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Abstract

A continuous one-parameter group of unitary isometries of a right-Hilbert C�-bimodule
induces a quasi-free dynamics on the Cuntz–Pimsner C�-algebra of the bimodule and on its

Toeplitz extension. The restriction of such a dynamics to the algebra of coefficients of the

bimodule is trivial, and the corresponding KMS states of the Toeplitz–Cuntz–Pimsner and

Cuntz–Pimsner C�-algebras are characterized in terms of traces on the algebra of coefficients.

This generalizes and sheds light onto various earlier results about KMS states of the gauge

actions on Cuntz algebras, Cuntz–Krieger algebras, and crossed products by endomorphisms.

We also obtain a more general characterization, in terms of KMS weights, for the case in

which the inducing isometries are not unitary, and accordingly, the restriction of the quasi-free

dynamics to the algebra of coefficients is nontrivial.

r 2003 Elsevier Inc. All rights reserved.

MSC: 46L55

0. Introduction

Soon after the introduction of the Cuntz algebras in [C] it was noticed that the
gauge action on On had the unique equilibrium inverse temperature b ¼ log n;
[OP,Ev,BEK]. Along the same lines, the gauge action on the Cuntz–Krieger algebra
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OA was also shown to have a unique KMS state, at inverse temperature equal to the
logarithm of the spectral radius of the irreducible matrix A; [EFW]. Here we are
interested in the KMS states of the C�-algebrasTX and OX associated by Pimsner to
a right Hilbert bimodule X ; [Pim]. Having a rich, yet tractable structure, they
provide a convenient framework in which to study the interesting phenomena
that characterize the examples mentioned above and many others; see e.g.
[CP2,PWY,EL2]. Specifically, we start with a C�-algebra A and a right Hilbert A

bimodule X in which the left action is non-degenerate. Given a continuous one-
parameter group of isometries on X ; we induce quasi-free dynamics on TX and on
OX via their universal properties, cf. [Z]. We then proceed to study the equilibrium
states of these quasi-free dynamics associated to groups of isometries in terms of
their restrictions to the coefficient algebra A: Our approach underlines the role of the
Toeplitz algebra TX in its own right and not as a mere preliminary step from which
to obtain OX as a quotient. The key point, inspired in Evans construction [Ev], is that
TX acts naturally on the full Fock module over X ; and the quasi-free action is
implemented there by the Fock quantization of the given group of isometries on X :
We use this as a guidance in writing KMS states as quasi–free states, but do not rely
on it directly in our arguments. Since OX does not act in general on the Fock module,
this type of spatial (modular) implementation is lost when one looks at quasi-free
dynamics on OX alone. However, it is easy to characterize the KMS states on OX as
those on TX that factor through the quotient.
A brief summary of the contents follows. In Section 1, we collect some necessary

results about inducing traces from the coefficient algebra A to the algebra of
adjointable operators on X : In Section 2, after introducing the Pimsner algebra of a
bimodule and the quasi-free dynamics associated to a one-parameter group of
isometries of the bimodule, we study the special case of dynamics that fix the
elements of A: Under a positivity assumption on the infinitesimal generator D of the
given group of isometries, we show that the KMSb states of the quasi-free dynamics

are induced from the traces on A that satisfy a certain inequality. This inequality is
formulated in terms of a transfer operator between traces (or KMS weights) on A

and, essentially, ensures that the Fock quantization of the contraction e�bD is an
appropriate density operator. In the special case of the gauge action on the Toeplitz
Cuntz algebras, the coefficient algebra is C; and its unique trace satisfies the
inequality if and only if bXlog n; the resulting KMSb state of Tn factors through On

only for b ¼ log n: At the end of the section we show how to derive, in a unified way,
several other examples of KMS states of C�-dynamical systems previously studied
under different guises. In Section 3, we extend our results to the more general
situation in which the dynamics on the coefficient algebra A is allowed to be
nontrivial. Most of the section is devoted to inducing KMS states on A: There is no
great simplification at this point in restricting ourselves to states, so in fact we
consider KMS weights on A: For von Neumann algebras this problem was studied
by Combes and Zettl in [CZ, Section 3], who deduced the existence of induced
weights from the well-known cocycle theorem of Connes. Besides giving a slightly
different contruction which works equally well for C�-algebras, we provide also a
direct proof and indicate how Connes’ result can be derived from our results on
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induced weights. Once the induction procedure for weights has been settled, the
characterization of KMS states in terms of their restrictions to A is entirely
analogous to that of KMS states in Section 2.

1. Preliminary results on induced traces

If A is an algebra and X is a right projective A-module of finite type, then the
algebra EndAðXÞ is isomorphic to X#AHomAðX ;AÞ: Hence there exists a unique
linear map Tr : EndAðX Þ-A=½A;A� such that Trðx#f Þ ¼ f ðxÞmod ½A;A�: The
composition of any tracial linear functional t on A (one for which tðabÞ ¼ tðbaÞ)
with Tr yields an (induced) tracial linear functional Trt on EndAðXÞ: Clearly, this
construction can be applied to any unital C�-algebra A and finite Hilbert A-module
X : Our first aim in this section is to define Trt for arbitrary C

�-algebras and Hilbert
modules, and to derive some of its basic properties.
Suppose X is a right Hilbert module over a C�-algebra A and let KðXÞ be the C�-

algebra of generalized compact operators on X ; generated by the operators yx;z;
given by yx;zZ ¼ x/z; ZS; with x; z; ZAX : Let BðXÞ be its multiplier algebra, that, is,
the C�-algebra of adjointable operators on X : Recall that a bounded net fSkgk in

BðX Þ converges to SABðXÞ strictly if and only if Skx-Sx and S�
kx-S�x for every

xAX : We shall need the following result about inducing traces from A through X :
The existence and some of the properties of the induced trace Trt can be found in
[CZ, Section 2], and [CP1, Lemma 4.6], where they are derived from previous results
of Pedersen [P] about extending traces from hereditary subalgebras. We state the
relevant properties in a way that is convenient for our purposes, and we include a
self-contained, direct proof for completeness.

Theorem 1.1. Let t be a finite trace on A: For TABðXÞ; TX0; set

TrtðTÞ ¼ sup
I

X
xAI

tð/x;TxSÞ;

where the supremum is taken over all finite subsets I of X such that
P

xAI yx;xp1:

Define

Mþ
t ¼ fTX0 j TrtðTÞoNg; Nt ¼ fT j T�TAMþ

t g; Mt ¼ span Mþ
t ¼ N�

tNt:

Then

(i) Trt is strictly lower semicontinuous, moreover, if lim infk tð/x;TkxSÞX
tð/x;TxSÞ for every xAX ; then lim infk TrtðTkÞXTrtðTÞ;

(ii) if fek ¼
P

xAIk
yx;xgk is a net such that ekp1 and tð/Z; ekZSÞ-tð/Z; ZSÞ for

every ZAX (e.g. if fekgk is an approximate unit in KðXÞ), then TrtðTÞ ¼
limk

P
xAIk

tð/x;TxSÞ for TABðXÞþ; in particular, Trt can be extended to a

positive linear functional on Mt;
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(iii) for every pair x; ZAX ; we have that yx;ZAMt and Trtðyx;ZÞ ¼ tð/Z; xSÞ;
(iv) Trt is a semifinite trace; thus Nt and Mt are two-sided ideals in BðX Þ;

Mt is essential, and if S;TANt; or if SABðXÞ and TAMt; then

TrtðSTÞ ¼ TrtðTSÞ:

Proof. The proof of (i) is trivial. To prove (ii) we shall first prove that Trtðyx;xÞ ¼
tð/x; xSÞ: Suppose S ¼

P
ZAIyZ;Zp1: Then

X
ZAI

tð/Z; yx;xZSÞ ¼
X
ZAI

tð/Z; xS/x; ZSÞ ¼
X
ZAI

tð/x; ZS/Z; xSÞ ¼ tð/x;SxSÞ

and the equality Trtðyx;xÞ ¼ tð/x; xSÞ follows. The same proof shows that

Trtð
P

xAI yx;xÞ ¼
P

xAI tð/x; xSÞ for any finite set I : Hence if fekgk is as in the

formulation of (ii) and TABðXÞþ; then

TrtðT
1
2ekT

1
2Þ ¼ Trt

X
xAIk

y
T
1
2x;T

1
2x

 !
¼
X
xAIk

tð/x;TxSÞ:

Since limk TrtðT
1
2ekT

1
2Þ ¼ TrtðTÞ by property (i), (ii) follows. Part (iii) has already

been proved for x ¼ Z; the general case follows by polarization, and implies that Mt

is essential. Since yux;ux ¼ uyx;xu�; it is obvious that TrtðuTu�Þ ¼ TrtðTÞ for any

unitary uABðXÞ: Thus Trt is a trace. &

Suppose now Y is a right Hilbert A-bimodule, that is, Y is a right Hilbert A-
module together with a left action of A given by a �-homomorphism of A into BðY Þ:
Denote by BAðYÞ the subalgebra of BðYÞ consisting of A-bimodule maps. Let X be
another right Hilbert A-module. Then the tensor product X#AY is a right
Hilbert A-module and for any SABðXÞ and TABAðY Þ there is an operator
S#TABðX#AYÞ: We shall need the following property about the induction
in stages of a trace t on A through a tensor product of modules. We indicate
explicitly in the proposition the module used to induce the trace in each case, but we
drop this notation later for simplicity, and rely on the context to indicate the relevant
module.

Proposition 1.2. Let SABðXÞþ; and TABAðYÞþ: Suppose t is a finite trace on A such

that TrY
t ðTÞoN; and define a new finite trace tT on A by letting tT ðaÞ ¼ TrY

t ðaTÞ:
Then TrX#Y

t ðS#TÞ ¼ TrX
tT
ðSÞ:

Proof. We begin by constructing an approximate unit for KðX#AYÞ from
approximate units for KðX Þ and KðY Þ: For finite subsets ICX and JCY ; define
the operators eI ¼

P
xAIyx;x; eJ ¼

P
zAJ yz;z and eI ;J ¼

P
xAI ;zAJ yx#z;x#z: We claim

that if eIp1 and eJp1; then eI ;Jp1: To verify this we consider a vector Z ¼
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P
k mk#nk in X#AY ; and observe that

/eI ;JZ; ZS ¼
X
xAI

/eJdx; dxS;

where dx ¼
P

k /x; mkSnk: If eIp1; then ð/eImk; mlSÞk;lrð/mk; mlSÞk;l in the

algebra MatjI jðAÞ of jI j by jI j matrices over A; so if, in addition, eJp1 we getX
xAI

/eJdx; dxS

p
X
xAI

/dx; dxS ¼
X
k;l

/nk;/eImk; mlSnlSp
X
k;l

/nk;/mk; mlSnlS ¼ /Z; ZS;

which proves the claim. Note also that

eI ;Jðm#nÞ ¼ eIm#nþ
X
xAI

x#ðeJ � 1Þ/x; mSn:

It follows that there exists an approximate unit in KðX#AY Þ consisting of elements
of the form eI ;J ; with eIp1 and eJp1; so, by Theorem 1.1(ii),

TrX#Y
t ðS#TÞ ¼ sup

I ;J

X
xAI ;zAJ

tð/z;/x;SxSTzSÞ:

Since for fixed I ;

sup
J

X
xAI ;zAJ

tð/z;/x;SxSTzSÞ ¼
X
xAI

TrY
t ð/x;SxSTÞ ¼

X
xAI

tTð/x;SxSÞ;

recalling that supI

P
xAI tTð/x;SxSÞ ¼ TrX

tT
ðSÞ; we get TrX#Y

t ðS#TÞ ¼
TrX

tT
ðSÞ: &

We have shown that any finite trace on A can be induced to a unique, strictly
densely defined, strictly lower semicontinuous trace Trt on BðXÞ such that
Trtðyx;ZÞ ¼ tð/Z; xSÞ: Clearly one should not expect all strictly densely defined,

strictly lower semicontinuous traces on BðXÞ to be induced from finite traces on A:
In Section 3, below we generalize this extension procedure so that it applies to KMS
weights of quasi-free dynamics. By setting the dynamics to be trivial, we then obtain,
as a corollary, a bijective correspondence between densely defined lower semi-

continuous traces on /X ;XS and strictly densely defined, strictly lower semi-
continuous traces on BðX Þ:

2. KMS states on Pimsner algebras

Next we consider a Hilbert A-bimodule X ; with the purpose of studying KMS-
states on the Toeplitz–Pimsner and Cuntz–Krieger–Pimsner algebras associated in
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[Pim] to such a bimodule. The only extra assumption that we make on the bimodule
is the non-degeneracy of the left action, i.e. AX ¼ X : In particular, we do not assume
that X is full or that A is unital. We denote by iX : A-BðX Þ the homomorphism
defining the left action of A on X :
Let FðXÞ ¼ A"X"ðX#AXÞ"? be the Fock–Hilbert bimodule of X : The

Toeplitz–Pimsner algebra TX of X is, by definition, the C�-algebra of operators on
FðXÞ generated by the left multiplication operators iFðXÞðaÞ for aAA and the left

creation operators Tx for xAX ; which are given by Txðx1#?#xnÞ ¼
x#x1#?#xn: It is shown in [Pim,FR] that TX is the universal C�-algebra
generated by elements pðaÞ with aAA and Tx with xAX ; such that p : A-TX is a

�-homomorphism, X{x/Tx is an A-bilinear map, (that is, Txa ¼ TxpðaÞ and
Tax ¼ pðaÞTx), and T�

xTz ¼ pð/x; zSÞ: More precisely, the Fock realization

of these relations, given by the left action of A and the left creation operators
on FðX Þ; determines an isomorphism of the universal C�-algebra of the relations
onto TX :

Let jX : KðXÞ-TX be the injective homomorphism given by jX ðyx;ZÞ ¼ TxT�
Z :

Let also IX be the ideal in A consisting of elements aAA such that iX ðaÞAKðX Þ: The
Cuntz–Krieger–Pimsner algebra OX is, by definition, the quotient ofTX by the ideal
generated by elements of the form pðaÞ � ðjX 3iX ÞðaÞ; for aAIX :We shall usually omit
p and iX in the computations below.
Let R{t-st be a one-parameter automorphism group of A and let R{t/Ut be a

one-parameter group of isometries on X such that Utax ¼ stðaÞUtx and
/Utx;UtzS ¼ stð/x; zSÞ; as usual, both s and U are assumed to be strongly
continuous. By the universal property of the Toeplitz–Pimsner algebra there
exists, for each tAR; a unique automorphism gt of TX such that gtðaÞ ¼ stðaÞ and
gtðTxÞ ¼ TUtx: The resulting one-parameter group t/gt is strongly continuous

and is called the quasi-free dynamics associated to the module dynamics U : Since A

and jX ðKðXÞÞ are invariant under gt; so is IX ; and thus there is a quasi-free
dynamics at the level of OX ; too. When we view TX as acting on the Fock
bimodule, the automorphisms gt are implemented by the ‘Fock quantization’ of the
isometries Ut; specifically gt ¼ AdGðUtÞ; where GðUtÞ ¼ 1"Ut"ðUt#UtÞ"?:
The group of gauge transformations is a particular case of this, corresponding to the

trivial dynamics on A and the one-parameter scalar unitary group fx/eitxgtAR

on X :

Given a quasi-free dynamics on TX ; we are interested in the relation between the
ðs; bÞ-KMS states on A and the ðg; bÞ-KMS states on TX : For simplicity we shall
first consider this question under the assumption that the dynamics s on A is trivial.
This covers most examples in the literature, and has the advantage of being tractable
using the elementary properties of induced traces from the preceding section. The
case of nontrivial s requires a generalization of these properties to induced KMS-
weights, a task that we take up in the next section. Accordingly, we now restrict our
attention to one-parameter groups of isometries Ut of X such that Utax ¼ aUtx and
/Utx;UtzS ¼ /x; zS; in other words, we assume that U is a one-parameter unitary

group in BAðXÞ:
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Theorem 2.1. Let R{t-Ut be a one-parameter unitary group in BAðXÞ satisfying the

following ‘positive energy’ condition: the vectors xAX such that SpUðxÞCð0;þNÞ
form a dense subspace of X ; where SpUðxÞ is the Arveson spectrum of x with respect to

U : Let g be the corresponding dynamics on TX ; given by gtðTxÞ ¼ TUtx and gtðaÞ ¼ a;
and suppose bAð0;NÞ: If f is a ðg; bÞ-KMS state on TX ; then t ¼ fjA is a tracial

state on A and

Trtðae�bDÞptðaÞ for aAAþ; ð2:1Þ

where D is the generator of U (so that Ut ¼ eitD). Conversely, if t is a tracial state on A

such that (2.1) is satisfied, then there exists a unique ðg; bÞ-KMS state f on TX with

fjA ¼ t: The state f is determined by t through

fðTx1?Txm
T�
Zn
?T�

Z1
Þ ¼ tð/Z1#?#Zn; e�bDx1#?#e�bDxnSÞ if m ¼ n;

0 otherwise:

(

ð2:2Þ

Proof. Note that our positive energy condition is equivalent to the existence of an
increasing sequence of U-invariant submodules Yn of X having dense union and

such that DjYn
Xcn1 with cn40: It follows from this that e�bD is a selfadjoint

contraction in BAðX Þ for each b40:
Assume first that f is a ðg; bÞ-KMS state. Since the left action of A on X is non-

degenerate, the homomorphism p : A-TX is non-degenerate. Hence t ¼ fjA is a

state. Since g is trivial on A; t is a trace.
For any xAX we have gib

2

ðTxÞ ¼ T
e
�
bD
2 x

; so by the KMS condition we get

fðTxT�
Z Þ ¼ fðgib

2

ðTZÞ�gib
2

ðTxÞÞ ¼ tð/e�
bD
2 Z; e�

bD
2 xSÞ ¼ Trtðyx;Ze�bDÞ:

Thus, for aAAþ we have

Trtða
1
2yx;xa

1
2e�bDÞ ¼ Trtðy

a
1
2x;a

1
2x

e�bDÞ ¼ fðT
a
1
2x

T�

a
1
2x
Þ ¼ fða

1
2jX ðyx;xÞa

1
2Þ:

Since fða
1
2jX ð�Þa

1
2Þ is a positive linear functional on KðXÞ of norm less than or equal

to tðaÞ; by the strict lower semicontinuity of Trt we conclude that Trtðae�bDÞptðaÞ:
Let us now prove that f is completely determined by t: First note that there is an

A-bilinear isometry of X#n toTX mapping x ¼ x1#A?#Axn to Tx ¼ Tx1?Txn
; so

that A and the elements of the form TxT
�
z ; with xAX#n and zAX#m; span a dense

subspace of TX : The same computation as above shows that for x; zAX#n we have

fðTxT
�
z Þ ¼ tð/ðe�

bD
2 Þ#nz; ðe�

bD
2 Þ#nxSÞ: So, in order to prove that f is uniquely

determined by t and that (2.2) holds, it suffices to show that fðTxT�
z Þ ¼ 0 when

xAX#n; zAX#m and nam: We may assume that n4m and x ¼ x1#x2 with
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x1AX#m and x2AX#ðn�mÞ: Using the KMS condition we get

fðTxT
�
z Þ ¼ fðTx1Tx2T

�
z Þ ¼ fðTx2T

�
z Tðe�bDÞ#mx1

Þ ¼ fðTx2/z;ðe�bDÞ#mx1S
Þ:

Thus, it is enough to show that fðTxÞ ¼ 0 for every xAX#n with nX1:We claim that

the elements of the form Z� ðUtÞ#nZ span a dense subspace of X#n; this will finish
the proof because fðTZ�ðUtÞ#nZÞ ¼ 0 by virtue of the gt-invariance of f: To prove the

claim, suppose that xAX is such that SpUðxÞ is compact and 0eSpUðxÞ; and notice
that such elements are dense because of our assumption on the spectrum of U :

Choose t0AR such that the function t/1� eitt0 is non-zero on SpUðxÞ; then

x ¼ ð1� Ut0ÞUf x for every function fAL1ðRÞ such that f̂ðtÞ ¼ ð1� eitt0Þ�1 for t in a

neighbourhood of SpUðxÞ: Hence x is of the form Z� UtZ; proving the claim for

n ¼ 1: Since SpU#nðx1#?#xnÞCSpUðx1Þ þ?þ SpUðxnÞ by [A], U#n satisfies the
same spectral assumption as U ; and the above argument also proves the claim for
n41: This finishes the proof that f is determined by t:
Denote by F the operator, mapping finite traces on A into possibly infinite traces

on A; defined by ðFtÞðaÞ ¼ Trtðae�bDÞ: The second part of the theorem says that if
Ftpt for a tracial state t on A; then there exists a ðg; bÞ-KMS state f on TX such

that fjA ¼ t: Suppose for a moment that the tracial state t is of the form t ¼P
N

n¼0 Fnt0 for some finite trace t0 (such a state clearly satisfies Ftpt; in fact Fntr0).

We claim that in this case the extension is given by F ¼ Trt0ð�Gðe�bDÞÞ; where
Gðe�bDÞ ¼

P
n ðe�bDÞ#n is the operator onFðXÞ obtained by ‘Fock quantization’ of

the contraction e�bD: Indeed, it is easy to see that F is a positive linear functional
with the KMS property, but one must still verify that F is a state extending t: Using
Proposition 1.2 we see by induction that Trt0ð�ðe�bDÞ#nÞjA ¼ Fnt0; whence FjA ¼ t:
Since the left action of A on FðX Þ is non-degenerate, and F is strictly lower
semicontinuous by Theorem 1.1, this implies that F is a state. Thus f ¼ FjTX

is the

required ðg; bÞ-KMS state extending t ¼
P

N

n¼0 Fnt0:
Suppose now that t is an arbitrary tracial state such that Ftpt: For each e40

consider a one-parameter unitary group U e defined by U e
t x ¼ eietUtx: Let ge be the

associated quasi-free dynamics on TX : For the corresponding operator Fe on traces

of A we have Fe ¼ e�beF : In particular, Fetpe�bet: Then we may write t ¼P
N

n¼0 Fn
e te; with te ¼ t� Fet; indeed, since F m

e tpe�bemt-0 as m-N; we havePm
n¼0 Fn

e te ¼ t� F mþ1
e t-t: Hence there exists a ðge;bÞ-KMS state fe on TX such

that fejA ¼ t: As in [BR, Proposition 5.3.25], any weak� limit point of the states fe
as e-0þ is a ðg; bÞ-KMS state f extending t: &

The situation for ground states is slightly different, since for b ¼ N there is no
tracial condition on A: For each state o of A we define a generalized Fock state fo of
TX by foðTÞ ¼ liml oð/el;TelSÞ for TATX ; where ðelÞlAL is an approximate

unit in A: Clearly o ¼ fojA and fo is characterized by foðaÞ ¼ oðaÞ for aAA; and

foðTxT
�
Z Þ ¼ 0 for xAX#m; and ZAX#n with m or n nonzero.
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Theorem 2.2. Under the assumptions of Theorem 2.1, a state of TX is a ground state

for g; if and only if it is a generalized Fock state.

Proof. Suppose first that f is a generalized Fock state of TX : To see that whenever

bATX ; xAX#m and ZAX#n; the analytic function z/fðbgzðTxT
�
Z ÞÞ is bounded on

the upper half plane, we write

jfðbgzðTxT�
Z ÞÞj ¼ jfðbTUzxT

�
U%zZÞjpfðbb�Þ

1
2fðTU%zZT�

UzxTUzxT�
U%zZÞ

1
2;

the right-hand side vanishes for n40 because fðTU%zZT
�
U%zZÞ ¼ 0; and it is

bounded for n ¼ 0 because jjUzxjjpjjxjj for z in the upper half plane. Hence f is
a ground state.
Suppose next that f is a ground state. By [BR, Proposition 5.3.19(4)],

fðgf ðTÞ�gf ðTÞÞ ¼ 0 ðTATX Þ

for every function fAL1ðRÞ such that supp f̂Cð�N; 0Þ: By the positivity condition,
the set of all xAX such that SpUðxÞ is a compact subset of ð0;NÞ is dense in X : For
each such x one has that SpgðT�

x Þ is a compact subset of ð�N; 0Þ; and there exists a

function f as above such that gf ðT�
x Þ ¼ T�

x : Putting T ¼ T�
x one sees that fðTxT�

x Þ ¼
0 for every x in a dense set and hence for all xAX : Since the one-parameter group

U#n on X#n satisfies the same positivity condition, this implies that f is a
generalized Fock state. &

Suppose g ¼ AdGðUÞ is a quasi-free dynamics satisfying the hypothesis of
Theorem 2.1, let f be a ðg; bÞ-KMS state onTX ; and let t ¼ fjA: In the course of the
proof of Theorem 2.1 we let ðFtÞðaÞ ¼ Trtðae�bDÞ and showed that if t ¼

P
N

n¼0 Fnt0
for some finite trace t0 on A; then f has a canonical extension to a strictly
continuous state on BðFðXÞÞ: We shall see later in Theorem 3.2 that, in general, the
existence of t0 is also necessary for f to have a strictly continuous state extension to

BðFðX ÞÞ: If *f is the strongly continuous extension of f to BðFðXÞÞ; then t0ðaÞ ¼
*fðP0aP0Þ; where P0 is the projection onto the ‘vacuum’, i.e. the zeroth component

X 0 ¼ ACFðXÞ:

Definition 2.3. Let f be a ðg; bÞ-KMS state and set t ¼ fjA: Following [EL2] we say
that f is of finite type if t ¼

P
N

n¼0 Fnt0 for some finite trace t0 and we say that f is of

infinite type if FðtÞ ¼ t: Since Ftpt and Fntð1Þ ¼ Trtð1ðe�bDÞ#nÞ; we see that f is

of finite type iff Trtððe�bDÞ#nÞ-0; and of infinite type iff Trtðe�bDÞ ¼ 1:

Note that in the last part of the proof of Theorem 2.1 we showed that every ðg; bÞ-
KMS state is a weak� limit of ðge; bÞ-KMS states of finite type as the perturbation e
tends to zero.

ARTICLE IN PRESS
M. Laca, S. Neshveyev / Journal of Functional Analysis 211 (2004) 457–482 465



With the appropriate convention, the above definition makes sense also
for b ¼ N; and it is clear that KMSN-states are necessarily of finite type. As in
several other similar contexts, there is a ‘Wold decomposition’ for ðg; bÞ-KMS states
of TX :

Proposition 2.4. Under the assumptions of Theorem 2.1 let f be a ðg; bÞ-KMS

state on TX : Then there exists a unique convex decomposition f ¼ lf1 þ ð1� lÞf2

such that f1 is a ðg; bÞ-KMS state of finite type and f2 is a ðg; bÞ-KMS state of

infinite type.

Proof. By Theorem 2.1 we may carry out the decomposition at the level of traces on
A; that is, we prove that for any finite trace t on A such that Ftpt there exists a
unique decomposition t ¼ t1 þ t2 with t1 ¼

P
N

n¼0 Fnt0 and Ft2 ¼ t2: The unique-
ness is obvious, since t0 must equal t� Ft: To prove existence, set t0 ¼ t� Ft and
t2 ¼ limn Fnt (the limit exists because F nþ1tpF nt). Then

Pm
n¼0 Fnt0 ¼ t�

Fmþ1t-t� t2 weakly.
The only thing left to check is that Ft2 ¼ t2: Since t2pFnt; we have

Ft2pF nþ1t; and so Ft2pt2: For aAAþ and e40 we can find a finite subset I of

X such that SI :¼
P

xAI yx;xp1 and Trtðð1� SI Þae�bDÞoe: Since Fntpt; we have

TrFntðð1� SÞae�bDÞoe for every n: Since Fnt converges to t2 weakly, there exists n

such that

TrFntðSae�bDÞoTrt2ðSae�bDÞ þ e;

so

ðFt2ÞðaÞXTrt2ðSae�bDÞ4TrFntðSae�bDÞ � e4TrF ntðae�bDÞ � 2e

¼ðFnþ1tÞðaÞ � 2eXt2ðaÞ � 2e;

since e was arbitrary, this yields Ft2Xt2; and hence Ft2 ¼ t2: &

We now turn our attention to the KMS states of OX : Notice that if f is a ðg; bÞ-
KMS state on OX and we compose it with the quotient map TX-OX ; we obtain a
ðg; bÞ-KMS state on TX : Thus in order to describe the KMS-states on OX we only
need to describe the KMS-states on TX that vanish on the kernel of the quotient
map.

Theorem 2.5. Under the assumptions of Theorem 2.1 suppose f is a ðg; bÞ-KMS state

on TX and let t ¼ fjA: Then f defines a state on OX if and only if Trtðae�bDÞ ¼ tðaÞ
for every aAIX (where Trtðae�NDÞ ¼ 0; by convention).

Proof. Suppose first boN: From the proof of Theorem 2.1 we know that f3jX ¼
Trtð�e�bDÞ on KðXÞ: Thus, Trtðae�bDÞ ¼ tðaÞ is equivalent to fðjX ðaÞÞ ¼ fðaÞ for
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aAIX : This is clearly a necessary condition for f to define a state of OX : To see that it
is also sufficient, let P be the projection onto the zeroth component of the Fock

module FðX Þ; then b � jX ðbÞ ¼ PbP ¼ bP for bAIX so that ða � jX ðaÞÞ�ða �
jX ðaÞÞ ¼ a�a � jX ða�aÞ and hence fðða � jX ðaÞÞ�ða � jX ðaÞÞÞ ¼ 0 for every aAIX :
Since f is a KMS state, the set N ¼ fxATX j fðx�xÞ ¼ 0g is a two-sided ideal in
TX : Hence it contains the ideal generated by the elements a � jX ðaÞ with aAIX ;
which is, by definition, the kernel of the map TX-OX :
For b ¼ N; f is a generalized Fock state of TX ; so f3jX ¼ 0: If f defines a state

on OX ; then fðaÞ ¼ fða � jX ðaÞÞ ¼ 0 for aAIX : Conversely, suppose f vanishes on
IX : The generalized Fock state f extends to a state on BðFðXÞÞ with the property
fðxÞ ¼ fðPxPÞ: Then for any x; yABðFðX ÞÞ and aAIX we get fðxða � jX ðaÞÞyÞ ¼
fðPxPaPyPÞ ¼ 0; since PxPIPyPCPIP for any ideal I in A and since f vanishes
on IX : &

Remark 2.6. If X is finite over A; then IX ¼ A; so a ðg; bÞ-KMS state on TX gives
one on OX if and only if it is of infinite type. In this case, the Wold decomposition of
a KMS state corresponds to the usual essential-singular decomposition of a state
relative to the kernel of the quotient map TX-OX : However, we point out that in
the case of ON and many other interesting situations, cf. [FR,EL2], the ideal IX is
trivial so OX is actually equal to TX :

Considering the way in which the quasi-free states of the CAR algebra are
determined by their two-point functions, it is natural to refer to states given by (2.2)
as quasi-free states of TX : Following Evans [Ev], we wish to consider next a slightly
more general notion of quasi-free states; specifically, we wish to allow for a
different positive trace-class operator on each tensor factor. Not surprisingly, the
appropriate formula is easy to guess, and the crux of the matter is to determine
sufficient compatibility conditions on the various ingredients for it to actually define
a state.

Proposition 2.7. Let ftngNn¼0 be a sequence of traces on A such that t0 is a tracial

state and let fSngNn¼1 be a sequence of positive operators in BAðX Þ such that

Trtn
ðaSnÞptn�1ðaÞ for every aAAþ and nX1: Then there exists a unique gauge-

invariant state f on TX such that fjA ¼ t0 and

fðTx1?Txn
T�
zn
?T�

z1
Þ ¼ tnð/z1#?#zn;S1x1#?#SnxnSÞ

for every x1;y; xn; z1;y; znAX : If, in addition, Trtn
ðaSnÞ ¼ tn�1ðaÞ for every aAIX

and nX1; then f defines a state on OX :

Proof. We shall use an argument borrowed from the proof of [EL2, Proposition
12.6]. Let T0 be the subalgebra of gauge-invariant elements of TX ; since we are
looking for a gauge-invariant state, that is, one that factors through the conditional

expectation E ¼ 1
2p

R 2p
0

gtð�Þ dt ofTX ontoT0; it is enough to define f onT0: Let In
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be the C�-algebra generated by elements TxT
�
Z with x; ZAX#n; and let An ¼

A þ I1 þ?þ In (where A0 ¼ I0 ¼ A). Then In is an ideal in An and T0 ¼ ,nAn:

The submodules X#n are T0-invariant, and we denote by pn the natural

representation of T0 on X#n: Then p0"?"pn�1 is faithful on An�1 and
zero on In; so An�1-In ¼ 0: Consider the positive linear functional cn on An

defined by

cnðxÞ ¼ Trtn
ðpnðxÞðS1#?#SnÞÞ

for nX1; with c0 ¼ t0: Since pnðxÞ ¼ pn�1ðxÞ#1 for every xAAn�1; we have
cnjAn�1

pcn�1 for nX1 by Proposition 1.2, and we may define selfadjoint linear

functionals fn on An ¼ An�1"In by induction: fn ¼ fn�1"cn; with f0 ¼ t0: Since
fnjA ¼ t0 is a state and the left action of A is non-degenerate, to prove that fn is a

state it is enough to check that it is positive. We shall prove by induction that
fnXcn: This is true for n ¼ 0; since c0 ¼ f0: If this is true for n � 1; then
cnjAn�1

pcn�1pfn�1: For xAAn�1 and yAIn we have

fnððx þ yÞ�ðx þ yÞÞ ¼ fn�1ðx�xÞ þ cnðx�y þ y�x þ y�yÞ

Xcnðx�x þ x�y þ y�x þ y�yÞ;

so fnXcn: Thus each fn is a state, and since the sequence is coherent in the sense
that fnjAn�1

¼ fn�1; there exists a unique state f on T0 such that fjIn
¼ fnjIn

¼
cnjIn

:

Suppose now that Trtn
ðaSnÞ ¼ tn�1ðaÞ for every aAIX ; we shall prove that f is

zero on the two-sided ideal generated by the elements a � jX ðaÞ; for aAIX : Let Tn;m

be the linear span of elements of the form TxT�
z ; with xAX#n and zAX#m (where

T0;0 ¼ A). We must prove that fðxayÞ ¼ fðxjX ðaÞyÞ for xATn;m; yATn0;m0 : Since
aTx ¼ jX ðaÞTx for every xAX ; we have xay ¼ xjX ðaÞy if either n040; or m40: Thus
we may restrict our attention to the case n0 ¼ m ¼ 0: Because of gauge-invariance we
also have fðxayÞ ¼ fðxjX ðaÞyÞ ¼ 0 if nam0: So it remains to consider only the case

when n ¼ m0; m ¼ n0 ¼ 0: Let x ¼ Tx0 and y ¼ T�
z0
; with x0; z0AX#n: Denoting

S1#?#Sn by S̃n; for any x; zAX we have

fðTx0 jX ðyx;zÞT�
z0
Þ ¼fðTx0TxT�

z T�
z0
Þ ¼ tnþ1ð/z0#z; S̃nx0#Snþ1xSÞ

¼Trtnþ1ð/z0; S̃nx0SSnþ1yx;zÞ;

so for any aAIX we get

fðTx0 jX ðaÞT�
z0
Þ ¼Trtnþ1ð/z0; S̃nx0SSnþ1aÞ ¼ tnða/z0; S̃nx0SÞ ¼ tnð/z0a

�; S̃nx0SÞ

¼fðTx0T
�
z0a� Þ ¼ fðTx0aT�

z0
Þ: &
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In order to illustrate the range of application of the general theory we discuss
several situations that have appeared in the literature and which are unified by the
present approach. Other systems such as those studied in [E1,E2,MWY] can be
analyzed in a similar way.

Example 2.8 (Olesen and Pedersen [OP], Bratteli et al. [BEH], Evans [Ev]). Let
X ¼ H be a Hilbert space considered as a Hilbert bimodule over A ¼ C: ThenTX is
the Toeplitz–Cuntz algebra Tn and OX is the Cuntz algebra On corresponding to
n ¼ dim H: If t is the unique tracial state on A; then Trt is the usual trace on BðHÞ:
Let fUt ¼ eitDgtAR be a one-parameter unitary group on H; and let g be the

corresponding quasi-free dynamics. Then our results say that a ðg; bÞ-KMS state on

TH exists if and only if Trðe�bDÞp1; and such a state extends to a normal state on

BðFðHÞÞ if and only if Trðe�bDÞo1: If dim HX2 and bX0 (or bp0), then the

condition Trðe�bDÞp1 implies that D is positive (resp. negative) and non-singular, so
the ðg; bÞ-KMS state is unique. If H is infinite-dimensional, then IH ¼ 0 and OH ¼
TH : If dim HoN; then IH ¼ C; so a ðg; bÞ-KMS state on OH exists if and only if

Trðe�bDÞ ¼ 1:

Example 2.9 (Exel and Laca [EL2]). Let T ¼ ðTðj; kÞÞj;kAI be a (possibly infinite)

0� 1 matrix with no identically zero columns and rows. Consider the rows qj ¼
ðTðj; kÞÞkAI as elements of lNðIÞ; and let A be the C�-algebra they generate. Let X be

the Hilbert A-bimodule generated as a right Hilbert A-module by vectors xj ; jAI ;

such that /xj; xkS ¼ djkqj; qjxk ¼ Tðj; kÞxk: By [Sz] the algebra OX is the

Cuntz–Krieger algebra corresponding to the matrix T as in [EL1]. If F is a finite
subset of I ; then

P
jAF yxj ;xj

is the projection onto the right submodule generated by

xj; jAF : It follows that if t is a trace on A; then TrtðSÞ ¼
P

j tð/xj;SxjSÞ for

any SABðXÞþ:
Let the dynamics on X be given by Utxj ¼ Nit

j xj for some choice Nj41 for

j ¼ 1; 2;y; which ensures that U satisfies the positivity condition. Then ðg; bÞ-KMS
states on TX are in one-to-one correspondence with states on A such thatP

j N
�b
j tð/xj; axjSÞptðaÞ for any aAAþ: Any positive element in A can be

approximated by a linear combination with positive coefficients of projections
qðY ;ZÞ ¼

Q
lAY ql

Q
kAZð1� qkÞ; where Y and Z are finite subsets of I : Note that

qðY ;ZÞxj ¼ TðY ;Z; jÞxj; where

TðY ;Z; jÞ ¼
Y
lAY

Tðl; jÞ
Y
kAZ

ð1� Tðk; jÞÞ:

Thus ðg; bÞ-KMS states on TX correspond to states t on A such that

X
j

N
�b
j TðY ;Z; jÞtðqjÞptðqðY ;ZÞÞ for all finite Y ;ZCI ; ð2:3Þ
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namely, to b-subinvariant states of A as defined in [EL2, 12.3]. Notice that
our result bypasses the intermediate step of having to consider measures on path
space that are rescaled by the partial action and goes straight to the
coefficient algebra. The linear span of projections qðY ;ZÞ such that the
function I{j/TðY ;Z; jÞ has finite support is dense in IX : So to obtain a
state on OX inequality (2.3) must be equality for all Y and Z such that the
function TðY ;Z; �Þ has finite support. We point out that the dynamics
arising from such infinite matrices do not satisfy in general the fullness assumption
of [PWY].

Example 2.10 (Bratteli et al. [BEH,BEK]). Let A be a unital C�-algebra, p a full
projection in A; a an injective �-endomorphism on A such that aðAÞ ¼ pAp: Consider
the semigroup crossed product C�-algebra AsaN: Let g be the periodic dynamics
on AsaN defined by the dual action of T: It is known that AsaN can be
considered as a Cuntz–Krieger–Pimsner algebra: the module X is the space Ap with
left and right actions of A given by a � x � b ¼ axaðbÞ; and with inner product

/x; zS ¼ a�1ðx�zÞ: Then g is the gauge action. Since p is full, the module is finite, so
IX ¼ A: Thus ðg; bÞ-KMS states on TX (resp. OX ) correspond to traces t such that

e�bTrtðaÞptðaÞ (resp. e�bTrtðaÞ ¼ tðaÞ) for aAAþ: Since p is full, to prove an
equality/inequality for traces on A it is enough to check it on pAp ¼ aðAÞ: Noting
that p ¼ yp;p in BðXÞ; for any aAA we get TrtðaðaÞÞ ¼ TrtðaðaÞyp;pÞ ¼
tð/p; aðaÞpSÞ ¼ tðaÞ: Thus ðg; bÞ-KMS states on TX (resp. OX ) correspond to

traces t on A such that e�btpt3a (resp. e�bt ¼ t3a). It is proved in [BEH] that any
closed subset of ð0;þNÞ can be realized as the set of possible temperatures of the
system ðOX ; gÞ for a convenient choice of AF-algebra A and endomorphism a with
OX is simple. In [BEK] a similar construction yields quite arbitrary choices of the
simplex of b-KMS states for each b:

Remark 2.11. A question raised in the introduction of [EL2] is whether the Toeplitz
Cuntz–Krieger algebra of an infinite matrix can have KMS states of finite and of
infinite type coexisting at a given finite inverse temperature. We would like to shed
some light on the analogous question for the quasi–free dynamics on the Toeplitz–
Pimsner algebras. Under the same assumptions of Theorem 2.1, let b0oN and
suppose that f is a ðg; b0Þ-KMS state with restriction t to A: For each b4b0; we then
have that FbtpFb0tpt so t determines a ðg; bÞ-KMS state fb of TX ; which cannot

be of infinite type because of our positivity assumption. The parameters of Example
2.10 can be adjusted to get also a ðg; bÞ-KMS state of OX ; and the resulting infinite
type ðg; bÞ-KMS state of TX will thus coexist, at inverse temperature b; with the
finite part of the decomposition of fb: A further strengthening of the positivity

assumption, namely, the assumption that DXc1 for some c40; yields

Fn
btpe�nðb�b0ÞcF n

b0
t; from which one readily sees that the state fb above is of finite

type for b4b0: This gives a Pimsner algebra version of the ‘cooling lemma’
[EL2, Lemma 15.1], which implies that KMS states of finite type are weak� dense
in all KMS states.
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3. KMS weights on module algebras

The theory of KMS weights on C�-algebras is similar to (and is based on) the
theory of normal weights on von Neumann algebras. We refer the reader to [St,K]
for the basic definitions. Suppose R{t/st is a one-parameter automorphism group
of a C�-algebra A: We assume that s is continuous in the sense that the function
R{t/stðaÞ is norm-continuous for all aAA: The same assumption is made for more
general one-parameter group of isometries on Banach spaces. In several places where
we consider von Neumann algebras the continuity assumption is weaker: the
function R{t/stðaÞ is weakly (operator) continuous.
Let f be a weight on A: As usual, we set

Mþ
f ¼ faAAþ j fðaÞoNg; Nf ¼ faAA j a�aAMþ

fg and

Mf ¼ spanMþ
f ¼ N�

fNf

and extend f to a linear functional onMf:We say that f is a ðs;bÞ-KMS weight if f
is lower semicontinuous on Aþ; densely defined (i.e. M

þ
f is dense in Aþ), s-invariant,

and satisfies the KMS-condition in the form

fðx�xÞ ¼ fðs
�ib
2

ðxÞs
�ib
2

ðxÞ�Þ for xADðs�ib
2

Þ;

where Dðs�ib
2

Þ is the domain of definition of sib
2

:

Given such a weight f; the well known GNS construction produces a Hilbert
space Hf and a linear map Lf :Nf-Hf such that LfðNfÞ is dense in Hf and

ðLfðxÞ;LfðyÞÞ ¼ fðy�xÞ: There is a representation pf of A on Hf; defined by letting

pfðxÞLfðyÞ ¼ LfðxyÞ; and the set Uf ¼ LfðNf-N�
fÞ is a left Hilbert algebra with

operations

LfðxÞLfðyÞ ¼ LfðxyÞ; LfðxÞ# ¼ Lfðx�Þ:

The associated von Neumann algebraLðUfÞ ¼ pfðAÞ00 is equipped with a canonical
normal semifinite faithful (n.s.f.) weight F: Then f ¼ F3pf and sFt 3pf ¼ pf3s�bt;

where sFt is the modular group of F:
Any lower semicontinuous densely defined weight on A extends uniquely to a

strictly lower semicontinuous weight %f on the multiplier algebra MðAÞ: If f is

a KMS-weight, then %f ¼ F3 %pf; where %pf is the canonical extension of pf to a

representation of MðAÞ: The weight %f is only strictly densely defined, and the one-

parameter automorphism group s is only strictly continuous on MðAÞ; so %f is not a

KMS-weight in the sense of the definition above. However, since %f ¼ F3 %pf; %f
satisfies a form of the KMS-condition, so that its restriction to a s-invariant
subalgebra B of MðAÞ is a KMS-weight if sjB is continuous and %fjB is densely

defined.
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We now consider a right Hilbert A-module X and a continuous one-parameter
group of isometries R{t/Ut of X such that /Utx;UtzS ¼ stð/x; zSÞ: Then
UtðxaÞ ¼ ðUtxÞstðaÞ; and we define a dynamics g ¼ Ad U on KðXÞ by gtðTÞ ¼
UtTU�t: We shall extend Theorem 1.1 to the present situation, for which we need to
associate an induced weight kf on BðX Þ to each ðs; bÞ-KMS weight f on A: We give

two equivalent constructions of this induced weight.

In the first construction, we replace A by /X ;XS so we may assume that X is full.
Let p : A-BðHÞ be an arbitrary representation of A such that there exists a n.s.f.

weight F on L ¼ pðAÞ00 with f ¼ F3p and sFt 3p ¼ p3s�bt: Set M ¼ pðAÞ0: Consider
the Hilbert space HX ¼ X#AH and the induced representation r of BðX Þ on HX : Set

N ¼ rðBðXÞÞ00: Note that M acts faithfully on HX ; and N 0 ¼ M in BðHX Þ: Let now
F0 be an arbitrary n.s.f. weight on M and C the unique n.s.f. weight on N such that

DðC=F0Þit ¼ U�bt#DðF=F0Þit in BðHX Þ;

where Dð�=�Þ denotes the spatial derivative, cf. [Co2,St]. We then set kf ¼ C3r:
Let us compute kf explicitly on a dense subalgebra of KðXÞ: Let zAH be a F0-

bounded vector, that is, the map Rz :HF0-H; given by RzðLF0 ðxÞÞ ¼ xz for xANF0 ;

is bounded. For any xAX the vector x#zAHX is F0-bounded as well and Rx#zZ ¼
x#RzZ for ZAHF0 : Then if xADðUib

2

Þ and zADðDðF=F0Þ
1
2Þ is F0-bounded, we get by

definition

CðRx#zR
�
x#zÞ ¼ jjDðC=F0Þ

1
2ðx#zÞjj2

¼ jjUib
2

x#DðF=F0Þ
1
2zjj2

¼ðDðF=F0Þ
1
2z; pð/Uib

2

x;Uib
2

xSÞDðF=F0Þ
1
2zÞ:

At this point it is convenient to introduce the form FðxsFi
2

ðyÞÞ; whose relevant

properties are stated in the following essentially known lemma.

Lemma 3.1. Let F be a n.s.f. weight on a von Neumann algebra M; with modular

group s: Then the bilinear form ð�; �ÞF :MF � Dðs� i
2
Þ-C; defined by ðx; yÞF ¼

Fðxs� i
2
ðyÞÞ; extends to a bilinear form on MF � M with the following properties:

(i) for xAMF; ðx; �ÞF is a normal linear functional on M; if xAMþ
F ; then ðx; �ÞF is

positive and ðx; �ÞFpjjxjjF;
(ii) for x; yAMF; ðx; yÞF ¼ ðy; xÞF;
(iii) for x1; x2ANF-Dðs i

2
Þ; ðx�

2x1; �ÞF ¼ Fðs i
2
ðx1Þ � s i

2
ðx2Þ�Þ;

(iv) if fxkgk is a net in Mþ
F-Dðs� i

2
Þ such that xkp1; the set fs� i

2
ðxkÞgk is bounded in

norm, and s� i
2
ðxkÞ-1 strongly, then FðxÞ ¼ limk ðxk; xÞF for any xAMþ:
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Proof. Consider the GNS-representation L :NF-H as described above. Recall

that, in terms of the modular group s; the modular involution J is given by JLðxÞ ¼

Lðs i
2
ðxÞ�Þ for xANF-Dðs i

2
Þ: It has the properties

Jy�JLðxÞ ¼ Lðxs� i
2
ðyÞÞ 8xANF; 8yADðs� i

2
Þ

and

JyJLðxÞ ¼ xJLðyÞ 8x; yANF:

Now if x ¼ x�
2x1; x1; x2ANF; yADðs� i

2
Þ; then

ðx; yÞF ¼ ðx�
2x1; yÞF ¼ ðLðx1s� i

2
ðyÞÞ;Lðx2ÞÞ ¼ ðJy�JLðx1Þ;Lðx2ÞÞ:

This shows that ðx; �ÞF extends to a normal linear functional on M: Moreover, if

xX0; then we can take x1 ¼ x2 ¼ x
1
2 and conclude that ðx; yÞFX0 for yX0: If

x; yAMþ
F ;

ðx; yÞF ¼ðJyJLðx
1
2Þ;Lðx

1
2ÞÞ ¼ ðJy

1
2JLðx

1
2Þ; Jy

1
2JLðx

1
2ÞÞ

¼ ðx
1
2JLðy

1
2Þ; x

1
2JLðy

1
2ÞÞ

¼ ðJxJLðy
1
2Þ;Lðy

1
2ÞÞpjjxjjðLðy

1
2Þ;Lðy

1
2ÞÞ ¼ jjxjjFðyÞ:

Thus part (i) is proved. Part (ii) is already proved for positive x and y; the general
case follows by linearity. If x2; x1ANf-Dðs i

2
Þ; we have

ðx�
2x1; yÞF ¼ðJy�JLðx1Þ;Lðx2ÞÞ ¼ ðyJLðx2Þ; JLðx1ÞÞ

¼ ðyLðs i
2
ðx2Þ�Þ;Lðs i

2
ðx1Þ�ÞÞ ¼ Fðs i

2
ðx1Þys i

2
ðx2Þ�Þ;

which proves (iii). It remains to prove (iv). Let xAMþ: Since fs� i
2
ðxkÞ�xs� i

2
ðxkÞgk

converges weakly to x; and x2
krxk; we have

FðxÞp lim inf
k

Fðs� i
2
ðxkÞ�xs� i

2
ðxkÞÞ ¼ lim inf

k
ðx2

k; xÞFp lim inf
k

ðxk; xÞF:

On the other hand, ðxk; xÞFpFðxÞ by (i), hence FðxÞ ¼ limk ðxk; xÞF: This finishes
the proof of Lemma 3.1. &
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Returning to the computation of C; for any aAL we get

ðDðF=F0Þ
1
2z; aDðF=F0Þ

1
2zÞ ¼ ðDðF=F0Þ

1
2z;DðF=F0Þ

1
2sFi

2

ðaÞzÞ

¼ FðRzR
�
sF

i
2

ðaÞzÞ ¼ ðRzR
�
z ; a�ÞF:

Thus

CðRx#zR
�
x#zÞ ¼ ðRzR

�
z ; pð/Uib

2

x;Uib
2

xSÞÞF: ð3:1Þ

Note that R�
x#zðx0#z0Þ ¼ R�

zpð/x; x0SÞz0: So if we introduce an operator Tx;a on

HX defined by Tx;aðx0#z0Þ ¼ x#apð/x; x0SÞz0; then Rx#zR
�
x#z ¼ Tx;RzR

�
z
: Then

(3.1) implies that

CðTx;aÞ ¼ ða; pð/Uib
2

x;Uib
2

xSÞÞF

for any a in the algebra spanfRz1R
�
z2
j ziADðDðF=F0Þ

1
2Þ is F0-bounded; i ¼ 1; 2g: If

we now apply this to an approximate unit ais1 and use Lemma 3.1 (i)–(ii) together
with the property Tx;ai

srðyx;xÞ; we conclude that

kfðyx;xÞ ¼ fð/Uib
2

x;Uib
2

xSÞ ð3:2Þ

for every xADðUib
2

Þ such that /Uib
2

x;Uib
2

xSAMf:

In our second construction of kf; we shall show directly that there is a linear

functional satisfying property (3.2) on a dense subalgebra of KðX Þ; and then extend
it to a weight on the whole algebra using the GNS-representation. For this we
introduce the following sets:

Cf ¼faAA j a is s-analytic and szðaÞANf-N�
f8zACg;

X0 ¼fxAX j x is U-analyticg;

Xf ¼X0Cf;

U ¼ spanfyx;z j x; zAXfg:

Note that if xADðUzÞ and zADðU%zÞ; then yx;zADðgzÞ and gzðyx;zÞ ¼ yUzx;U %zz;
moreover, at the level of the coefficient algebra, /z; xSADðszÞ and szð/z; xSÞ ¼
/U%zz;UzxS: Thus Cf is a dense �-subalgebra of A; Xf is a dense subspace of X ;

and U a dense �-subalgebra of KðXÞ consisting of g-analytic elements. Choose
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an approximate unit fek ¼
P

ZAIk
yZ;Zgk in U and define

kðxÞ ¼ lim
k

X
ZAIk

fð/Uib
2

Z; xUib
2

ZSÞ ð3:3Þ

for xAU: If Z; xADðUib
2

Þ then

fð/Uib
2

Z; yx;xUib
2

ZSÞ ¼fð/Uib
2

Z; xS/x;Uib
2

ZSÞ ¼ fð/Uib
2

x; ZS/Z;Uib
2

xSÞ

¼fð/Uib
2

x; yZ;ZUib
2

xSÞ; ð3:4Þ

since /x;Uib
2

ZSADðs
�ib
2

Þ and s
�ib
2

ð/x;Uib
2

ZSÞ ¼ /Uib
2

x; ZS: Hence for xAXf

kðyx;xÞ ¼ lim
k

X
ZAIk

fð/Uib
2

Z; yx;xUib
2

ZSÞ ¼ lim
k

fð/Uib
2

x; ekUib
2

xSÞ

¼fð/Uib
2

x;Uib
2

xSÞ;

so k satisfies (3.2). It is easy to check that k has the following properties:

(i) k is gz-invariant for any zAC;
(ii) kðxyÞ ¼ kðg

�ib
2

ðyÞgib
2

ðxÞÞ for any x; yAU;

(iii) kðyxa;xÞ ¼ ð/Uib
2

x;Uib
2

xS; aÞf for any xAXf and aACf:

(iv) the function z/kðgzðxÞyÞ is analytic for any x; yAU:

Note that by definition ðx; yÞf ¼ fðxsib
2

ðyÞÞ as the modular group of f is sft ¼ s�bt:

Since kðx�xÞX0 by (3.3), there exist a Hilbert space H and a linear map L :U-H

such that LðUÞ is dense in H; and ðLðxÞ;LðyÞÞ ¼ kðy�xÞ: The kernel of this map is
the set

KerL ¼ fxAU j kðx�xÞ ¼ 0g ¼ fxAU j kðyxÞ ¼ 0 8yAUg;

which is obviously a gz-invariant left ideal in U: Property (ii) of k implies that if x is
in this ideal, then also gib

2

ðx�Þ; and hence also x�; is in this ideal. Thus the ideal is self-

adjoint and two-sided, and it follows that LðUÞ has the canonical structure of an
algebra with involution, in particular, LðxÞLðyÞ ¼ LðxyÞ; and LðxÞ# ¼ Lðx�Þ:
Let us check that LðUÞ is a left Hilbert algebra. It is obvious that

ðLðxÞLðyÞ;LðzÞÞ ¼ ðLðyÞ;LðxÞ#LðzÞÞ: The map LðyÞ/LðxÞLðyÞ is a bounded
map for each xAU by (3.3). In fact, we see that the norm of the mapping is not
bigger than jjxjj: Since k is gz-invariant, property (ii) of k can be rewritten as

ðLðx�Þ;LðyÞÞ ¼ ðLðgibðy�ÞÞ;LðxÞÞ: ð3:5Þ
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It follows LðxÞ/Lðx�Þ is a closable operator. It remains to prove that

LðUÞ2 is dense in LðUÞ: Let fekgk be an approximate unit in U: We

claim that LðekÞLðxÞ-LðxÞ for any xAU: Let x ¼ yx;z: Then by property (iii)

of k

jjLðxÞ � LðekÞLðxÞjj2 ¼ jjLðyx�ekx;zÞjj
2 ¼ kðyz/x�ekx;x�ekxS;zÞ

¼ ð/Uib
2

z;Uib
2

zS;/x� ekx; x� ekxSÞf:

By Lemma 3.1, ð/Uib
2

z;Uib
2

zS; �Þf is a bounded linear functional on A; so fLðekxÞgk

converges to LðxÞ: This proves the claim and completes the proof that LðUÞ is a left
Hilbert algebra.
Let C be the canonical n.s.f. weight on the associated von Neumann algebra

LðUÞ: For each xAU let rðxÞ be the operator of left multiplication by LðxÞ: We
have already shown that jjrðxÞjjrjjxjj: Hence r extends by continuity, first to a
representation of KðXÞ; and then to a representation of BðXÞ: Finally, we define
kf ¼ C3r:
Let us compute the modular group of C: By property (iv) of k the vector-valued

function C{z/LðgzðxÞÞ is analytic. Hence there exists a non-singular positive
operator D on H such that DzLðxÞ ¼ LðgibzðxÞÞ: Let J be the anti-linear involution

defined by JLðxÞ ¼ Lðg�ib
2

ðxÞÞ#: Then JD
1
2LðxÞ ¼ LðxÞ#; from which we conclude

that DC ¼ D: Thus sCt 3r ¼ r3g�bt: Since kfðy�xÞ ¼ ðLðxÞ;LðyÞÞ ¼ kðy�xÞ by

definition of C; we see that kfjKðXÞ is a ðg; bÞ-KMS weight such that property

(3.2) is satisfied for all xAXf/Xf;XfS:

We can now state and prove the following generalization of Theorem 1.1
for KMS weights. In particular, we will show that both constructions give the same
weight.

Theorem 3.2. Let f be a ðs; bÞ-KMS weight on A: For TABðX Þ; TX0; set

kfðTÞ ¼ sup
X
xAI

fð/Uib
2

x;TUib
2

xSÞ; ð3:6Þ

where the supremum is taken over all finite subsets I of DðUib
2

Þ such that

/Uib
2

x;Uib
2

xSAMþ
f for every xAI and

P
xAI yx;xp1: Then

(i) kfjKðX Þ is a ðg; bÞ-KMS weight on KðXÞ; and kf is its strictly lower

semicontinuous extension to BðX Þ;
(ii) there exists an approximate unit fek ¼

P
xAIk

yx;xgk in KðXÞ such that

xADðUib
2

Þ-DðU
�ib
2

Þ and /Uib
2

x;Uib
2

xSAMþ
f for every xAIk; the net fgib

2

ðekÞgk

is bounded in norm and converges strictly to 1; for any such approximate
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unit we have

kfðTÞ ¼ lim
k

X
xAIk

fð/Uib
2

x;TUib
2

xSÞ for each TX0;

(iii) if xADðUib
2

Þ; then kfðyx;xÞ ¼ fð/Uib
2

x;Uib
2

xSÞ; and if this number is finite, then

ðyx;x; �Þkf ¼ fð/Uib
2

x; � Uib
2

xSÞ;

moreover, if X̃fCXf is a dense Uz-invariant Cf-submodule, then kfjKðXÞ is the

unique ðg; bÞ-KMS weight such that kfðyx;xÞ ¼ fð/Uib
2

x;Uib
2

xSÞ for xAX̃f;

(iv) if the module is full, then the mapping f/kfjKðX Þ defines a one-to-one

correspondence between ðs; bÞ-KMS weights on A and ðg; bÞ-KMS weights

on KðXÞ:

Proof. First note that an approximate unit with the properties stated in part (ii)

always exists. Moreover, if X̃fCXf is a dense Uz-invariant Cf-submodule, then such

an approximate unit can be found in the algebra *U ¼ spanfyx;z j x; zAX̃fg: Indeed,
let ffk ¼

P
ZAIk

yZ;Zgk be an approximate unit in *U: It is well-known that if we set

ẽk ¼ 1ffiffiffi
p

p
R
R

e�t2gtðfkÞdt; then fẽkgk is an approximate unit, the net fgzðẽkÞgk is

bounded and converges strictly to 1 for any zAC: But since each fk is
already g-analytic, we can replace the integral by a finite sum such that the
element ek; which we thus obtain, is arbitrarily close (in norm) to ẽk; while gib

2

ðekÞ is

close to gib
2

ðẽkÞ:

We have already shown that there exists a strictly lower semicontinuous weight k
on BðX Þ such that kjKðX Þ is ðg; bÞ-KMS and kðyx;xÞ ¼ fð/Uib

2

x;Uib
2

xSÞ for xAX̃f: To

prove the theorem it is enough to show that k satisfies (iii). Indeed, by Lemma
3.1(i),(iv), k can then be defined as in part (ii) and (3.6). In particular, kf ¼ k; so kf
has properties (i)–(iii). Part (iv) follows then from the uniqueness result in (iii), since
by symmetry for any ðg; bÞ-KMS weight c on KðXÞ we can define a strictly lower
semicontinuous weight kc on MðAÞ such that kcjA is a ðs; bÞ-KMS weight and

kcð/x; xSÞ ¼ cðyU�ib
2

x;U�ib
2

xÞ for any xADðU�ib
2

Þ:

To show (iii), note that for any x; zAX̃f

ðyz;z; yx;xÞk ¼ fð/Uib
2

z; yx;xUib
2

zSÞ:
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Since both sides above are continuous functions of x; the equality holds for any

zAX̃f and xAX ; and, using (3.4), we obtain that

ðx; yx;xÞk ¼ fð/Uib
2

x; xUib
2

xSÞ ð3:7Þ

for every xA *U and xADðUib
2

Þ: Choosing an approximate unit in *U satisfying the

conditions of Lemma 3.1(iv) we conclude that

kðyx;xÞ ¼ fð/Uib
2

x;Uib
2

xSÞÞ

for any xADðUib
2

Þ: If this number is finite, by Lemma 3.1(ii) we can rewrite (3.7) as

ðyx;x; xÞk ¼ fð/Uib
2

x; xUib
2

xSÞ

for any xA *U: Since both sides above are strictly continuous linear functionals on
BðX Þ; the equality holds for all xABðX Þ: By Lemma 3.1(iv) the weight k is

completely determined by linear functionals ðyx;x; �Þk for xAX̃f; from which the

uniqueness result follows. &

Remark 3.3. (i) In the particular case when A is a full corner pBp; X ¼ Bp; g a one-
parameter automorphism group of B leaving the projection pAMðBÞ invariant, st ¼
gtjA; Utx ¼ gtðxÞ; the weight kfjKðX Þ is an extension of the ðs; bÞ-KMS weight f to a

ðg; bÞ-KMS weight on B; and the map c/kcjA going from KMS-weights on B to

KMS-weights on A is just the restriction map. Thus Theorem 3.2 says that any
ðs; bÞ-KMS weight on A can be uniquely extended to a ðg; bÞ-KMS weight on B:
Using the linking algebra the general case could be reduced to this situation.
Namely, kfjKðXÞ is a unique weight c on KðX Þ such that

F ¼
c 0

0 f


 �

is an ða; bÞ-KMS weight on the linking algebra

C ¼
KðXÞ X

%X A


 �
;

where

at

x x
%z a


 �
 �
¼

gtðxÞ Utx

Utz stðaÞ


 �
:

(ii) The induction (or extension) results have natural counterparts for von
Neumann algebras, which can be proved by the same methods or deduced from our
results for C�-algebras (see also [CZ]).
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(iii) The fact that the weight given by our first construction of the induced weight
kf is independent of the choice of representation p is essentially equivalent to the

main result of [Sa].
(iv) The main point in our first construction of the induced weight kf is an implicit

application of Connes’ theorem on existence and uniqueness of a weight with given
Radon–Nikodym cocycle [Co1, Theorem 1.2.4]. On the other hand, our second
construction uses nothing beyond the basic definitions of the modular theory, and
the induction results we have obtained can be used in turn to give an alternative
proof of Connes’ result. Indeed, let M be a von Neumann algebra, f a n.s.f. weight
on M with modular group s; R{t/ut a strongly continuous unitary 1-cocycle for s:
Then by our results (and remark (ii) above) there exists a unique n.s.f. weight F on
Mat2ðMÞ with modular group

sFt
a b

c d


 �
 �
¼

utstðaÞu�
t utstðbÞ

stðcÞu�
t stðdÞ


 �
;

such that F
0 0
0 d


 �
 �
¼ fðdÞ for any dAMþ: Since p ¼ e22 is in the centralizer of

F; FðxÞ ¼ FðpxpÞ þ Fðð1� pÞxð1� pÞÞ for any xAMat2ðMÞþ: So if we set

cðaÞ ¼ F
a 0

0 0


 �
 �
;

then

F ¼
c 0

0 f


 �
:

Thus c is a n.s.f. weight with Radon–Nikodym cocycle ðDc : DfÞt ¼ ut:

The following result is an analogue of Proposition 1.2 on induction in stages for

KMS-weights. We use the notation kU
f instead of kf to indicate explicitly the

dynamics used to induce the weight.

Proposition 3.4. Let s (resp. g) be a one-parameter automorphism group of a C�-
algebra A (resp. B), X a right Hilbert A-module, Y a Hilbert A-B-module, U (resp. V )
a one-parameter group of isometries of X (resp. Y ) such that /Utx;UtzS ¼
stð/x; zSÞ; /Vtx;VtzS ¼ gtð/x; zSÞ; Vtax ¼ stðaÞVtx: Let f be a ðg; bÞ-KMS

weight on B: Set c ¼ kV
f jA: Suppose c is densely defined, so it is a ðs; bÞ-KMS weight

on A: Then

kU#V
f ðS#1Þ ¼ kU

c ðSÞ

for any SABðXÞ; SX0:
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Proof. We will give a proof based on the properties of spatial derivatives, but we
point out that a proof along the lines of that of Proposition 1.2 is also possible.

Replacing A by /X ;XS; then Y by AY and then B by /Y ;YS we may assume
that the modules are full. Let p : B-BðHÞ be an arbitrary representation of B such

that there exists a n.s.f. weight F on L ¼ pðBÞ00 such that f ¼ F3p and sFt 3p ¼
p3g�bt: We then consider the induced representations of BðY Þ on HY ¼ Y#BH and

of BðX#AYÞ on HX#Y ¼ X#AY#BH; and we consider the following von
Neumann algebras:

(1) M ¼ L0 in BðHÞ;
(2) NY ¼ BðY Þ00; N0 ¼ A00; and M0 ¼ A0 in BðHY Þ;
(3) NX#Y ¼ BðX#Y Þ00; NX ¼ BðXÞ00 in BðHX#Y Þ:

The algebra M acts faithfully on HY and HX#Y ; M0 acts faithfully on HX#Y ¼
ðHY ÞX ; and

N 0
Y ¼M in BðHY Þ;

N 0
X#Y ¼M; N 0

X ¼ M0 in BðHX#Y Þ:

Choose a n.s.f. weight F0 on M: Let CY be the n.s.f. weight on NY such that

DðCY=F0Þit ¼ V�bt#DðF=F0Þit on HY :

Set C0 ¼ CY jN0
; so that c ¼ C0jA: Let F0

0; CX#Y and CX be the n.s.f. weights on

M0; NX#Y and NX ; respectively, such that

DðC0=F0
0Þ ¼ DðCY=F0Þ on HY ;

DðCX#Y=F0Þit ¼ U�bt#V�bt#DðF=F0Þit on HX#Y ;

DðCX=F0
0Þ

it ¼ U�bt#DðC0=F0
0Þ

it ¼ DðCX#Y=F0Þit on HX#Y ;

so that CX#Y jBðX#Y Þ ¼ kU#V
f and CX jBðXÞ ¼ kU

c : We have to prove that

CX#Y jNX
¼ CX : Let E : NY-N0 be the CY -preserving conditional expectation.

By considering NY and N0 as subalgebras of BðHY Þ we get an inverse operator-

valued weight E�1 : M0-M; cf. [H] and [St, Corollary 12.11]. Then by considering

M0 and M as subalgebras of BðHX#Y Þ we get an operator-valued weight F ¼
ðE�1Þ�1 : NX#Y-NX : By definition

DðC0=F0
0Þ ¼ DðCY=F0Þ ¼ DðC03E=F0Þ ¼ DðC0=F0

3E�1Þ on HY ;

whence F0
3E�1 ¼ F0

0: Then

DðCX 3F=F0Þ ¼ DðCX=F0
3E�1Þ ¼ DðCX=F0

0Þ ¼ DðCX#Y=F0Þ on HX#Y ;
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so CX 3F ¼ CX#Y : But the property of an operator-valued weight to have a
conditional expectation as the inverse does not depend on the spatial realization, cf.
[Ko, Theorem 2.2]. Since E is a conditional expectation, we conclude that F is also a
conditional expectation. Hence CX#Y jNX

¼ CX : &

The characterization of KMS states of general quasi-free dynamics is similar to the
case of trivial dynamics on the coefficient algebra, but requires the correspondence
just established between the KMS weights on A and those on KðXÞ:

Theorem 3.5. Let s be a one-parameter automorphism group of a C�-algebra A; U a

one-parameter group of isometries of a Hilbert A-bimodule X such that /Utx;UtzS ¼
stð/x; zSÞ and Utax ¼ stðaÞUtx; and denote by g the corresponding quasi-free

dynamics on the Toeplitz algebra TX : For bAR; let F be the operator mapping ðs;bÞ-
KMS states of A into weights on A; defined by

Ff ¼ kU
f jA;

so that Ff is a ðs; bÞ-KMS weight on A when it is densely defined. Then

(i) if F is a ðg; bÞ-KMS state on TX ; then f ¼ FjA is a ðs; bÞ-KMS state on A such

that Ffpf;
(ii) if f is a ðs; bÞ-KMS state on A such that Ffpf; then there exists a unique gauge-

invariant ðg; bÞ-KMS state F on TX such that FjA ¼ f; if f ¼
P

N

n¼0 Fnf0; then

F ¼ kGðUÞ
f0

jTX
;

(iii) if U satisfies the ‘positive energy’ condition (i.e. the vectors x such that

SpUðxÞCð0;þNÞ span a dense subspace of X ), then any ðg; bÞ-KMS state of TX

is gauge-invariant, so the mapping F/FjA defines a one-to-one correspondence

between ðg; bÞ-KMS states on TX and ðs; bÞ-KMS states f on A such that

Ffpf;
(iv) a ðg; bÞ-KMS state F on TX defines a state on OX if and only if Ff ¼ f on IX ;

where f ¼ FjA:
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