

and were enriched in the IFE and upper HF compartments (Fig-

ure 6F). Using negative binomial regression, we obtained a set

of genes that was higher expressed in SCM+ compared to the

SCM� cells. Interestingly, the SCM+-enriched genes did not

constitute a ‘‘unique stem cell signature’’ and were instead

mostly part of a pan-basal gene expression program including

components that are involved in the extracellular matrix (ECM)
230 Cell Systems 3, 221–237, September 28, 2016
and basement membrane formation, and cell adhesion (Figures

6G and S7G–S7J; Table S6). Some of these genes have been

found to be expressed in SCM+ cell populations (Blanpain

et al., 2004; Greco et al., 2009; Tumbar et al., 2004), and the

recently reported importance of COL17A1 for counteracting

HF stem cell aging underpins our findings (Matsumura et al.,

2016).

Altogether, we did not observe a clearly delineated transcrip-

tional state (i.e., a set of genes uniquely expressed in stem

cells) that set SCM+ and SCM– basal cells apart. What was

shared between all SCM+ basal cells was a stronger pan-basal

signature. Moreover, the gene expression signatures separating
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Figure 6. Single-Cell Analyses of Epidermal Stem Cell Populations

(A) Percentage of basal (pseudotime %300) and non-basal cells, in each population of cells expressing Lgr5, Cd34, Gli1, Lgr6, Lrig1, or Krt14, respectively. For

basal cells, the percentage and the number of cells per total cells are given.

(B) Selection of all basal cells. Right panel: projection of all basal cells (pseudotime %300; with and without SCM expression) onto t-SNE space, colored ac-

cording to the defined cell compartments (first- and second-level clustering). Left panel: illustration summarizing the location of the compartments.

(C) Mapping of basal cells to the t-SNE map defined in (B) according to the expression of SCMs, for each marker gene respectively.

(D) Percentage of basal cells that do not express any of the SCMs Lgr5, Cd34, Gli1, Lgr6, Lrig1, or Krt14 (in red).

(E) Density of basal cells with (gray) and without (red) SCM expression along the pseudotime axis.

(F) Projection of the basal cells that did not express any SCMs (red) onto the t-SNE map defined in (B).

(G) Heatmap of 44 genes that are differentially expressed between SCM+ and SCM� basal cells. Negative binomial regression was used to define specific

SCM+ and SCM– gene expression signatures (i.e., the additional number of molecules expressed for each gene if a cell belongs to the SCM+ or SCM–

group). For each gene, the group-specific expression in SCM+ and SCM– cells as well as the difference between both groups is shown (median number of

molecules).
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established SCM+ populations are mostly linked to the spatial

axis (Figure S7K).

Comparison of Signaling Pathway, Cell Adhesion, and
ECM Components across All Epidermal Subpopulations
The identification of 25 distinct (sub-) populations in telogen

epidermis enabled direct comparisons of gene expression

patterns across all these cell populations. For epidermal

homeostasis, firm regulation of signaling pathway activation,

niche-component expression, and epigenetic mechanisms are

critically important (Hsu et al., 2014; Mesa et al., 2015; Rompolas

and Greco, 2014; Botchkarev et al., 2012; Botchkarev and

Flores, 2014). Thus, we focused the comparison between sub-

populations on six epidermal key pathways (Wnt, Hedgehog

[Hh], NF-kB, Notch, Bmp, and Tgf-b), cell adhesion and ECM

components (Figures 7A–7C), and components of the epigenetic

machinery (data not shown). Unlike the expression of signaling

pathway and ECM-related genes, the analysis of epigenetic

components did not reveal distinctive expression patterns and

these genes were generally expressed at relatively low levels

throughout the epidermis.

Markedly, in the Wnt, Hh, Bmp, and Tgf-b signaling pathways

we observedmost heterogeneity in the expression of ligands, re-

ceptors, and their corresponding modulators, whereas their

intracellular pathway components were expressed relatively

evenly across all subpopulations with a few exceptions such

as Gli1 expression indicating active Hedgehog signaling in outer

bulge subpopulations (Brownell et al., 2011). Notch pathway

components were generally expressed in all subpopulations,

with exception of Jag2, which was detected over baseline only

in the most basal layers of the IFE and the bulge. Interestingly,

there seemed to be a trend of a receptor-ligand division between

IFE and HF, most evident in the Wnt and Tgf-b pathways. Wnt li-

gands for example showed higher expression in the IFE basal

layer while Wnt receptors were predominantly expressed in HF

populations.

While the expression of signaling pathway genes diverged pri-

marily along the spatial axis, genes linked to different types of

cell-cell and cell-ECM junctions showed a strong heterogeneity

along the differentiation axis. As expected, genes linked to focal

adhesion and hemidesmosome formation were highest ex-

pressed in basal populations irrespective of location, while the

formation of tight junctions, adherens junctions, gap junctions,

and desmosomes was increased in all suprabasal populations.

Among ECM genes, we observed functional division between

gene sets linked to a pan-basal state and niche/location related

gene signatures. While collagen Col17a1, a subset of glycopro-

teins (Agrn, Fcgbp) and most laminins (Lama3, Lama5, Lamb2,

Lamc2) were expressed at equally high levels across all basal

keratinocytes, the majority of ECM genes exhibited a spatial

expression corresponding to the pseudospace-related expres-

sion patterns identified in Figure 4C.

Overall, these comparisons demonstrated the utility of the

transcriptional data of murine epidermis generated within this
Figure 7. Functional Signatures Expressed in Epidermal Subpopulatio

(A–C) Expression of genes linked to signaling pathways (A), cell adhesion (B), and e

population (defined in either first- or second-level clustering). Shown is the med

regression model).
study, and with the accompanying online tool (http://kasperlab.

org/tools or http://linnarssonlab.org/epidermis/) we hope to

inspire and enable additional studies in skin biology by using

this in-depth single-cell resource.

DISCUSSION

We generated a large resource of single-cell gene expression

profiles from murine keratinocytes and used it to dissect

epidermal heterogeneity. Four major novelties and highlights of

this study are discussed in the following sections.

Identification of Previously Unidentified Epidermal
Subpopulations in IFE and the HF
Two cycles of unsupervised clustering, using all cells or subsets

of cells, revealed an apparent transcriptional hierarchy between

populations (main clusters) and their subpopulations in the

epidermis. The 13 main clusters reflected the major IFE differen-

tiation stages and three broad spatial compartments of the HF

(upper HF, outer bulge, and inner bulge) and were grouped

according to their compartments and functions supporting com-

partmentalized HFmaintenance (Schepeler et al., 2014). Surpris-

ingly, our unbiased clustering (first and second level) failed to

demarcate several previously described cell populations, such

as Gli1+ or Lgr5+ cells in the lower bulge, Lgr6+ cells of the

isthmus, and the Lrig1+ cells in the infundibulum (Table S3)

(Brownell et al., 2011; Füllgrabe et al., 2015; Jaks et al., 2008;

Jensen et al., 2009; Snippert et al., 2010). Instead, we found

that each of these marker-based populations encompassed

several subpopulations that were defined in this study. In conse-

quence, although expression of these marker genes has been

very useful as genetic tools to study general cell and lineage dy-

namics during HF maintenance (Jaks et al., 2010; Kretzschmar

and Watt, 2014), these markers are not well suited for defining

transcriptionally homogenous populations.

Many of the subpopulations we identified have been previ-

ously described using immunostaining, lineage tracing or cell-

sorting based transcriptional profiling (e.g., Blanpain et al.,

2004; Brownell et al., 2011; Füllgrabe et al., 2015; Jaks et al.,

2008; Jensen et al., 2009; Snippert et al., 2010; Veniaminova

et al., 2013). However, the clustered single-cell transcriptomes

of this study yielded more ‘‘pure’’ transcriptional signatures

compared to marker-based sorting strategies and thus allowed

for amore precisemolecular characterization of subpopulations.

In addition, we describe several populations that have not been

previously identified, have not been described in molecular

terms or were only assumed to exist (Table S3). For example,

we found two basal subpopulations in the IFE that neither repre-

sented the previously described Ivl+ or Lgr6+ populations (Füll-

grabe et al., 2015; Mascré et al., 2012). Future studies are

needed to resolve whether these two IFE populations represent

coexisting cell populations of closed lineages or reflect certain

stromal microenvironments or different differentiation stages.

Moreover, we found a group of cells in the HF with simultaneous
ns

xtracellular matrix and basementmembrane constituents (C) in each epidermal

ian number of molecules expressed in each cell population (negative binomial
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expression of outer bulge (OB) and inner bulge (IB) signatures,

which could be placed in the OB. IB cells have the important

role to keep OB cells quiescent, until inductive hair growth sig-

nals from the dermal papilla stimulate proliferation of lower bulge

and hair germ cells in a gradient fashion (Greco et al., 2009; Hsu

et al., 2011). Given that in principle all OB cells are competent to

enter cell cycle upon damage (Hsu et al., 2011) yet only a subset

does during homeostatic hair growth, some cells may have an

extra safety mechanism to counteract cell-cycle entry during

early anagen by autocrine expression of inhibitory IB signals

such as Fgf18.

We also identified two populations lining the opening of the SG

with a remarkably high expression of the defensin Defb6. Defen-

sins are small cysteine-rich cationic proteins and function as

host defense peptides (Gallo and Nakatsuji, 2011 and references

therein). The strategic placement of these two populations at the

SG opening, where sebum is released to grease the entire

epidermis, indicates DEFB6 as critical in protecting the HF bulge

against microorganisms (Chronnell et al., 2001). Elucidating the

function of these cells in the context of epidermal physiology

will be an interesting topic for future studies.

Transcriptional Resolution of the Differentiation and
Proximal-Distal Axis
While our reconstruction of IFE differentiation did not challenge

the accepted three-tier model, which postulates a differentiation

trajectory from the basal layer over maturation in the spinous

layer toward terminal differentiation in the granular layer, we

found transient cell states, which are nearly unresolvable with

bulk cell methods. Intriguingly, we observed a dramatic tran-

scriptional change along the differentiation axis between gene

groups I and III (Figure 3C). It is tempting to speculate whether

this change indicates a point of no return along the differentiation

trajectory, so that all basal cells—before reaching this point—are

to some extent plastic and can provide long-term renewal

capacity, although their likelihood to give rise to a long-term sur-

viving clone declines as they move further along the differentia-

tion axis.

Most of the HF subpopulations expressed large sets of genes

associated with a distinct differentiation stage and could be

positioned along the IFE differentiation axis. To what extent HF

and IFE subpopulations share differentiation programs needs

further analysis, but these results are indicative of a general

pan-differentiation program for keratinocytes with only a few

exceptions: SG-related cells and one inner bulge cell cluster

(IB I). Most interesting in this regard are the IB I cells. These

cells originate from one of the outer bulge populations, relocate

during anagen to the lower part of the growing HF, and home

back to the bulge in the following catagen-telogen transition to

function as proliferation-inhibitory bulge-niche cells (Hsu et al.,

2011). The fact that IB I cells could not be placed along the

axis of the pan-differentiation program raises the question of

whether anagen growth uses an entirely different differentiation

program compared to keratinocytes of the non-cycling part of

the HF.

Applying a similar strategy as for the reconstruction of the dif-

ferentiation trajectory (Trapnell et al., 2014), we observed that the

basal cells can be aligned along a continuous trajectory reflect-

ing the proximal-distal HF axis. Recent lineage-tracing studies
234 Cell Systems 3, 221–237, September 28, 2016
suggest compartmentalized maintenance of the HF, implying

that ‘‘invisible’’ borders keep cells within their compartments

and compartments separated (Schepeler et al., 2014). The

reconstruction of a continuous profile along the spatial axis,

however, requires that cells have gradually overlapping sets of

genes along the entire HF axis. Thus, it is tempting to speculate

whether this feature is important for the extraordinary plasticity

of HF cells, reflected in their ability to replace each other upon

damage, and take over the role and functions of the replaced

cells (Donati and Watt, 2015). For example, isthmus as well as

hair germ cells can directly repair bulge cell damage (Rompolas

et al., 2013). During wound repair, HF cells are recruited to the

IFE and can even convert to permanent progenitors of the IFE

epidermis (Ito et al., 2005; Kasper et al., 2011; Levy et al.,

2005; Page et al., 2013), but contribution in the opposite direc-

tion to damaged existing HFs has, to our best knowledge, never

been reported. In concordance, all HF cells expressed typical

IFE signature genes, but IFE cells did not express HF-specific

genes. The overlapping expression signatures along the spatial

axis do not exclude the existence of compartmental borders dur-

ing homeostasis, established, for example, by a few critical pro-

teins, but may explain the rapid cellular adaptability of epidermal

cells upon damage (Rompolas and Greco, 2014; Takeo et al.,

2015), because only a small number of additional genes is neces-

sary for a cell to adjust to a new environment.

A Quantitative Model to Explain Tissue Heterogeneity
The transcriptional differences between most subpopulations

of keratinocytes could be quantitatively modeled and recon-

structed using only the differentiation and spatial signatures.

The only exceptions were Defb6+ cells around the SG opening

(uHF I and uHF II), which exhibited a unique signature and

gene expression patterns of their spatial niche but no pattern

of pan-keratinocyte differentiation, and mature SG cells,

T cells, and Langerhans cells that only expressed cell-type-

associated gene expression signatures. That keratinocyte popu-

lations and cellular heterogeneity can effectively be modeled

using only two continuous signatures represents unique quanti-

tative insights into cellular heterogeneity, and it will be interesting

to investigate the universality of this model for other cell types in

other tissues.

Comparison of Epidermal Stem Cell Populations
Finally, we compared basal cells with and without expression of

reported stem and progenitor cell markers in an effort to identify

a ‘‘stemness’’ gene expression signature. Interestingly, no

unique gene expression signature was found in cells expressing

these markers. Instead, our results suggest that long-term self-

renewing cells in the IFE and the HF do not have a distinct stem-

ness signature other than having a strong basal signature in

common, whereas they differ in expression of spatial signatures

relating to their location. Altogether, the capacity for long-term

self-renewal in the IFE and HF might not require a stemness

gene expression signature (Clevers, 2015), but stem cell function

might rather coincide with the ability of cells to maintain or

occupy certain spatial positions within a tissue and the ability

to attach to the basement membrane.

In summary, our reference atlas of transcriptionally distinct

cells in the murine epidermis and online tools for custom data



visualization and querying will enable deeper inquiries into the

physiology of the skin.
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with immunohistochemistry and mice and Anna Juréus for help with RNA
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Picelli, S., Björklund, Å.K., Faridani, O.R., Sagasser, S., Winberg, G., and

Sandberg, R. (2013). Smart-seq2 for sensitive full-length transcriptome

profiling in single cells. Nat. Methods 10, 1096–1098.

Rompolas, P., and Greco, V. (2014). Stem cell dynamics in the hair follicle

niche. Semin. Cell Dev. Biol. 25-26, 34–42.

Rompolas, P., Mesa, K.R., and Greco, V. (2013). Spatial organization within a

niche as a determinant of stem-cell fate. Nature 502, 513–518.

Sandberg, R. (2014). Entering the era of single-cell transcriptomics in biology

and medicine. Nat. Methods 11, 22–24.

http://refhub.elsevier.com/S2405-4712(16)30265-4/sref16
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref16
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref17
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref17
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref17
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref17
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref18
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref18
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref18
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref18
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref18
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref19
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref19
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref20
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref20
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref20
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref21
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref21
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref21
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref22
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref22
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref23
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref23
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref23
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref24
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref24
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref24
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref24
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref25
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref25
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref26
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref26
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref27
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref27
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref27
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref28
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref28
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref28
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref29
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref29
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref29
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref30
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref30
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref31
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref31
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref31
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref31
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref32
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref32
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref32
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref33
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref33
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref33
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref34
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref34
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref34
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref34
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref35
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref35
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref35
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref36
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref36
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref36
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref37
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref37
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref37
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref37
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref38
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref38
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref38
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref39
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref39
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref39
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref39
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref40
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref40
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref40
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref41
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref41
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref41
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref41
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref42
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref42
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref42
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref42
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref43
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref43
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref43
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref43
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref44
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref44
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref44
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref45
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref45
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref45
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref46
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref46
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref46
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref46
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref47
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref47
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref48
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref48
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref49
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref49
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref49
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref49
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref49
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref50
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref50
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref50
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref51
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref51
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref51
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref52
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref52
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref52
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref53
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref53
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref53
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref54
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref54
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref55
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref55
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref56
http://refhub.elsevier.com/S2405-4712(16)30265-4/sref56


Sato, F., Kawamoto, T., Fujimoto, K., Noshiro, M., Honda, K.K., Honma, S.,

Honma, K., and Kato, Y. (2004). Functional analysis of the basic helix-loop-

helix transcription factor DEC1 in circadian regulation. Interaction with

BMAL1. Eur. J. Biochem. 271, 4409–4419.

Schepeler, T., Page, M.E., and Jensen, K.B. (2014). Heterogeneity and plas-

ticity of epidermal stem cells. Development 141, 2559–2567.

Schult, D.A., and Swart, P.J. (2008). Exploring network structure, dynamics,

and function using NetworkX. Proceedings of the 7th Python in Science

Conference (SciPy2008).

Snippert, H.J., Haegebarth, A., Kasper, M., Jaks, V., van Es, J.H., Barker, N.,

van de Wetering, M., van den Born, M., Begthel, H., Vries, R.G., et al. (2010).

Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the

skin. Science 327, 1385–1389.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L.,

Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and

Mesirov, J.P. (2005). Gene set enrichment analysis: A knowledge-based

approach for interpreting genome-wide expression profiles. Proc. Natl.

Acad. Sci. USA 102, 15545–15550.

Takeo, M., Lee, W., and Ito, M. (2015). Wound healing and skin regeneration.

Cold Spring Harb. Perspect. Med. 5, a023267.

Tan, D.W.M., Jensen, K.B., Trotter, M.W.B., Connelly, J.T., Broad, S., and

Watt, F.M. (2013). Single-cell gene expression profiling reveals functional het-

erogeneity of undifferentiated human epidermal cells. Development 140,

1433–1444.

Toufighi, K., Yang, J.-S., Luis, N.M., Aznar Benitah, S., Lehner, B., Serrano, L.,

and Kiel, C. (2015). Dissecting the calcium-induced differentiation of human

primary keratinocytes stem cells by integrative and structural network ana-

lyses. PLoS Comput. Biol. 11, e1004256.
Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M.,

Lennon, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics

and regulators of cell fate decisions are revealed by pseudotemporal ordering

of single cells. Nat. Biotechnol. 32, 381–386.

Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W.E., Rendl, M., and

Fuchs, E. (2004). Defining the epithelial stem cell niche in skin. Science 303,

359–363.

Van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE.

J. Mach. Learn. Res. 9, 2579–2605.

Veniaminova, N.A., Vagnozzi, A.N., Kopinke, D., Do, T.T., Murtaugh, L.C.,

Maillard, I., Dlugosz, A.A., Reiter, J.F., and Wong, S.Y. (2013). Keratin 79 iden-

tifies a novel population of migratory epithelial cells that initiates hair canal

morphogenesis and regeneration. Development 140, 4870–4880.

Wang, X., Pasolli, H.A., Williams, T., and Fuchs, E. (2008). AP-2 factors act in

concert with Notch to orchestrate terminal differentiation in skin epidermis.

J. Cell Biol. 183, 37–48.

Yee, T.W. (2010). The VGAM package for categorical data analysis. J. Stat.

Softw. 32, 1–34.

Zeeuwen, P.L.J.M., van Vlijmen-Willems, I.M.J.J., Hendriks, W., Merkx,

G.F.M., and Schalkwijk, J. (2002). A null mutation in the cystatin M/E gene of

ichq mice causes juvenile lethality and defects in epidermal cornification.

Hum. Mol. Genet. 11, 2867–2875.
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Antibodies

Rat monoclonal anti-CD3 BioLegend Cat#100201

Rat monoclonal anti-CD34 eBioscience Cat#14-0341

Rat monoclonal anti-CD207 eBioscience Cat#14-2073

Goat polyclonal anti-COX-1 (PTGS1) Santa Cruz Cat#sc-1754; RRID: AB_2245319

Rabbit polyclonal anti-EGFP Thermo Fisher Cat#A-11122; RRID: AB_2576216

Rabbit polyclonal anti-KI67 Novocastra Cat#NCL-Ki67p

Goat polyclonal anti-KLK10 Santa Cruz Cat#sc-20386

Rabbit polyclonal anti-KRT6 Covance Cat#PRB-169P; RRID: AB_10063923

Rabbit polyclonal anti-KRT10 Covance Cat#PRB-159P; RRID: AB_291580

Rabbit polyclonal anti-KRT14 Covance Cat#PRB-155P; RRID: AB_292096

Mouse monoclonal anti-KRT15 Abcam Cat#ab2414

Rabbit monoclonal anti-KRT17 Cell Signaling Cat#4543

Goat polyclonal anti-KRT79 Santa Cruz Cat#sc-243156

Rabbit polyclonal anti-LOR Covance Cat#PRB-145P

Goat polyclonal anti-MGST1 Santa Cruz Cat#sc-17003; RRID: AB_2143472

FISH probes

Cd34 Advanced Cell Diagnostics Cat#319161-C2

Cst6 Advanced Cell Diagnostics Cat#436181

Flg2 Advanced Cell Diagnostics Cat#430131

Gli1 Advanced Cell Diagnostics Cat#311001

Krt10 Advanced Cell Diagnostics Cat#457901

Krt79 Advanced Cell Diagnostics Cat#436201-C2

Lgr5 Advanced Cell Diagnostics Cat#312171-C2

Lgr6 Advanced Cell Diagnostics Cat#404961 / Cat#404961-C2

Lrig1 Advanced Cell Diagnostics Cat#310521

Thbs1 Advanced Cell Diagnostics Cat#457891

Postn Advanced Cell Diagnostics Cat#418581

Chemicals, Peptides, and Recombinant Proteins

Agencourt AMPure XP Beckman Coulter Cat#A63880

Defined Keratinocyte-SFM (1X) Thermo Fisher Cat#10744019

DNase I Solution (1 mg/ml) Stem Cell Technologies Cat#07900

Dynabeads MyOne Streptavidin C1 Thermo Fisher Cat#65001

Minimum Essential Medium Eagle

-Spinner modification

Sigma-Aldrich Cat#M8167

PvuI-HF NEB Cat#R3150S

Qiaquick Buffer PB QIAGEN Cat#19066

Trypsin solution from porcine pancreas Sigma-Aldrich Cat#T4424

Critical Commercial Assays

Anti-Sca-1 MicroBead Kit (FITC), mouse Miltenyi Biotec Cat#130-092-529

C1 Single-Cell Auto Prep IFC for mRNA Seq (10 – 17 mm) Fluidigm Cat#100-6041

KAPA Library Quantification Kit KAPA Biosystems Cat#07960140001

RNAscope Fluorescent Multiplex Reagent Kit Advanced Cell Diagnostics Cat#320850

(Continued on next page)

e1 Cell Systems 3, 221–237.e1–e9, September 28, 2016



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw data files for RNA sequencing NCBI GEO GSE67602

Scripts and computational analysis workflow Kasper Lab https://github.com/kasperlab

Online tool for visualization of single-cell data Kasper Lab

Linnarsson Lab

http://kasperlab.org/tools

http://linnarssonlab.org/epidermis/

Systematic staining catalog Kasper Lab http://kasperlab.org/data

Experimental Models: Organisms/Strains

Mouse: C57BL/6J Charles River JAX: 000664

Mouse: Lgr5-EGFP-Ires-CreERT2 Jackson Laboratory JAX: 008875

Software and Algorithms

MSigDB Subramanian et al., 2005 http://www.broadinstitute.org/gsea/msigdb/

index.jsp

NetworkX Schult and Swart, 2008 https://networkx.github.io/

scikit-learn Pedregosa et al., 2011 http://scikit-learn.org/

VGAM Yee, 2010 https://cran.r-project.org/web/packages/

VGAM/index.html

mManager Edelstein et al., 2014 http://micro-manager.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents or computational resources may be directed to, and will be fulfilled by the correspond-

ing author Maria Kasper (maria.kasper@ki.se).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All experiments were performed on female C57BL/6 mice. The mice were fed ad libitum, and handled and housed under standard

conditions in the animal facility of Karolinska University Hospital Huddinge. All mouse experiments were performed in accordance to

Swedish legislation and approved by the Stockholm South Animal Ethics Committee. Mice were sacrificed in the second telogen and

hair cycle stages were determined by staining dorsal skin sections for Ki67 as described previously (Greco et al., 2009; Müller-Röver

et al., 2001). Mice that showed signs of early anagen were excluded from this analysis. Cells from n = 19 mice were included in the

final dataset.

METHOD DETAILS

Cell Isolation
Full epidermal cells were isolated as described previously (Jaks et al., 2008). In brief, clipped and disinfected dorsal skin was isolated,

dermal and adipose tissue was removed, and stripes of skin were floated on trypsin for 2 hr at 32�C. Epidermal tissue was subse-

quently scraped into S-MEM / 1%BSA and single cells were isolated bymagnetic stirring at 120 rpm for 25min / RT. The resulting cell

suspension was filtered through 70 mm and 40 mm cell strainers, resuspended in Defined Keratinocyte Serum-free Medium without

supplement (DK-SFM), and SCA-1+ and SCA-1� cells were separated using Anti-SCA-1-FITC magnetic beads according to the

manufacturer’s instructions. Cells were stored on ice in DK-SFM with 0.1 mg/ml DNase I until capturing. Before capturing, the cell

suspension was carefully resuspended and two times passed through a 20 mm cell strainer.

From each experimental mouse, mid-dorsal skin pieces (ca. 0.53 0.5 cm) were paraffin-embedded for hair cycle staging and re-

mapping of marker genes.

Cell Capturing, Quality Control, and Single-Cell cDNA Synthesis
Epidermal cells were captured on amediummicrofluidic chip (designed for cells from 10 mm– 17 mm) using the Fluidigm C1 Autoprep

System. 14 ml filtered cell suspension (�750 cells / ml in DK-SFMwith DNase I) was mixed with 6 ml C1 Suspension Reagent and 14 ml

were loaded onto the chip. Single-cells were then captured for 30 min at 4�C using the ‘‘Cell Load (1772x/1773x)’’ script. Capturing

efficiency was evaluated on aNikon TE2000E automatedmicroscope and both bright field and SCA1-FITC images of every capturing

position were taken using mManager. Before proceeding with the tagmentation step, each capture site was manually inspected and

only capture sites containing single, healthy cells were processed.
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Following the image acquisition, STRT-C1 Lysis, RT and PCR mix was added as previously described (Islam et al., 2014), and the

‘‘RT + AMP (1772x/1773x)’’ script was executed. After the cDNA synthesis had been finished (�8.5 h), the amplified cDNA was har-

vested with 13 ml Harvest Reagent and cDNA quality was measured on an Agilent BioAnalyzer.

Tagmentation and Isolation of 50 fragments
The amplified cDNAwas fragmented and barcoded using Tn5DNA transposase (‘tagmentation’) as described previously (Islam et al.,

2014). 100 ml Dynabeads MyOne Streptavidin C1 beads were washed in 2x BWT, resuspended in 2 ml 2x BWT, and 20 ml washed

beads were added to each well. After 15 min incubation at room temperature, all wells were pooled, the beads were immobilized

on a magnet, and the supernatant (containing all internal cDNA fragments) was removed. The beads were resuspended in 100 ml

Tris-NaCl-Tween (TNT), washed once in 100 ml Qiaquick PB, and then washed twice in 100 ml TNT. The beads were subsequently

incubated in 100 ml restriction mix (1x NEB CutSmart, 0.4 U/ml PvuI-HF enzyme) for 1 hr at 37�C to cleave 30 fragments which carry

a PvuI recognition site. Afterward, the beads were washed three times in TNT, then resuspended in 30 ml ddH2O and incubated for

10 min at 70�C to elute the DNA. To remove short fragments, AMPure beads were used at 1.8 x volume and eluted in 30 ml.

Illumina High-Throughput Sequencing and Processing of Sequencing Reads
The molar concentrations of the libraries were quantified with KAPA Library Quant qPCR and fragment lengths were determined us-

ing a reamplified (12 cycles) sample on a BioAnalyzer. Sequencing was performed on an Illumina HiSeq 2000 with C1-P1-PCR2 as

read 1 primer and C1-TN5-U as index read primer. Reads of 50 bp as well as 8 bp index reads corresponding to the cell-specific

barcodes were generated. Each read was expected to start with a 6 bp unique molecular identifier (UMI), followed by 3-5 guanines

and the 50 end of the mRNA. Reads were processed as described previously (Islam et al., 2014) except that we removed any mRNA

molecule (i.e., UMI) supported by only a single read.

Yield and Quality of Sequencing
Sequencing yielded around 25 million mapped reads per C1 chip (793 million mapped reads and 26 million sequenced molecules in

total) and around 0.55 million mapped reads per cell after quality control (Figures S1G – S1I). Each unique mRNA molecule was de-

tected 18 times on average during the sequencing indicating sufficient sequencing depth (Figures S1J – S1K). Measurement of RNA

spike-in standards indicates strong uniformity between experiments and a sequencing efficiency of 20 - 30 % (Figures S1L – S1N).

Systematic Staining of All Populations by Immunohistochemistry and Single Molecule FISH
The existence and spatial location of the 25 populations and subpopulations defined during 1st and 2nd level clustering were

confirmed and determined by antibody staining and/or single-molecule mRNA FISH (FISH) (see Table S7). One subpopulation

(uHF III) could not be shown via positive marker staining because this population did not express unique genes in comparison to

the other populations, but it formed its own cluster due to the lack of genes. Since all other 24 clusters of cells could be verified,

we expect that this population represents a true population and is likely positioned in the SG canal (placed by staining exclusion).

The following antibody dilutions were used: CD3 (1:100), CD34 (1:50), CD207 (1:50), COX-1 (PTGS1) (1:50), EGFP (1:500), Ki67

(1:2000), KLK10 (1:50), KRT6 (1:250), KRT10 (1:250), KRT14 (1:250), KRT15 (1:50), KRT17 (1:100), KRT79 (1:50), LOR (1:200),

MGST1 (1:50). Cd34, Cst6, Flg2, Gli1, Krt10, Krt79, Lgr5, Lgr6, Lrig1, Thbs1, and Postn mRNA were visualized by FISH using the

RNAscope Fluorescent Multiplex Kit (Advanced Cell Diagnostics, Inc.) according to the manufacturers instructions. Please note

that the used FISH protocol was in our hands less sensitive compared to our single-cell RNA-seq data and thus for lower expressed

genes only few dots can be expected. According to our negative controls, and the manufacturers description, approx. one false pos-

itive signal can occur in one out of 10 cells.

Both, antibody and FISH stainings were performed on formalin-fixed, paraffin-embedded (FFPE) sections of dorsal skin isolated

from the same animals that were used for the single-cell sequencing. The only exception was staining for anti-EGFP, which was per-

formed on dorsal skin of 8 week old Lgr5-EGFP-Ires-CreERT2 mice using horizontal whole mount staining (Füllgrabe et al., 2015).

Images were acquired on either a LSM710-NLO confocal microscope (Zeiss) or a Nikon A1R confocal microscope.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis and Visualization of Processed Sequencing Data
The following section describes the data analysis approach employed in this study both in general terms (1-7) and with specific de-

tails referring to distinct steps in the analysis process (8). To ensure complete transparency and facilitate reproduction, the complete

code used in this study is available online (see Key Resources Table).

(1) Implementation
Analysis and visualization of data were performed in a Python environment built on the NumPy, SciPy, matplotlib, and pandas li-

braries. Affinity propagation and t-SNE used implementations available in the scikit-learn package (Pedregosa et al., 2011). Graphs

were drawn using the NetworkX package (Schult and Swart, 2008). Cubic spline smoothing and likelihood ratio tests were performed

using the VGAM package (Yee, 2010), which was accessed via Rpy2. The custom made scripts used for this analysis are available

online (see Key Resources Table).
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(2) Unsupervised Clustering Using Affinity Propagation
(a) Feature Selection

To filter out genes before affinity propagation (AP) clustering, all genes with an average expression below a specified cut-off and/or

those with less than five highly correlated neighbors were excluded. Two genes were defined as highly correlated if their correlation

value (Pearson r) was within the top 5% of all gene-gene correlation values within the whole dataset. The remaining genes were used

to fit a noise model as

log2ðCVÞ= log2ðmeana + kÞ;
where CV is a gene’s coefficient of variation and mean its average. The 2,500 genes that showed the largest difference between

observed CV and CV as predicted by the noise model were used as features for AP clustering.

(b) Affinity Propagation Clustering

Cell populations were defined using AP, a recently introduced approach for unsupervised clustering (Frey and Dueck, 2007). To

ensure robustness toward differences in total gene expression between cells, Pearson correlation of log2-transformed data was

used as distance metric for the clustering. To facilitate the visualization of clustered data as heatmaps and barplots, the cells / genes

within the AP-defined clusters were brought into one-dimensional order based onWard’s linkage. While mathematical aspects such

as the highest possible reduction of variance within clusters were taken into consideration when selecting the clustering parameters

preference and damping, parameter choice was mainly based on subjective measures of clustering performance.

(c) Evaluation of Clustering Robustness

To evaluate robustness of AP clustering, a resampling approach was used, where 25% of cells were removed from the dataset at

random. The remaining cells were reclustered using the same parameters as for the main clustering and the percentage of cells

in each defined group that remain clustered together was determined. In order to measure the background distribution (i.e., the per-

centage of cells which remain together by pure chance), the group labels were randomly permutated. Both the resampling and the

label permutation were repeated 100 times.

(3) Nonlinear Dimensionality Reduction with t-Distributed Stochastic Neighbor Embedding
Dimensionality reduction to two dimensions for visualization purposes and as input for pseudotemporal/-spatial ordering was per-

formed using t-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton, 2008). In most cases, a perplexity

value between 20 and 25, an early exaggeration value of 2.0 – 3.0 and a learning rate of 1,000 were used.

(4) Negative Binomial Regression of Gene Expression
(a) Model Description

To assign expression of a gene to a cell population, a Bayesian general linear model (GLM) was used as described elsewhere (Zeisel

et al., 2015). In such amodel, it is assumed that the outcome (i.e., themeasured expression of a gene in a population) is sampled from

a distribution whose mean is determined by a linear combination of K predictors xi with coefficients bi. Therefore,

m=
XK
k =1

bkxkðk˛½1;K�Þ

For each cell, the outcome and predictors are known and we aim to determine the values of the coefficients.

As predictors, we use aBaseline predictor and a binaryCell Type predictor. As we expect every gene to have a baseline expression

proportional to the total number of expressedmolecules within a particular cell, theBaseline predictor value is set as a cell’s molecule

count normalized to the average molecule count of all cells. Meanwhile, the Cell Type predictor is set to 1 if a cell is included in a

particular cell population cluster or a pseudospace / pseudotime bin. In consequence, the coefficient bk for a Cell Type predictor

xk represents the additional number of molecules of a particular gene that are present if a cell is member of a particular cell type.

As real count data is usually overdispersed when compared to an ideal Poisson distribution, we used a negative binomial distri-

bution, which can be represented as a Gamma distribution of Poisson distributions, for our model. Therefore, if y is the observed

count,

y � PoissonðlÞ
l � Gammaða;bÞ
with mean m = ab and standard deviation s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðab=1+bÞp ð1+bÞ.
As the standard deviation roughly scales as the square root of themean, it can be described as s= r

ffiffiffi
m

p
with overdispersion factor r.

Hence,

a=
m

r2 � 1
b= r2 � 1:
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By attaching prior distributions to the overdispersion factor r and the coefficients bk, we acquire a full Bayesian negative binomial

regression model, with

m=
XK
k = 1

bkxk
y j l � PoissonðlÞ
�

l �m; r � Gamma

� m

r2 � 1
; r2 � 1

�

r � Cauchyð0;1Þ
bk =Paretoð0;1:5Þ:
The model was implemented in STAN. A more detailed explanation of the model is provided elsewhere (Zeisel et al., 2015).

(b) Calling Genes That Are Specifically or Uniquely Expressed in Groups / Predictors

To define whether a gene can be considered specifically expressed in a particular cell population, we compared the posterior prob-

ability distributions of the Baseline coefficient and theCell Type coefficient. A gene was considered activated in a cell population if its

class-specific coefficient exceeded the Baseline coefficient with a specified posterior probability. In order to be defined as uniquely

expressed in a particular cell population, a gene’s Cell Type coefficient had to exceed all other Cell Type coefficients as well as the

Baseline coefficient with a specified posterior probability. The posterior probability cut-off at which genes were considered specif-

ically or uniquely expressed was set at 99.9% for the regression model of the 1st level clustering and to 95% for all other regression

models.

(c) Evaluating the Exploratory Quality of Regression Models

In order to evaluate how well a regression model explains the data, a simulated dataset was sampled from the model and compared

to the observed data. In particular, for every gene and predictor xk in the model, values were randomly sampled one hundred times

from the posterior probability distribution of each coefficient bk and subsequentlymultipliedwith the predictormatrix used as input for

the model. The resulting dataset contains the simulated expression data of g genes in m cells over K predictors. These data were

subsequently summarized including either all or a subset of predictors and compared to the observed data. For each gene, the num-

ber of ‘explained’ (molecules both found in the observed and the simulated data), ‘underexplained’ (molecules found in the observed

but not the simulated data) and ‘overexplained’ (molecules found in the simulated but not the observed data) molecules was deter-

mined. Data-model comparison occurred either on a single-cell level, a group level (for each gene, the number of molecules in the

observed and simulated data were pooled between all cells within a group, thus averaging in-group noise) or a whole-dataset level

(for each gene, the number of molecules in the observed and simulated data were pooled between all cells in the dataset).

(5) Pseudotemporal/-Spatial Ordering of Cells
(a) Bringing Cells into Pseudotemporal/-Spatial Order

Spatial and temporal ordering is based on the same analytical method and only distinguished by the input of cells (differentiating cells

of the IFE for pseudotime; basal cells of HF and IFE for pseudospace). The pseudotemporal/-spatial ordering of IFE/basal cells is

following a graph-based approach that was recently introduced byMagwene et al., 2003 and Trapnell et al., 2014. In brief, aminimum

spanning tree (MST) is constructed between cells, which are defined by their position in – dimensionality-reduced – space. The

longest path through the MST, called the diameter path, is subsequently defined and a PQ tree encoding all paths through the graph

(or orderings of cells) under the constraints of the diameter path is constructed. The PQ tree is subsequently screened for orderings of

cells that minimize the total traveling distance. While we generally follow the approach introduced by Trapnell et al., 2014 we diverge

in several points. Since linear dimensionality reduction approaches such as PCA or ICA were insufficient to resolve and visualize the

differentiation and spatial trajectories in the dataset, we used the nonlinear t-SNEmethod for dimensionality reduction and construc-

tion of the MST. Due to the high number of single cells included in our analysis (536 IFE cells and 486 basal cells) and due to a relative

high level of noise, we furthermore did not consider all permutation emitted from the PQ. Instead, we restricted the number of order-

ings based on local optima derived from subsets of the graph.

(b) Testing the Robustness of Pseudotemporal or Pseudospatial Ordering

To test the robustnessof the pseudotemporal/-spatial ordering,we (1) compared the results to orderings gainedwithout any dimension-

ality reductionand (2) employeda resamplingapproach.During the resampling,weeithercompared the resultsofonehundredorderings

gained fromdifferent initial t-SNEplots to our initial results to evaluate robustness against randomness in the dimensionality reduction or

we randomly discarded 25%of cells from the dataset for one hundred times and compared the resulting ordering to our initial results to

test for robustness against small changes in composition of the dataset. As negative control, we randomly shuffled cell labels.

(c) Modeling Gene Expression over Pseudospace/-Time and Calling Pseudospace/-Time-Dependent Genes

To model gene expression changes in dependency of pseudotime or pseudospace, a cubic smoothing spline with five effective

degrees of freedom was fitted to the ordered expression data of all genes in the IFE or basal dataset which showed an average
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expression > 0.1 molecules. Pseudospace/-time dependency of gene expression was subsequently tested by comparing the spline-

smoothed model to a pseudospace/-time-independent restricted model using the approximate likelihood ratio test. We considered

all genes with a p-value below the Bonferroni-corrected significance level a = 0.001 to be pseudotime- or pseudospace-dependent.

To visualize the expression patterns of all pseudotime- or pseudospace dependent genes and to perform gene set enrichment anal-

ysis, spline smoothed gene expression data was clustered using AP as described above. Genes within each cluster were ordered

according to expression peak or onset of induction (defined as point in pseudospace/pseudotime where the expression of a gene

exceeds 50% of the peak expression).

(d) Positioning Cells in Pseudospace/-Time

To link single cells not included in the model to a specific place in pseudotime or pseudospace, the expression data of g

pseudospace/-time dependent genes in a particular cell M is correlated to all points in the fitted model (which contains the

spline-fitted expression data of g pseudospace/-timespace-dependent genes over t points in pseudospace/-time) and the point

with the highest Pearson r is returned.

To evaluate howwell a particular cell or group of cells fits a pseudospace/-timemodel, we used several qualitative and quantitative

approaches: on the one hand, we analyzed how many pseudospace/-time-dependent genes are expressed in a particular group of

cells. We reasoned that a group of cells which exhibits e.g., features of a certain differentiation stage will express a high number of

genes linked to this particular stage. On the other hand, we consider the p-value of the best fitting cell-to-point correlation a quan-

titative measure of fit. Furthermore, we employed a resampling approach to test the robustness of the correlation. In this approach,

we randomly removed 75% of pseudotime- or pseudospace-dependent genes from the dataset for one hundred times and subse-

quently correlated each single cell to a specific point on the axis as described above. We then measured the average distance of the

correlation points yielded from the reduced dataset to the correlation gainedwith the full dataset.We reasoned that cells which have a

strong pseudotime-/pseudospace signature will be more robust against the resampling of the dataset and will thus show a narrower

spread of correlation points.

(6) Constructing Gene-Gene Neighbor Networks
To construct networks of pseudotime- and pseudospace-dependent genes, we used a shared nearest neighbor approach in com-

bination with the previously described context likelihood of relatedness (CLR) algorithm (Faith et al., 2007). Specifically, we initially

generated a gene-gene correlationmatrix between all selected genes and subsequently usedCLR to transform the correlation values

based on their network context. For each gene, we then selected the n nearest neighbors. We considered two genes to be linked

within the neighbor context if they shared a number R k of nearest neighbors. Graphs were drawn using a force-directed spring

layout with each node representing a gene and each edge connecting two interlinked genes.

In the pseudotime- and pseudospace-gene networks, two genes were considered linked if they shared at least 5 of 25 nearest

neighbors. In the basal gene network, two genes were considered linked if they shared 10 or more of 25 nearest neighbors.

(7) Gene Set Enrichment Analysis
To link gene lists – for instance pseudotime- or pseudospace-dependent genes at particular stages – to potential biological roles, we

queried the Molecular Signatures Database MSigDB using the ‘Investigate Gene Sets’ function (Subramanian et al., 2005). We only

considered gene sets included in the CP, CP:BIOCARTA, CP:KEGG, CP:REACTOME, and BP categories of the dataset and

excluded all matches with an FDR q-valueR0:05. To avoid redundancies, the usually five reported gene sets were selected among

the 20 most significant matches.

(8) Data Analysis Process
(a) Selection of Cells

Cells with less than 2,000 unique molecules were removed from the dataset, leaving 1,422 cells passing the quality criteria.

(b) 1st Level Clustering – AP Clustering

For the 1st level clustering, 2,500 features were selected as described in (2) using a mean expression cut-off of 0.05 molecules over

the whole dataset (1,422 cells). Gene-gene and cell-cell Pearson distances were subsequently calculated and used as input for AP

clustering. To achieve a better resolution of cell populations, gene clusters linked to ribosomal, housekeeping and intermediate early

genes (IEGs) were removed after an initial round of clustering along the gene axis. In summary, 13 distinct cell populations could be

defined during 1st level clustering. Clustering robustness was evaluated as described in (2). Additionally, the AP clustering approach

was compared with unsupervised clustering by backSPIN (Zeisel et al., 2015) with good agreement. A t-SNE representation of the

whole dataset was generated with the same features as used for the AP clustering.

(c) 1st Level Clustering – Negative Binomial Regression

A negative binomial regressionmodel was generated as described in (4) using the 1st level clusters as predictors. The regression was

performed on all genes with an average molecule count R 0.25 over either the whole dataset or within at least one cluster (9,016

genes). Group-specific or –unique genes were called using a 99.9% posterior probability cut-off.

(d) 2nd Level Clustering – Cell Selection

2nd level clustering was performed separately on subsets of cells showing inner bulge (IB), outer bulge (OB), upper HF (uHF), or IFE

basal (IFE B) signatures. Signature genes were identified from the 1st level clustering negative regression model: (1) as genes, which

are only expressed over Baseline in either the IB, OB, uHF, or IFE B cluster(s), or (2) as genes, whose expression in one of these
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clusters exceeds the expression in all other clusters with 99.9% posterior probability. Following the identification of signature genes,

the cumulative expression of the four different signatures was calculated for every cell in the dataset and cut-offs defining whether or

not a single cell expresses a certain signature were specified. To avoid duplication of cells with more than one signature, cells were

assigned to the four groups in the following order of primacy: IB > OB > uHF > IFE B. In this way, 87 IB, 273 OB, 364 uHF and 322 IFE

B cells (from 630 IFE cells) were defined.

(e) 2nd Level Clustering – AP Clustering

From each of the four subsets of the data, features were selected as described in (2) using amean expression cut-off of 0.1molecules

and genes linked to ribosomal, housekeeping and IEG clusters in the 1st level clustering were removed. Due to the considerably lower

signal-to-noise ratios expected in the subpopulations, the selected genes were subjected to a first round of AP clustering and only

clusters of genes that exhibited a strong and coordinated differential expression pattern were used as features for the final clustering

of cells. Using this approach, three, seven, five, and three subclusters of cells were identified in the IB, uHF, OB, and IFE B data

respectively. Clustering robustness was measured as described in (2).

(f) 2nd Level Clustering – Negative Binomial Regression

To perform negative binomial regression on the 2nd level clustering data while still considering the whole dataset, each cell assigned

to the IB, OB, uHF or IFE B subset of the data was grouped according to its 2nd level cluster identity. All remaining cells (e.g., the

immune cells or the cells of the IFE differentiation process which did not show an IFE B or IB/OB/uHF signature) were grouped ac-

cording to 1st level cluster membership. The combination of the 2nd and 1st level clustering data allowed regression with 25 Cell Type

predictors. The regression was performed on all genes with an averagemolecule countR0:25 over either the whole dataset or within

at least one cluster (9,784 genes). Group-specific or –unique genes were called using a 95% posterior probability cut-off.

(g) 1st and 2nd Level Clustering – Robustness towards Replication

To ensure that none of the cell populations defined during 1st and 2nd level clustering is themere result of an experimental or technical

artifact, the robustness of each cluster toward biological replication was analyzed. To this end, the number of cells in each cluster, the

ratio of cells from SCA-1+ and SCA-1� fractions and the number of experimental mice from which the cells in each cluster were

derived was calculated and compared to the number of mice expected by pure chance. To acquire the expected value of mice

for a cell population, nSCA1+ / nSCA1- cells corresponding to the number of SCA-1+ and SCA-1� cells in the population were randomly

sampled from the SCA-1+ and SCA-1� dataset and the total number of mice from which the sampled cells were derived was sub-

sequently calculated. For each population, this sampling was repeated 10,000 times and a p-value was returned.
Population SCA-1+ Fraction Number of Cells Number of Mice Number of Mice if Random p-value

IFE B I 91.5 % 94 / 1422 10 / 19 13.26 0.0048

IFE B II 85.8 % 134 / 1422 14 / 19 16.19 0.0703

INFU B 48.9 % 94 / 1422 18 / 19 18.38 0.4925

IFE D I 45.0 % 140 / 1422 19 / 19 18.83 1

IFE D II 30.9 % 97 / 1422 19 / 19 18.65 1

IFE K I 21.1 % 57 / 1422 15 / 19 17.63 0.0249

IFE K II 35.7 % 14 / 1422 11 / 19 9.91 0.9014

uHF I 9.1 % 33 / 1422 13 / 19 14.98 0.1343

uHF II 11.1 % 36 / 1422 15 / 19 15.50 0.4892

uHF III 13.3 % 45 / 1422 14 / 19 16.60 0.0438

uHF IV 23.4 % 111 / 1422 19 / 19 18.76 1

uHF V 15.2 % 79 / 1422 18 / 19 18.23 0.5875

uHF VI 10.8 % 37 / 1422 13 / 19 15.63 0.053

uHF VII 13.0 % 23 / 1422 11 / 19 13.01 0.1333

SG 5.3 % 19 / 1422 8 / 19 11.54 0.0127

OB I 10.5 % 105 / 1422 17 / 19 18.47 0.0583

OB II 9.8 % 51 / 1422 16 / 19 16.91 0.3339

OB III 4.9 % 41 / 1422 17 / 19 15.82 0.9194

OB IV 6.5 % 46 / 1422 16 / 19 16.37 0.5234

OB V 6.7 % 30 / 1422 15 / 19 14.34 0.7982

IB I 7.4 % 54 / 1422 17 / 19 17.03 0.6533

IB II 15.8 % 19 / 1422 9 / 19 11.84 0.0414

IB III 0.0 % 14 / 1422 9 / 19 9.49 0.5027

TC 5.6 % 18 / 1422 9 / 19 11.23 0.0952

LH 9.7 % 31 / 1422 14 / 19 14.66 0.445
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(h) Modeling of IFE Differentiation

To model IFE differentiation, all cells belonging to the non-infundibulum IFE basal clusters (IFE BI and IFE BII) or the remaining IFE

cells identified in the 1st level clustering were considered (536 cells). Features were selected as described in (2) using a mean expres-

sion cut-off of 0.1 molecules and genes linked to ribosomal, housekeeping and IEG clusters in the 1st level clustering were removed.

The remaining features were used as input for t-SNE (perplexity = 25, early exaggeration = 2.0) and the cells were brought into pseu-

dotemporal order as described in (5). Cubic splines were fitted to the expression of 7,354 genes (mean expressionR0:1 molecules),

1,627 significantly pseudotime-dependent genes were identified and subsequently AP clustered into eight subgroups. All cells from

the dataset were correlated to the differentiation trajectory and the robustness of the pseudotemporal ordering and the correlation

was evaluated as described above.

(i) Modeling of uHF Differentiation

To test whether the differentiation process follows similar lines in different compartments of the epidermis, pseudotemporal ordering

of uHF cells was performed. For this, all non-SG (opening) uHF cells (uHF IV – VII, 250 cells) were used. Features were selected as

described in (g). In contrast to (g), an initial round of dimensionality reduction (TruncatedSVD, 5 dimensions) was necessary to get a

good t-SNE representation of the data (perplexity = 100, early exaggeration = 2.0). After pseudotemporal ordering and cubic spline

fitting, 1,068 significantly pseudotime-dependent genes could be defined.

(j) Modeling of gene Expression Changes Along the Proximal-Distal Spatial Axis

In order to model spatial gene expression changes along the proximal-distal axis without interference from differentiation

signatures, only cells from IFE and HF which show a clear basal signature were selected. Cells from the HF (uHF IV – VII, OB

I – V, IB I – III*) were considered basal if they were linked to a pseudotime position %300. Due to the early onset of differentiation

in the IFE basal compartment, IFE cells were selected with a more stringent cut-off ð%150Þ. In sum, 486 cells were classified as

basal. Features were selected as described in (2) using a mean expression cut-off of 0.1 molecules and genes linked to ribosomal,

housekeeping and IEG clusters in the 1st level clustering were removed. To make sure that no differentiation related modules of

genes are included in the dataset, the genes were subjected to one round of AP clustering and only clusters not containing typical

differentiation markers (e.g., Mt4 or Krt10) were included. Only the genes that passed this additional cycle of quality control were

used as input for t-SNE (perplexity = 20, early exaggeration = 3.0) and the basal cells were subsequently brought into pseudospa-

tial order as described in (5). Cubic splines were fitted to the expression of 6,788 genes (mean expression R0:1 molecules), 547

significantly pseudospace-dependent genes were identified and subsequently AP clustered into eight subgroups. All cells from the

dataset were correlated to the spatial axis and the robustness of the pseudospatial ordering and of the correlation was evaluated

as described above.

* Although the cells of the inner bulge population IB I do not seem to show any distinct differentiation signatures, cells from IB I were

considered in this model if under the set cut-off.

(k) Pseudospacetime – Creation

To link every cell to its position in two-dimensional space along the differentiation and spatial axes without interference from ambig-

uous genes, only genes, which were either uniquely pseudotime- (1,409 genes) or pseudospace-dependent (329 genes), were

considered and correlation of all cells to both axes was recalculated using only the selected genes. Cells and cell populations which

do not seem to fit to any position on either the pseudospace-, the pseudotime- or both axes (e.g., the immune or sebaceous gland

cells, see (5)) were subsequently (partially) removed from the pseudospace.

(l) Pseudospacetime – Negative Binomial Regression

To perform negative binomial regression of the data under the constraints of the pseudospacetime model, both the pseudospace-

and pseudotime-axis were divided into 15 equally sized bins and each pseudospace-/pseudotime-bin was considered a predictor in

the regression model. Furthermore, additional predictors (sebaceous gland, sebaceous gland opening, pan-immune, T-cell and

Langerhans cell) were generated for genetic signatures that cannot be explained by the pseudospacetime model. Regression

was performed on the same set of 9,784 genes as selected in (f). Predictor-specific or –unique genes were called using a 95% pos-

terior probability cut-off.

As a negative control, predictor identity was randomly shuffled between cells and the regression was performed as described

above.

(m) Pseudospacetime – Model Comparison

To evaluate the explanatory quality of the pseudospacetime model, a simulated dataset was sampled from the traces of the negative

regression model as described in (4) and subsequently compared to the observed data. To ensure comparability of the pseudospa-

cetimemodel with the 1st and 2nd level clustering, only genes used consistently in the pseudospacetime, the 1st level, and the 2nd level

regression were considered (6,949 genes).
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(n) Stem Cell Analysis – Cell Selection

To select cells, which express the stem cell/progenitor markers Lgr5,Cd34,Gli1, Lgr6, Lrig1, and Krt14 aboveBaseline, the following

cut-offs were chosen:
Marker Cut-off Selection

Cut-Off Value

(Molecules)

Number of

Positive Cells

Lgr5 Maximal Baseline value predicted during 2nd level clustering regression multiplied by 10 0.34 138

Cd34 Maximal Baseline value predicted during 2nd level clustering regression multiplied by 10 0.85 297

Gli1 Maximal Baseline value predicted during 2nd level clustering regression multiplied by 10 0.23 84

Lgr6 Maximal Baseline value predicted during 2nd level clustering regression multiplied by 10 0.26 75

Lrig1 Maximal Baseline value predicted during 2nd level clustering regression multiplied by 5 1.95 207

Krt14 Maximal Baseline value predicted during 2nd level clustering regression multiplied by 10 35.18 149
(o) Stem Cell Analysis – AP Clustering

AP clustering was performed separately on all cells expressing a certain stem cell marker using the same approach as described for

the 2nd level clustering in (e).

(p) Stem Cell Analysis – Basal Cell Clustering and t-SNE

To compare basal stem cells to each other and to basal cells, which do not express stem cell markers, all cells from IFE, uHF (uHF

IV – VII) and OB with a pseudotime position %300 were selected. In contrast to the cell selection described in (j), IFE cells were

selected less stringently, inner bulge cells were not considered and ambiguous genes were removed before the pseudotime corre-

lation (see (k)). In sum, 673 cells were considered as basal cells. Basal cells were subclustered into 7 groups using the same approach

as described for the 2nd level clustering. The same features selected for the final clustering were used to generate a t-SNE represen-

tation of the basal dataset (perplexity = 20, early exaggeration = 2.0).

(q) Stem Cell Analysis – Negative Binomial Regression

To model genetic signatures which are either unique for each stem cell population or shared by all basal SCM+ or SCM� cells, we

created two negative binomial regression models. (1) In the first model, gene expression in stem cells wasmodeled as a combination

of Baseline expression, specific signatures unique to each stem cell population (e.g., all Lgr5+ cells) and signatures shared by SCM+

and SCM� cells. This model was used to determine stem cell population-specific gene expression signatures, which were called

using a 95%posterior probability cut-off againstBaseline. (2) The second approachmodeled gene expression in stem cells as a com-

bination of Baseline expression, two common signatures shared by all basal SCM+ and SCM� cells, and specific signatures unique

to each compartment (IFE, uHF, upper OB and OB). As the second approach performed better in modeling SCM+ and SCM� sig-

natures, it was used to define the SCM+ signature (90%posterior probability againstBaseline; see Figure S7F) and to compare SCM+

to SCM� signatures. A gene was considered differentially expressed in SCM+ compared to SCM� cells (or vice versa) if it was rep-

resented with at least 0.25 molecules (median) in the SCM+ signature and if its SCM+ signature exceeds the SCM� signature with

90% posterior probability.

DATA AND SOFTWARE AVAILABILITY

Software
The computational analysis workflow and the scripts are available at https://github.com/kasperlab.

Data Resources
The accession number for the sequencing data reported in this paper is NCBI GEO: GSE67602.

ADDITIONAL RESOURCES

An online tool for the visualization of the single-cell dataset is available at http://kasperlab.org/tools or http://linnarssonlab.org/

epidermis/.

A systematic staining catalog is provided at: http://kasperlab.org/data.
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