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ABSTRACT 

Let J, be the Julia-Lavaurs set of a hyperbolic Lavaurs map g, and let h, be its Hausdorff dimen- 
sion. We show that the upper ball-(box) counting dimension and the Hausdorff dimension of J,, are 
equal, that the h,dimensional Hausdorff measure of J, vanishes and that the h,-dimensional 
packing measure of J, is positive and Ii&e. If g, is derived from the parabolic quadratic poly- 
nomial f (2) = z* + $, then the Hausdorff dimension h, is a real-analytic function of u. As our tool 
we study analytic dependence of the Perron-Frobenius operator on the symbolic space with infinite 
alphabet. 

1. INTRODUCTION 

In Section 1 we study analytic dependence of the Perron-Frobenius operator on 
the symbolic space with infinite alphabet. In Section 2 we collect preliminaries 
on conformal iterated function systems. The third section is devoted to in- 
troduce and explore lattice type conformal iterated function systems. Section 4 
introduces Lavaurs maps and sets and provides some tolls needed in Section 5. 
In Section 5, the last section of our paper, we combine the results from previous 
sections to complete the proofs of our two main results Theorem 6.1 and 
Theorem 6.3. 

2. ANALYTICITY OF THE PERRON-FROBENIUS OPERATOR ON THE SYMBOLIC 

SPACE WITH INFINITE ALPHABET 

Let Z be a countable set, either finite or infinite. Let 
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‘HO = {g : Zoo + @ : g is bounded and continuous} 

and for everyf E ‘HO let 

Ilf II0 = sup{ If(w) I : w E ZW}. 

Given /3 > 0 let 

IVY) := $vp,.(f)] < oo! 
- 

where 

VD,,,~) = sup{lf(w) --f(r)l@(“-‘1 : w, T E EO” and Jw A ~1 2 n}. 

Set 

3-1/j = {g E 3-10 : Vp(g) < co}. 
The elements of this set will be called Holder continuous functions of order p. 
The set ?ip becomes a Banach space when endowed with the norm 

llglla = llgllo + VPk). 

For every i E Z we put 

[i] = {w E I” : WI = i}. 

We define the class ‘8; c Hp as follows 

and call its elements Holder summable functions. L(‘Hp) denotes the space of 
all bounded (continuous) operators on 3-Ip. Finally givenf E 7$ we define the 
Perron-Frobenius operator f$ : Ho --t ‘HO, acting on the space of bounded 
continuous functions NO, as follows 

&(g)(w) = iF1 expCf(Q)g(iw). 

Then I],C~l]o < CiE1 exp(sup(Re(&))) < 00. In fact (see [MU21 and [MU3]) 
the operator & preseserves the Banach space 7$, is bounded on it, and even 
more, satisfies the so called Ionescu-Tulcea and Marinescu inequality. We start 
the results and proofs in this section with the following. 

Lemma 2.1. Zffor every w E Zoo, the function t H ft(w) E C is holomorphic on a 
domain G c @ and the map t H ,Ch E L(‘Hp) is continuous on G, then the map 
t H 12h E L(7itp) is holomorphic on G. 

Proof. Let 7 c G be a simple,closed rectifiable curve. Fix g E HP and w E I”. 
Let W c G be a bounded open set such that 7 c W c w c G. Since for each 
e E Z the function t ~g(ew) expdf,(ew)) E @, t E G, is holomorphic and since 
for every t E W 
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5 llgllpsuPwJ-zIlp : 2 E w’) < al 

by compactness of W and continuity of t H Lh, we conclude that the% function 

is holomorphic. Hence by Cauchy’s theorem J, LJg(w)dt = 0. Since the func- 
tion t I+ Lhg E lip is continuous, the integral J7 Lhgdt exists and for every w E 
Zm, we have Jr Lhgdt(w) = J, Lhg(w)dt = 0. Hence !_, LAgdr = 0. Now, since 
t t+ LA E L(‘?$) is continuous, the integral Jr Lcdt exists and for every g E 3-18, 
Jr Lhdt(g) = Jr Lhgdt = 0. Thus Jr Lhdt = 0 and in view of Morera’s theorem 
the map t H LA E L(%p) is holomorphic on G. The proof is complete. •i 

In order to prove the main result of this section we need several elementary 
lemmas. In order to formulate them we need to define some class of mappings. 
Namely, given i E I, we define the mapping 

i:Zoo+Zoo 

by setting 

i(w) = iw. 

Lemma 2.2. Zf i E Z and and p E tip then the operator At,, given by the formula 

AiJg)(w) = P 0 i(w) . g 0 $4 

acts on the space 3_Ip, is continuous and l(Ai,,Jlp 5 311~ o ilIp 

Proof. Fix g E 7ip, w E I”. Then 

(2.1) IAdg>(w)I = l&4Ilg@4 5 lb0 ill,llgll, 5 IlPoill~llgllp~ 

Fix now in addition T E Zoo \ {w} such that Iw A ~1 2 1. Then 

14,p(gH4 - Adg)(d = b@4g(4 - tWgWI 
= lt44(gW - gW) +gWW4 - fW)l 
5 IIPO ill,lgW - gWl+ Ilgll&@4 - PWI 
I lb 0 illpllgllpe -Biwhri + llgllDllp 0 ilJDe+IWArl. 

Hence Vb(Ai+4g)) 5 211~0 4l~llgllp and combining this with (l), we conclude 

that IM,p(g>ll L 311~ 0 illallgll~. C onsequently Ai,p acts on the space tip, is con- 
tinuous and IIAi,plla 5 311~ o ilIp. The proof is complete. 0 

Similarly (only easier) one proves the following. 

Lemma 2.3 Vw E % then t-s E % and Ilmllp 5 311&Mlp 

Lemma 2.4. Zff E 3-10, then ef E l-lb and vp : Y + ‘I$ is a continuous mapping 
dejined on a compact set Y, then ep : Y + ~-CD is also continuous. 
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Proof. By Lemma 2.6.3, Ilf”llp 5 3”((fll;. Hence, the series ef = c,“-, $ con- 
verges in ‘MO and the first part of our lemma is proven. The second part follows 
now from the remark that for every y E Y, II~(y)ll~ I sup{(Ip(~)l(~ : x E Y} < 
00 and the series C,“=. (p(y)“/ n. converges uniformly on Y. The proof is 1) 
complete. Cl 

Lemma 2.5. For every R > 0 there exists A4 = MR 2 1 such that if lz - tI 5 R, 
then lef - ez( 5 MeRezlz - <I. 

Proof. Looking at the Taylor’s series expansion of the exponential function 
about 0, we see that there exists a constant M 2 1 such le’” - 11 5 Mlw(, if 
IwI I R. Hence let - ezI = lezllez-~ - 11 5 eReZMlz - (1. The proof is com- 
plete. 0 

Lemma 2.6. Iff E 7f~p, then for every i E Z 

IIJ o’llp I 241.f11~ exp(swReCfl[iJ) Ilf Ilp 

Proof. Fix w E I” such that &, = 1. Then Ief@)) = eReJ@) 5 
exp(sup RevI riI)), whence 

(2.2) Ilefoilla I exp(~upRdfl~i~)>~ 

Fix now in addition r E IO0 \ {w} with IT A WI 2 1. Using then Lemma 2.5, we get 

I,f (4 - er@)l 5 Mllfjlpe Ref(T)If (iw) -f (iT)l 

I Mlln~, exp(sup Re(f Ipl>) Ilf Ilp-B~r”W~~ 

Thus, Vo(efoi) 2 exp(supReCfl[,])) IIf IID. Combining this and (2) completes 
the proof. Cl 

Lemma 2.7. Zf p : Y -+ ?ip is a continuous mapping defined on a metric space Y, 
then for every i E I, the function y H Ai+, E L(‘Hb), y E Y, is continuous. 

Proof. Fix yo E Y and take 6 > 0 so small that for every y E B(yo, S), 
I/p(y) - p(yo)llp I 43. Then for y E B(yo, S), we have in view of Lemma 2.2 the 
following.’ 

IkpCv) - 4p(m) Ilp = IIAi,p(y) -p(yo)llp 5 311P(Y) - P(YO)Ilp 5 E* 

The proof is complete. Cl 

Our main theorem in this section is the following. 

Theorem 2.8. If G is an open connected subset of C, the function t oft E 7-l;, 
t E G, is continuous and thefunction t HA(W) E C, t E G, is holomorphicfor every 
w E Zoo, then thefunction t H 15. E L(Hp), t E G, is holomorphic. 
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Proof. In view of Lemma 2.2 it suffices to demonstrate that the function 
t H Lh E L(‘Hfl), t E G, is continuous. So, fix to E G and 6 > 0 so small that 

g(to, 26) c G and lift --_&II, < llfi --.&Ila <_ 1 for all t E g(to,26). BY 
Lemmas 2.7 and 2.4, for all i E I, the function t H Ai,,/, C. L(?-lp), t E B(to, S), is 
continuous. Since 

it therefore sufIices to demonstrate that the series CjEI Ai,e~ converges uni- 
formly on B(to, 6). And indeed, in view of Lemma 2.2 and Lemma 2.6, for every 
i E Z and every t E B(to, 6) we have 

Il-4,~ II@ 5 311 expV; 0 i>llp 5 6Mexp(suPReCfilli]))MI, 

where it41 = sup{ llf& : t E B( to, 6)) is finite due to continuity of the function 
t -ft E 7-i; on the compact set B(to, S), and M = MM, in the sense of 
Lemma 2.5. Now, in view of our choice of 6, we can continue the above stimates 
as follows. 

lIAi,c II@ I6MM1 exp(swRedf,l[i]) + llfi -ft,ll,) 
I 6MM1 ew(supReCf,,l[i]) + 1) 5 6M441 ew(~vR4$,,l~il)). 

Since by summability of the function&,, the series jF1 exp(supReCf,(lil)) con- 
verges, the proof is complete. Cl 

3. PRELIMINARIES ON CONFORMAL ITERATED FUNCTION SYSTEMS 

In [MU11 we have provided the framework to study infinite conformal iterated 
function systems. We shall recall first this notion and some of its basic proper- 
ties. Let Z be a countable index set with at least two elements and let 
S = {IJ$ : X + X : i E I} be a collection of injective contractions from a com- 
pact metric space X into X for which there exists 0 < s < 1 such that 
p(+i(x), 4i(v)) 5 sp(x,y) for every i E Z’and for every pair of points x,y E X. 
Thus, the system S is uniformly contractive. Any such collection S of contrac- 
tions is called an iterated function system. We are particularly interested in the 
properties of the limit set defined by such a system. We can define this set as the 
image of the coding space under a coding map as follows. Let I” denote the 
space of words of length n, Zoo the space of infinite sequences of symbols in I, 

Z* =UC4 Z”andforw~Z”,n~1,let~~=~~,o~,o~~~o(bw,.Ifw~Z*UZ00 
and n 2-1 does not exceed the length of w, we denote by WI, the word 
WIW2. . . w,. Since given w E I”, the diameters of the compact sets $u~,(X), 
n 2 1, converge to zero and since they form a decreasing family, the set 

is a singleton and therefore, denoting its only element by r(w), defines the cod- 
ingmapr: ZM + X. The main object of our interest will be the limit set 
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.Observe that J satisfies the natural invariance equality, J = UiEr 4i(J). Notice 
that if I is finite, then J is compact and this property fails for infinite systems. 

An iterated function system S is said to be conformal if X is a compact con- 
nected subset of a Euclidean space ll@ for some d 1 1 and the following condi- 
tions are satisfied. 

(a) Open Set Condition (OSC) &(Intp(X)) n +j(Int&X)) = 0 for all i, j E 
I,i#j. 

.(b) There exists an open connected set V such that X c V c I@ and all 
maps +i, i E I, extend to C’ conformal diffeomorphisms of V into V. (Note that 
for d = 1 this just means that all the maps &, i E I, are C’ diffeomorphisms, for 
d 2 2 the word conformal mean either holomorphic or antiholomoerphic and 
for d 2 3 the maps &, i E I, are Mobius transformations. The proof of the last 
statement can be found in [BP] for example, where it is called Liouville’s theo- 
rem) 

(c) There exist y, 1 > 0 such that for every x E 8X c Wd there exists an open 
cone Con@, ~,1) c Int(X) with vertex X, central angle of Lebesgue measure y, 
and altitude 1. 

(d) Bounded Distortion Property(BDP). There exists K 2 1 such that 

I~~:(Y)l 5 ~I~~:(~>l 

for every w E Z* and every pair of points x,y E V, where /&+)I means the 
norm of the derivative. 

In fact throughout the whole paper we will need one more condition which 
(camp. [MUl]) can be considered as a strengthening of (BDP). 

(e) There are two constants L. 2 1 and cy > 0 such that 

ll~l<Y)l - Ikwll L ~llsllllr - da* 

for every i E I and every pair of points x, y E V. 

Remark 3.1. Note that for d = 2, decreasing V if necessary, conditions (e) and 
(d) are satisjieddue to Koebe’s distortion theorem. In case d 2 3 these wereproved 
in [Ur]. 

Let us now collect some geometric consequences of (BDP). We have for all 
words w E Z* and all convex subsets C of V 

diam(&&)) I Il&,lFam(C) 
and, for an appropriate V, 

diam(k,(V>> I JW~II, 
where D 2 1 is a constant depending only on V. Moreover, 

diam(k(X)) _> D-‘ll4~ll 
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and 

for every x E X, every 0 < r 5 dist(X, aV>, and every word w E I*. 

Frequently, refering to (BDP) we will mean either (BDP) itself or one of the 
above properties. Notice that for simplicity and clarity of our exposition we 
assumed the open set U appearing in the open set condition to be Int(X). 

As was demonstrated in [Mull, conformal iterated function systems natu- 
rally break into two main classes, irregular and regular. This dichotomy can be 
determined from either the existence of a zero of a natural pressure function or, 
equivalently, the existence of a conformal measure. The topological pressure 
function, P is defined as follows. For every integer n 2 1 define 

and 

P(t) = J~inl;logl/J”(t). 

For a conformal system S, we sometimes set +s = $~l = $.L The finiteness para- 
meter, 8 = es, of the system S is defined by 

8s = inf{t : t/~(t) < 00). 

In [Mull, it was shown that the topological pressure function P(t) is non- 
increasing on [O, oo), strictly decreasing, continuous and convex on [0, co) and 
P(d) < 0. Of course, P(0) = cc if and only if Z is infinite. In [MU11 (seeTheorem 
3.15) we have proved the following characterization of the Hausdorff dimension 
of the limit set .Z, which will be denoted by HD(J) = hs. 

Theorem 3.2. HD(J) = SU~{HD(.ZF) : F c Z is finite} = inf{t : P(t) 5 0). If 
P(t) = 0, then t = HD(.Z). 

In [MU41 the following formula for the upper ball (box)-counting dimension of 
the limie set of a conformal IFS was provided. 

Theorem 3.3. For every x E X the following holds. 

m(J) = max{HD(J),BD({4i(x) : i E I})}. 

We call the system S regular if there is t such that P(t) = 0. It follows from 
[MU11 that t is unique. Also, the system is regular if and only if there is a t- 
conformal measure. Recall that a Bore1 probability measure m is said to be t- 

conformal provided m(Z) = 1 and for every Bore1 set A c X and every i E Z 

44(A)) = J l&l’dm 
A 
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and 

for every pair i, j E Z, i #j. We call the system S hereditarily regular if each 
cofinite subsystem of S is regular. According to [MU11 hereditarily regular 
equivalently means that P(d) = $(f3) = 00. 

4. LATTICE TYPE ITERATED FUNCTION SYSTEMS 

We call a conformal IFS S = { $i}i E I in the complex plane @weakly lattice type 
if Z = N x Z and there exist an integer q 2 1, a finite set F c I and b > 1 such 
that the following conditions are satisfied. 

(A) 

b-t (m + nil 5 dist(&,,,(X)-q, 0) 5 b/m + nil. 

for all (m, n) E N x Z \ F. 
(B) I&(z)1 =: I&(z)I’+qforalliEZ\F. 
(C) diam(&(X)-“) 5 b for all i E Z \ F. 
(D) For all (m, n), (k, r) E N x Z \ F, 

dist(qh,,,,(X)-q, ~~J(X)-~) L bl(m + ni) - (k + li)l. 

Increasing b if necessary, it follows from (A) and (C) that 
(A’) Dist(&,, j(X)-q, 0) 5 bJm + nil. 

A weakly lattice type IFS is called lattice type if in addition there exists 
T : C \ (-00, 0] + C, a holomorphic univalent branch of z-‘/q such that 

T( (h(W)-‘) = h(X) 

for all i E Z \ F. 
Examples of lattice type iterated function systems have implicitely appeared 

in the last section of [MU11 as well as in [DSZJ and [Zi]. The examples from 
[DSZ] and [Z i ] f orm the main object of this paper and are treated in detail in the 
next section. We shall prove the following. 

Theorem 4.1. Zf S = {&}i,, is a weakly lattice type system, then 
19s = (2q/q + I), S is hereditarily regular and 

(a) m(J) = HD(J). 
(b) Hh(J) = 0. 

Zf S is a lattice type system, then in addition 
(d) 0 < Ph(J) < 00. 

Proof. Let us first determine the 8 number of the system S. Using (B), (A) and 
(A’) we get for every t > 0 and every z E X 
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r)(t) := c II~~,“llr =: 
(m,n) E N x H\F 

(m .)I$ b\F 14m,&r(1+q) 
x 

=: (m n)EIxb,F b + nil-‘+ 

and this series converges if and only if t(q + l/q) > 2 or equivalently 
t > @q/q + 1). Hence 8s = (2q/q + 1) and since q((2q/q + 1)) = 00, the sys- 
tem S is hereditarily regular. 

In order to prove (a) fix x E X, r > 0 and consider n 2 0 such that. 
29 5 Dist(0, X)q. Resealing the system appropriately we may assume without 
loosing generality that Dist(0, X)q = 1. Let 

Zq,n(r) = {i E Z : 2”-*r 5 l&(X)‘1 < 2”r). 

Notice that if i, j E Zq,n(r) and I&(x)-’ - $i(x)-“l 5 r(2”r)-‘, then 
(4j(x)’ - 4i(x)‘l 5 ]+Jx)‘[ . I$~(x)‘[ 5 r(2”t)-’ < r which means that +j(x)” E 
B(&(X)‘, r). Hence denoting by NqJr) the minimal number of balls needed to 
cover the set Yq,,,(r) = {$j(~)q :j E 4,,,(r)}, we get 

(4.1) Nq,n(r) L Cl 
(2nr)-2 

(r(2”r)-2)2 
= C,22” 

for some universal constant Ci > 0. Also, using (A) and (A’) we get 

Nq,&> 5 #{4i(X)-q : i E &n(r)) 
< #{(k, 1) : b-1(2”r)-1 I Ik + lilP(2”-‘r)-‘} I C2(2nr)-2 

for some universal constant C2 > 0. We will use this estimate and (3) in the 
following form. 

(4.2) 
if 22nr < 1 

2-2nr-2 if 22nr s 1 and 2”r 5 1, 

where Cs = max{ Ci, C2). Given 0 < rl 5 r2 let A(rl, r-2) = {z E @ : t-1 5 Iz( < r2). 
Givenaset A c @ by Al/q we denote the full inverse-image,of A under the map 
z-24. Fix j 2 1. Since A((2j-1r)q, (2jr)q)1’q = A(2j-‘r,2jr), since B1/q is 
contained in a union of at most q balls of radii 2 
12(4- l)r if B is a ball of radius 2 

j(q-1),q,.~((2j-1r)q):-’ = 

J(q-‘)fi contained in A((2’-1r)q, (2jr)q), and 
kce ((2’r)q/2i(q-1)r*l) = 2j, we obtain 

where Nk(s) is the minimal number of balls with radii s needed to cover the set 
{&(x) : 2k-‘s 5 I&(x)1 < 2ks}. Therefore, applying (4), denoting by N(s) the 
minimal number of balls with radii s needed to cover the set {$i(x) : i E I} and 
Ii = minti : 22j2j(q- l)rQ 2 l}, 12 = min{j : 2j2j(q- ‘)rq 2 l}, we obtain 
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N 24-l 

( > 

24-I a 
-r 

4 
<1+2Nj -r 2Aq - l)rq) 

j=l ( > 4 
5 l + qj$, N4J( 

<l+q&22j+ k 2jr-2 - 2- < const(22’L + r-22-2’1) - 
j=l j=l*-1 

5 const(r-3 + r-‘r2) < const 24-‘r 
( > 

-3r 

. - 
4 

Hence BD({&(x) : i E I}) 5 (2q/q + 1). Applying therefore Theorem 3.3 along 
with the fact that HD(J) 2 0 and the proven above equality 9 = (2q/q + l), we 
conclude that m(J) = HD(J). 

We shall now prove part (b) saying that Hh(J) = 0. So, fix r > 0 and consider 
the set 

Z(r) = {(m, n) E N x Z \ F : b-l jm + ni( > rmq}. 

It follows from (A) that if (m, n) E Z(r), then Dist(&,,,(X),O) _< 
b’/q(m + niJ_“’ < r which means that 4,&(X) c B(0, r). Hence, using (B) and 
(A), and denoting by m the h-conformal measure which exists since the system 
S has been proved to be hereditarily regular, we get 

(4.3) 

where the relation a(r) k p(r) means that a(r) 2 C/?(r) for some constant 
C > 0 independent of r. 

Hence 

!iy m(B(O, r)) ti 2 jiyrh(q+‘)+ = 00 

since h < 2. The proof of part (b) is finished. 
The fact that P”(J) > 0 follows immediately from Lemma 4.3 in [Mull. As- 

suming that the system S is of lattice type we shall now prove that P*(J) < 00. 
Notice that if 0 < r < 1x1, then 

(B(x,r))-’ = B ( _h!L. .! I 
lx12 - r2 X’(xl’ - r2 ) 

. 

If in addition 

(4.4) zq r 5 L 1x1. 
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then 

and therefore the map z H z4 is univalent on the ball 

Thus the map z +-+ z-4 is univalent on the ball B(x, r) and applying Koebe’s dis- 
tortion theorem we get 

(4.5) B(x, r/2))-q > B(xTq, (2K)-1qlxl-(q+‘)r), 

where K is the Koebe constant corresponding to the ratio of radii equal to l/2. 
Now note that due to (B) and (A) there exists a constant C4 > 0 such that for all 
i E Z \ F, and all x E &(X), 

(4.6) 
q+l diam(&(X)) 1 C4lxl . 

Fix i E Z \ F, x E &(A’), and 1 2 r > Csdiam(&(X)) for some large positive 
constant C’s which will be determined later in the course of the proof. 

Assume first that (4.4) is satisfied. Then 

= q(2K)-‘r(xj-(q+ ‘) 2 q(2K)-‘Csdiam(&(X))C4diam(~i(X))-’ 

= q(2K)_‘C&. 

Therefore, if C5 > 0 is sufficiently large, then it follows from (D), (C) and (4.5) 
that 

(4.7) #Q(r) I ~(rlxl-(q+ lQ2 

for some universal constant p > 0, where 

Q(r) = {j E Z \ F : $y(X)-q c B(x, r/2)-‘}. 

Applying (4.4) we deduce that for everyj E Q(r) 

(4.8) dist(@(X),O) 2 1x1 - r 2 
( ) 

1 - & (xl 2 i 1x1. 

Since our system is of lattice type and since T(B(x, r/2)-q) = B(x, r/2), we de- 
duce that Q(r) = {j E Z \ F : $j(X) c B(x, r/2)}. Using therefore (B), (4.8), 
(4.7), (4.6) and since r 2 Csdiam(&(X)), we get 

+ r2diam(c$i(X))(h-2) k r2r(h-2) = rh. - 
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Suppose IIOW that x E +i(X) and 1 2 t 2 4qCsdiam(&(X)). If r < fIxI, then 
(4.9) remains true and we get 

(4.10) m(B(x, r)) k r h. 

If (1/2q)lx) 5 r 5 2)x(, then 1 > (r/4q) 2 Csdiam(&(X)) and (r/4q) 5 
(1/2q)Ixl. So, (4.9) is true with r replaced by (r/4q) and we get 

(4.11) 

Finally, if r 2 2)x), then B(x,r) > B(O,r/2) and using (5), we get m(B(x,r)) ? 
rh+qchp2) > rh. Combining this, (4.10), (4.11) and applying Lemma 4.10 from 
[MU11 complete the proof. 0 

5. PRELIMINARIES ON JULIA-LAVAURS SETS 

We start this section by recalling some facts about Leau-Fatou flowers. We 
consider a holomorphic function of the formf(z) = z + uzq+i + O(zq+*), a # 
0, i.e. a germ of an holomorphic function tangent to the identity at 0. Perform- 
ing a preliminary linear conjugation one may as well assume that a = 1, so that 
we can write 

f(z) = z( 1 + zq) + o(zq+2). 

The dynamics off near 0 is described by the Leau-Fatou flower, whose con- 
struction we briefly recall. We have q repelling half-lines given by 

fl>O@Arg(z) =T, k=O,...q- 1 

and q attracting ones given by 

z4 <O*Arg(z) =a+?, k = 0, . ..q - 1. 

There are q sectors sj” enumerated in the trigonometric order, S; being the 
sector between iR+ and the next repelling half-line and S,+ being the sector be- 
tween two consecutive attracting half-lines whose bissector is lR+. Each such 
sector has a bisector which is a repelling or attracting half-line; in the first case 
the sector is called repelling and labeled with + and in the second it is called 
attracting and labeled with -. The key to understand the local dynamics is the 
change of variable 

Z=7(2) = -5. 

It transforms each attracting sector bijectively into C \ R- and %+ into @ \ R+. 
Moreover, in this variable (if z andf(z) belong to the same sector) the mapping 
f takes on the form 

F(Z) = z + 1 + 0(2-“4) 
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which is close to the translation by 1 denoted by Ti for IZ( appropriately large 

Proposition 5.1. There is a ‘parabola-shaped’curve included in @ \ IL whose ex- 
terior is forward invariant under F. More precisely one can take as such a domain 
the exterior of the curve y&&K? 7 XE [-R/&R], y= 
*(R/d) + C(x + R/fiJ’-“Qfor R, Clarge enough. 

For the proof one may consult the Expose 9, paragraphe 3 in [DH]. This region 
corresponds in the z-variable to a ‘petal’ Pi- c Sje . and we denote by PI- the 
petal in the Z-variable. One can of course build similar petals forf-‘; this gives 
backwards invariant petals in repelling sectors. 

We now introduce Fatou coordinates: we have so far a coordinate Z = r(z) (we 
call it approximate Fatou coordinate) conjugatingf into F which is ‘almost’ 
a translation; we now construct a change of variable transforming f exactly 
in Tl. 

To do this we consider in a sector (attracting or repelling) S a subdomain U 
as follows. S and U have the same bissector and the angle made by U is 3/4 of 
the S-angle. The small real E is chosen so that U c P (the petal) and the con- 
stant 314 is chosen so that Uj’ fl Vi- # 0. 

* Theorem 5.2. There exists ‘pi : Uj’ -+ Q: holomorphic and injective such that, 
whenever z andf(z) belong to Uj’, 

and these mappings are unique up to additive constants. Similarly 

where Gji’ = (pi” o 7-l : Uj* -t C. 

For the proof, see [Zi]. From now on we focus on the mappings 

(5.1) h(z) = e2?ri:z + z*. 

The new feature here is that h is entire, inducing a global dynamical system. In 
particular each attracting petal of the flower is contained in a component of the 
Fatou set that we will call a Fatou petal. 

Moreover the mapping h induces a permutation between the Fatou petals 
and classical results of Fatou and Julia imply that each orbit of Fatou petals 
under h must contain a critical point (of h). Since there is only one we must have 
v = 1 and f = h4 has q petals. Moreover f is a branched covering of degree two 
of each petal onto itself. 

Proposition 5.3. Each attracting Fatou coordinate p,: has an extension to the 
corresponding Fatou petal as a holomorphic mapping satisfying vj of = Tl o p,:. 
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Proof. Let Pj be the Fatou petal containing q-. If z E Pj, then there exists 
n 1 1 such thatf”(z) E Vi- and we simply define 

‘pi(z) = T_, o 9,: o?(z) 

which does not depend on n. Cl 

Remark 5.4. The extended 9,: is holomorphic but not bijective: any precritical 
point for f is a criticalpoint of q,:. 

The situation for repelling Fatou petals is different. We set $j = vj+-’ which is 
defined in some left half-plane {ReZ 5 -C}. 

Proposition 5.5. Thefunction $j extends holomorphically to the entire plane C. 

Proof. For 2 E c there exists n E N such that Re(Z - n) I -C and we may 
define 

@j(Z) =f” 0 lcj 0 T-,(Z) 

which is again independent of n. Cl 

The critical points of $j are the images under (pi’ of the points in the postcritical 
set off. We recall that f induces in each (Fatou) petal a self-covering of degree 
2. Moreover in each of these there exists a non-tangential access to the para- 
bolic point. It follows that if we conjugate this mapping with the Riemann map 
of the petal onto the unit disk sending the critical point to 0 and the parabolic 
fixed point to 1 (this makes sense since the parabolic point is accessible) we 
obtain a Blaschke product of the form 

z+a z-t-b 
b(z) = eie-- 

1 + az 1 + bz 

and moreover the local dynamics off at the parabolic point shows that the 
point 1 must be a parabolic point for 6. 

Theorem 5.6. b(z) = (3z2 -t l/z2 + 3). 

The proof is given in [Zi]. As a corollary all the actions of all f’s (meaning 
whateverplq is) are conjugated, meaning in particular that the dynamics off in 
each petal is conjugated to the dynamics of z w z2 + l/4 in its filled-in Julia 
set. 

We now pass to deal with Lavaurs maps. We continue the study of the quad- 
ratic maps h defined above. 

Definition 5.7. If u E C, then the corresponding Lavaurs maps are defined in the 
petal Pj as 
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The ‘raison d’etre’ of this definition is the following theorem, for the. proof of 
which we refer to [Zi]. 

Theorem 5.8. IflArgcYl < $ (resp JArga - ~1 5 a) anda -+ 0 in such a way that 
there exists N, E N (resp N, E 44) with 

then 

h2q -+gz (resp dg;) 

uniformly on compact subsets of Pj, where h,(z) = e2ilrb+a)/Qz + z2. 

In order to understand this situation more geometrically, let us consider 
quadratic polynomials PC(z) = 22 + c, where c is a parabolic parameter in the 
main cardioid of the Mandelbrot set, ie c = ezixe/2 - e4ine/4 with 8 =p/q so 
that PC is affinely conjugated to z - e 2isBz + z2. If we take c’ near c then 
z - z2 + c’ is affinely conjugated to z - (1 + ,/‘m)z -!- z2 where the 
square root is the one that gives 1 + vm = eziae. Assume now that 

c’ = c + &re2i”e( 1 - ezirre). 

An easy computation shows that 

c’ = ezine’ = ezinY, o = eq + O(E). 

Let us denote by t the unit tangent at the cardioid at c. Then c’ = c+ 
2~7r sin(2?r0). Putting together all the results, we get [Zi] the 

Theorem 5.9. Zf PC(z) = z2 + c + et and if e -+ 0 in such a way that there exists 
N, E N such that 

2wsin(2$) 
- 

q2c 
+N,--+~E@, 

then eNc converges on every compact subset of every petal of PC to the Lavaurs 

map g,. 

The introduction of the Lavaurs maps allows us to define a new dynamics, the 
dynamics of (h, g,,): we say that a point z escapes by (h,g,) if there exists k 2 0 
such that g:(z) is well defined for 0 5 1 < k but g,k(z) $ K(h). The filled-in Julia- 
Lavaurs set K(h, g,) is then defined as the set of points which do not escape by 
(h,g,). It is a non-empty compact set whose boundary is by definition the Julia- 
Lavaurs set J(h,g,). Douady has shown in [Do] that K(h,g,,) = /(h,g,) if the 
critical point w escapes by (h, go). We focus on the set C of phases u such that w 
escapes at once, i.e. such that go(w) 6 K(h,g,). We call such a phase and the 
corresponding Lavaurs map hyperbolic. This set is the union of two strips (de- 
pending whether we use g,‘) each of them containing the real axis (this corre- 
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sponds to e E R in the last theorem). Douady has shown in [Do] that if D E C 
then with the hypothesis of the last theorem, J(P,) converges in the Hausdorff 
topology towards J(h,g,). If a E C then J(h,g,) consists of the union of J(h) 
,and rbutterfliesr attached at each preparabolic point; they all reproduce the 
butterflies attached at the parabolic point, 2q of them, 2 per Fatou petal. 

As in [DSZ], one can define a Markov partition describing the dynamics of 
(h, go). First of all since the dynamics off = hq in each petal is the same as the 
dynamics of z2 + l/4 in the ‘cauliflower’ (its filled-in Julia set), we have in each 
petal a decomposition in pieces Ao,, analogous to [DSZ]; moreover the different 
‘layers’ of the butterflies attached to the parabolic point are sent by some iter- 
ates of g, to the boundary of some petal; this allows us to transfer the decom- 
position in pieces (AQ) inside these butterflies. The proof that this. decom- 
position gives a Markov partition for the dynamics of (h, gg) follows the same 
lines as [DSZ]. The family of its (holomorphic) branches forms a conformal it- 
erated function system refered to as the DSZ iterated function system. 

The following theorem has been proved in [DSZ] in the case when q = 1 and in 
the full quadratic case (14) in [Zi]. 

Theorem 5.10. The DSZ iteratedfunction system associated with each hyperbolic 
Lavaurs map is a lattice type conformal iteratedfunction systems. 

Let us now restrict ourselves to the Lavaurs maps generated by the parabolic 
mapf(z) = z2 + 4, Let 

Let 

be the shift map, i.e. 

For all CY, 00 E W and all w E I” let 

The following result follows from Lemma 7.1 in [UZ]. 

Proposition 5.11. For every ~70 E W there exists a radius r > 0 such that 
B(ao, 2r) c W andfor every w E IO” 

In particular each function $U : B(uo, 2r) + C is a Bioch function and its Bioch ‘s 

norm II+J18 5 Ml. 
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6. MEASURES AND DIMENSION FOR JULIA-LAVAURS SETS 

As an immediate consequence of Theorem 5.10 and Therem 4.1 we get the fol- 
lowing first main theorem of this section. 

Theorem 6.1. If g, is a_hyperbolic Lavaurs map corresponding to the polynomial 
of the form h(z) = ezri :z + z2, then 

m(J,) = HD(J,), Hh(&) = 0, 0 < Ph(.Z) < co. 

Let us now restrict ourselves to the Lavaurs maps generated 
mapf(z) = z2 + $. We will need the following 

by the parabolic 

Lemma 6.2. For every w E IO0 thefunction UH n,(w), u E W, is holomorphic. 

Proof. Fix x E J(f). Since each function (a, z) I-+ 47(z), i E I, is holomorphic 
in both variables u and z, the function 

is holomorphic for every integer n 2 1. Since the functions <t are uniformly 
bounded, one can choose from them a subsequence uniformly convergent on 
compact subsets of W. Since for every u the sequence C(u) converges to n,(w), 
we conclude that the function u H nU(w) is holomorphic. Cl 

The second main theorem of this section is the following. 

Theorem 6.3. The function u I+ HD( JO), o E W, is real-analytic. 

Proof. Consider the function 

g-C(u) : zm + @, 0 E w, 

given by the formula 

C(u)(w) = log I(~;,)‘(%(P(w)))I 

Fix now w E I”, (~0 E W and similarly as in the previous section, consider the 
function 

In view of Proposition 5.11 there exists a radius r > 0 such that B(us, 2r) c W, 

Ml = SUP SUP M;b)ll < 0% 
wEIWoEE(cro,2r) 

the function & : B(uo, 2r) -+ C is a Bloch function and its Bloch’s norm 
]]&,]]n 5 Ml. Combining formula (4) and Proposition 4.1 on p.73 in [PO] we 
therefore conclude that there exists a universal constant MZ > 0 such that 
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I log@u(4)l I M2 

for all 0 E B(Q, r), where the branch loglcI,(o)) is determined by the condition 
logQ,Joa)) = 0. In view of Lemma 6.2 the function log&(a)) is holomorphic 
and let 

hH.d(~)) = c a”h>(o - floy 
n=O 

be its Taylor series expansion on B(oo, 2r). By Cauchy’s inequalities 

(6.1) 
M2 

M4l 5 r” 

for all n 2 0. For every z = x + iy E B(q, r) c W c C, we have 

Relog& = Re ngo 44((x - Reoo) + (y - 1mcTo)i)” 
> 

= C c~,~(x - Recra)P(y - Imoa)i)q, 

where, due to (6. l), Ic~,~ 5 lap+, 2P+q 5 M2rv(@7)2f’+q. Hence Re log Ijl, ex- 
tends by the same power series expansion C Q,,~(x - Reoo)P( y - Imoo)i)q to a 
complex-valued analytic function, denoted by the same symbol Relog&,, on 
the polydisk 114,~ (0, r/4), and in addition 

JRelog$J L 4M2 on l&(0, r/4). 

h)(w) = Reh+&) + log I(~~)‘(T&GJ)))I 

extends C(u)(w) on the polydisk 03,~ (0, r/4) and for every t E C we have 

lew(thN4)I = exp(Re(tRehv+W) + tlogI(~~~)‘(~~,(p(w)))l) 
= exr@4tRehxU4)) . I(~~~)‘(~~O(p(~)))IRe’ 
5 exp(ltlRelog~~(~))l(~~~)‘(?r,,(p(~)))lRe’ 
5 exp(4M21tl)l(Q~)‘(~~,(p(cJ)))IRer. 

Therefore 

(6.2) is II exp(ttW) II < 00 

for every 0 E Dcz(O, r/4). Since all the maps #‘, u E &(a~, r) are uniform con- 
tractions with some uniform contraction factor 0 < s < 1, we get 
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and using then Koebe’s distortion theorem for the modulus and the argument 
we conclude that if (w A r] 1 1, then 

for all c E &(a~, r) and some universal constant h. Hence, using Cauchy’s 
inequalities again, we conclude that la,(w) - a,(r)] F r-” ~slwhrl for every 
n~O.Thus 

]c~,~(w) - cJr)( 5 2P+qr-(P+qJ--S Kr (wArI 
s 

and therefore 

IRelog& - Relog&(a)( 5 F,lwATi 

for all u E lI!Jc2(00, r/4). Consequently 

I<(a)(w) - <(c$(r)] = (Relog&(a) - ReloglCr,(o)] < ?&‘ATI 

for all 0 E Dc~(oo, r/4). Combining this and (16) we conclude that 

&) E ‘Fli,,s, for all (a, t) E II9 ~2 00, r/4) x {t E C : Ret > (2q/q + 1)). Thus ( 
the operator C,((,) is well-defined and acts on W_ ,,,ss for these (a, t). Since for 
every w E Zw, the function (a, t) I+ t<(o), (0, t) E Dc2(ao, r/4) x {t E @ : Ret > 
(2q/q + 1)) is continuous and since the function (a, t) I-+ tc(a)(w), (a, t) E 
lCDc2(c7~, r/4) x {t E C : Ret > (2q/q + 1)) is analytic for every w E I”, in 
view of Theorem 2.8, the function (CT, t) w C~(~,tI, (g, t) E llQ(~, r/4)x 
{t E @ : Ret > (2q/q + l)} is also analytic. Since, in view of Theorem 2.3.3 and 
Theorem 2.4.6 from [MU21 for every (a, t) E W x ((2q/q + l), 00) the operator 
,Q,,,) has a simple isolated eigenvalue X(a, t), applying the perturbation theory 
for linear operators (see [Ka]), we conclude that there exists an open set 

B(c0, r/4) x (@q/q + 11,~~) c k. c D c2 (TO, r/4) x C and an analytic func- ( 

tion X : ti -+ @ giving simple isolated eigenvalues for operators Ci(,,,). Since by 
Theorem 2.3.3 from [MU2], for every (a, t) E W x ((2q/q + l), oo), 
P(,, t) := P(c(0, t)) = eX(u~‘) , we deduce that the function (a, t) H P(c, t) defined 
on the set B(a0,4/4) x ((2q/q + l), oo), is real-analytic. By Theorem 3.2 and 
regularity of our system S, (see Theorem 5.10 and Theorem 4.1) for every 
CJ E W there exists exactly one h, E ((2q/q + l), CX) such that P(g, hb) = 0 and 
h, = HD(.Z,). S’ mce by Proposition 2.613 from [MU21 (aP/dt)(o, t) = 

J C(Wk,, < 0, wh ere &, is the Gibbs state (see [MU2]) for the potential t<(a), 
it therefore follows from the implicit function theorem that OI+ h,, 
~7 E B(ao, 4/4) is real-analytic. Since (TO was an arbitrary point of W, we finally 
conclude that the function c H h,, (r E, is real-analytic. Cl 
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