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ABSTRACT 

The problem of determining the shape of a vibrating membrane given all its charac- 
teristic frequencies is discussed using a regular array of interacting atoms as a discrete 
model of a membrane in contrast to the continuum model analyzed recently by Kac. 
Using elementary methods it is shown how the size, boundary length, and connectivity 
may be found from the frequencies. The problem is related to the enumeration of 
closed random walks on a lattice, in analogy with Kac's treatment, and thence to the 
adjacency matrices of abstract linear graphs. 

l.  INTRODUCTION 

in a delightful lecture entitled "Can You Hear the Shape of a Drum? ''1 
Professor Mark Kac recently discussed the problem of determining the 
shape of a vibrating membrane or "drum skin" from the spectrum of 
its characteristic frequencies, that is, from a knowledge of the pitch of 
its fundamental note and all the overtones. To treat this problem math- 
ematically one must formulate the equations governing the motion 
of the membrane. Kac supposes the membrane is clamped along its 

* Permanent address as of July 1, 1966: Department of Chemistry, Cornell Uni- 
versity, Ithaca, New York. 

1 This lecture was filmed under the auspices of the Committee on Educational Me- 
dia of the Mathematical Association of America, and an expanded version of the 
script has been published in The American Mathematical Monthly. 
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boundary  l '  in the (x, y)  plane and that  the vertical displacement c/,(r, t) 

of  a point  r =- (x, y) at  time t satisfies the standard wave equation 

o>_c,w  0 ql 
Ot z \ ON" '}  Oy" ] ' ( I. 1) 

where c 2 depends on the tension and density of  the membrane .  To 

each characteristic frequency corresponds a "no rma l  mode"  of  the 
system in which every par t  moves with the same purely harmonic  mo-  

tion so that  
g.~(r, t) --  u(r) exp(i(,)t). (1.2) 

By substitution in (1.1) we see that  the frequencies are given by 

(,4, e -= 2 c2).,, (1.3) 

where the ,~.,~ must  be determined f rom the eigenvalue equation 

V'~u + ).u = 0 for r in .q ( l .4a)  

which is subject to the boundary  condition 

u(r) --  0 for r on 1'. (1.4b) 

As is well known, non-trivial solutions of  (1.4) are possible only for 

an infinite sequence of  discrete eigenvalues 

)' - ).~ ~ ).2 % ),:~ " ' "  (1 .5)  

Given the spectrum of  frequencies )',, we may  calculate the auxiliary 
generating function 

G(r )  = ~ exp(--)~, ,r) ,  (1.6) 
r / = l  

the sum being convergent for  positive values of  the " d u m m y  variable"  
r. Now it turns out that  the behavior  of  this function for small r deter- 
mines both t- o- [, the area of  the membrane ,  and L, the length of  its 
boundary!  This is a consequence of  the asymptot ic  formula  

1~2i L l 
G(r)  ~ 2 x r  4 (2Xr) 1/e ('z" - 0) (1.Ta) 

which Kac  proves in an elegant but sophisticated fashion with the aid 



HEARING THE SHAPE OF A DRUM 107 

of ideas stemming from the theory of Brownian motion. One can thus 

certainly tell if the drum skin is circular since the boundary length 
then (and only then) attains its minimum value 2(7r].QI)l/2! 

It  is possible, however, to go further and to see that the next term 
appearing in (1.7a) for a drum skin with a smooth boundary is the 
additive constant 2 

+ ~ (C -- H),  (1.7b) 

where C is the number of separate components of the membrane (our 
"d rum"  might really be a family of  drums !) and where H is the number 

of holes in the membrane (the drum is not necessarily very musical!). 
Hence if the drum is known to be all in one piece (C = l) one can also 

"hear"  its connectivity. 
At present it is not known how much additional information may 

be extracted from the spectrum of frequencies nor, indeed, if the fre- 

quencies uniquely determine the shape of f). Professor Kac believes 
that one cannot hear the shape in full detail but be is not prepared 
to bet large sums either way! 

A physicist in thinking about this problem will naturally inquire 
how far the fact that the wave equation (1.1) represents only an idealiza- 

tion of physical reality might affect the answer to the problem or its 

mode of solution. It  must be admitted that the wave equation is a fairly 
good approximation when the amplitude of vibration is kept low (so 

that anharmonic effects are unimportant)  and when precautions are 
taken to reduce the damping (for example by vibrating the membrane 
in vacuo). Evidently, however, it completely neglects the discrete, atomic 
nature of real materials by assuming implicitly that the membrane is 

a perfectly uniform two-dimensional continuum. Suppose, on the other 
hand, we regard a membrane as an array of point masses or "a toms"  

held in equilibrium by their mutual pairwise interactions. The continuum 
wave equation (1.1) must then be replaced by the set of equations of 
motion of the atoms. For small displacements from equilibrium, how- 
ever, such a system should still display normal modes with characteristic 
frequencies and we may again ask: "What  can be learnt from the spec- 

2 Kac actually discusses only the case of a single component membrane (C = 1) 
with a convex polygonal perimeter and one or more convex polygonal holes. As 
he observes the result (1.7 b) follows formally by letting the polygons approach smooth 
curves while the extension to C > 1 is obvious from his analysis. 
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trum about the size and shape of the array?" It is to this question that 

we shall devote attention. 
For simplicity we will consider, in the main, just a single layer of 

atoms which in equilibrium lie on a regular plane lattice (although even 

a very thin membrane will, in reality, consist of many interacting and 

partially irregular layers). Equally it is natural to assume in first ap- 
proximation that each atom interacts only with its spatially nearest 
neighbors and that the restoring forces are linearly related to the relative 

out-of-plane displacements. Although this discrete model of a mem- 
brane is still rather far from reality in its details, it should serve to reveal 

the main effects of the "lumpy nature" of physical matter. 
It transpires, as we shall demonstrate, that it is still possible to find 

the size and boundary length of the membrane (or rather their discrete 
analogs) and also the connectivity. Furthermore the theory of the 

discrete model is much simpler than that needed in the continuum case, 

relying on no more than the elementary properties of finite matrices. 
Once again the ideas of Brownian motion provide a key to the solution 

but this time in the conceptually simpler guise of random walks on a 

lattice. The analysis thus throws light on the more elaborate arguments 
used with the continuum wave equation and on the possibilities of ex- 

tending them to three or more dimensions, to calculate higher order 
terms, and to answer the general uniqueness question. 

2. FORMULATION OF THE DISCRETE PROBLEM 

To derive the equations of motion of our discrete model of a mem- 

brane, we will specify it in more detail as follows. At equilibrium the 
atoms forming the membrane lie on the sites of a regular two-dimen- 
sional lattice of  coordination number q, nearest neighbor lattice spacing 
h and cell area a. We will have in mind mainly the plane square and 
triangular lattices for which q = 4 and 6, respectively, but we may with 
equal ease consider a general d-dimensional lattice. The N lattice sites 
occupied by atoms free to move will be called i n t e r io r  s i t e s  and will 
be labeled j = 1, 2 ... N. The a r e a  of the membrane may now be taken 

as 

i (.2 l ~ N a .  (2.1) 

Nearest neighbor atoms wilt be regarded as interacting through the 
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bonds of  the lattice. The boundary of  the m e m b r a n e  will consist o f  B 

perimeter bonds which connect  a free a tom to one of  its neighboring 

boundary atoms which are c lamped to the boundary sites labeled 
j---- N + 1, N + 2 . . . . .  The length of  the boundary  may  be written 

L = Bb, (2.2) 

where b is the length corresponding to a single per imeter  bond.  (On the 
square lattice b = h while on the t r iangular  lattice b -  h/%/3.) 

I f  ~j( t )  is the (transverse) displacement  at t ime t o f  the a t o m  asso- 

ciated with the j - th  site, i.e., the j - th  a tom,  the force tending to reduce 
the relative displacement  between this a tom and a neighbor  k ( j )  is 

Fj# = --  K[q~j(t) --  q~k(t)], (2.3) 

where K is the effective "spr ing cons tan t . "  When  k denotes a boundary  
site, we have q)k(t) = 0 always. I f  the mass  of  an a t o m  is m, the equa- 
tions of  mot ion  are therefore 

q 
d2q~J = --  K Y, (9Jj -- q~klj)), (2.4) m dF ~(j) 

where j = 1, 2 . . . . .  N and the sum runs over  the nearest  neighbors  
of  the lattice site j .  We have assumed the a toms obey classical me- 

chanics but  quan tum mechanics would not  change the present  p rob lem 

in a fundamenta l  way. As in the cont inuum case, the characteristic 
frequencies of  the system are found by trying a pure  ha rmonic  solu- 
t ion of  the fo rm 

qgj(t) = u i exp(ia)t) ( j  = 1, 2 . . . . .  N).  (2.5) 

The frequencies are then 

%2 = (qhZK/md) ),,~, (2.6) 

where d takes the value 2 for  a plane lattice but  more  generally is the 
dimensionali ty,  and where the 2,~ are the eigenvalues of  the set o f  ho- 
mogeneous  equat ions 

q 

�89 (2d/qh 2) ~ (uk(i) - -  ufl -}- ,;tuj = 0, (2.7a) 
k~j) 
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which are subject to the conditions 

u~. = 0 i fk  is a boundary site. (2.7b) 

We have written the equations in this form in order to point the analogy 
with the continuum eigenvalue equation (1.4). By considering the well- 

known finite difference approximation 

(O~/Ox ~) u(x, y) ~_ h-~[u(x T h, y) + u(x - t7, y) - 2u(x, y)] (2.8) 

one sees that the first term in (2.7) represents merely the discrete analog 
V 2 of the Laplacian operator �89 acting on the function u , _  ~ u(r) 

On introducing the column vector 

u = [u,], i : - -  1, 2 . . . . .  N,  (2 .9 )  

Eqs. (1.7) may be written compactly as 

�89 Lu u == 0, (2.10) 

where the N • N "Laplacian matrix" L has the elements 

L j i  = _ (2d/h2),  

Ljx. == (2d/qh~),  if j and k are nearest neighbors, 

= 0 otherwise ( j  @ k). (2.11) 

Notice that with this definition the boundary conditions (2.7b) are 

automatically taken into account in (2.10). 
The theory may be simplified further by defining the square matrix 

T by 

Tjk = 1, if j and k are nearest neighbors, 

= 0 otherwise. (2.12) 

The eigenvalues ~t,~ and eigenvectors w,~ of this matrix are defined in 

the standard way as the non-trivial solutions of  the equation 

Tw =/~w.  (2.13) 

By comparison with (2.11) we have 

L = (2d /qh  2) (T  -- qI), (2.14) 
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where I is the N • N unit matrix, so that the eigenvalues and character- 

istic frequencies are related by 

/z,~ = q[1 -- (h2/d) ~,,] (2.15) 

= q -- (m/K)cv,~ 2. (2.16) 

Knowledge of the characteristic frequencies thus tells us the eigenvalues 

of the basic matrix T, which in turn embodies all the available informa- 

tion on the shape of the membrane.  

3. RELATION TO RANDOM WALKS 

As in the continuum case we may define an auxiliary function in 

terms of the eigenvalues /t,,. A simple choice, related to (1.6), is 

M(z) = Y~ exp(/z, ,z).  (3 .1)  

For small z this has the expansion 

M(z)  = Mo + MI(Z/ I ! )  @ M2(z2/2!) + "'" (3.2) 

where in general the coefficient of zS/s! is evidently given by 

M,  == Z /z,~,. (3.3) 
~t 

The behavior of M(z)  for small z is thus determined by the s-th moments 

of  the set of  eigenvalues. (These moments could, of  course, be computed 

directly from the co,~.) 
Now recall (a) that the eigenvalues of the s-th power of a matrix are 

just the s-th powers of  the eigenvalues of  the matrix itself 3 and (b) that 
the sum of the eigenvalues of  a matrix is equal to the trace of  the ma- 
trix, that is, the sum of its diagonal elements. 4 Combining these two 

results shows that 
N 

M~ = Tr {T s} = )~ (Ts)jy. (3.5) 
j=l  

3 This  follows by i terating the  defining equa t ion  Tw,~ = #,~w~. 
4 It is easily shown that the trace Tr{A} = ~7_1Ajj of a matrix A is invariant under 

the similarity transform A' = gAS -1. On choosing S to diagonalize A' the A~ becomes 
the eigenvalues, thereby proving the result. 
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Our task is hence reduced to studying the traces of  the powers of  the 

"shape matr ix" T. To do this in an elementary way we introduce another. 

and at first sight, unrelated problem. 

Consider a walker (traditionally a drunken man!)  who walks at 

random on sites j -= 1, 2 . . . . .  N of  the lattice, always taking a step front 

a site to one of  its nearest neighbors. I f  the walker starts off f rom an in- 

terior site j ,  how many different paths may he follow which will bring 

him to site k on his m-th step? In counting the number  of  such paths, 

say p,,,(j--~k), we will suppose that, when the walker steps along a 

perimeter bond from an interior site to a boundary  site, he "falls off" 

the lattice and does not return! Such paths must therefore be excluded. 

To obtain a formula for the number of  possible paths note first that 

before he takes any steps the walker is sure to be at site j.  This may be 

expressed by 

P 0 ( j ~ k )  djk.-- 1 if j - - k - -  1,2 . . . . .  N, 

- - 0  if j ~ - k .  (3.6) 

Next suppose we know the complete distribution of  paths of  m steps 

but wish to determine the number  of  paths leading to site l in m + 1 

steps. To reach this site on his (m q 1)-th step the walker must have 

been at one of  the neighboring sites k(l) on his previous steps. The 

number  o f  paths thus satisfies the recurrence relation 

q 

P,,~I (J + l) = ~] p,, (j * k(l)), (3.7) 
/c(l} 

where the sum runs over the q neighbors of  site l unless, of  course, one 

of  these is a boundary  site f rom which the walker cannot  return. 

To solve this recurrence relation a matrix notat ion is perspicuous. 

On defining an N • N matrix P,, with elements 

(P,,,)~q = p,, ( j--+ k) (3.8) 

we may rewrite (3.6) and (3.7) as 

and 

P o -  I (3.9) 

P,n tl = TP,,, (3.10) 

where the "transi t ion matr ix" T is just the same as the "shape matrix" 
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defined previously in (2.12)! Iterating (3.10) and using (3.9) yields the 

complete solution to our random walk problem, namely, 

P,,, --  TmI --  T". (3.11 ) 

Conversely we may use the definition of P,,~ to rewrite this result as 

(T'~)jj = p,~ ( . / - -~j)  (3.12) 

so that, in words, the j-th diagonal element of T "  is just the number of 

possible paths that leave the interior site j but return to it on the m-th 
step without being lost over the boundary. By (3.5) the moments may 

hence be expressed as 

M.~ = total number of paths of s steps which end on their starting 

points and never leave the interior sites. (3.13) 

As we will now show, this result enables us to relate the moments 

in a simple way to the area, boundary length, and various topological 
and shape-dependent features of the array of sites which represents the 
membrane. 

4. EVALUATION OF THE MOMENTS 

We will utilize the relation (3.13) by enumerating directly the num- 

ber of closed paths. Consider the zeroth moment  M0. This is equal to 
the number of paths with no steps; but by the convention (3.6) there is 

just one such "pa th"  for every interior site and so 

M0 = N. (4.l) 

Consequently the area o f  the membrane is determined immediately by 

I,() l = Moa. (4.2) 

The value of M 0 may also be found directly from the definition (3.3), 

since ,uh ~ 1 so that M 0 is also the number of eigenvalues or characteris- 
tic frequencies. This in turn is equal to the number of degrees of freedom 
of the membrane which must clearly be N. 

There can be no closed walks consisting of just one step, since a single 
step carries the walker away from his starting point, and so 

Ma 0. (4.3) 
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With two steps the only paths which return are those consisting of 

a step followed by its immediate reversal. From each interior site of  the 

lattice there are r., --  q such paths making a total of  qN, but precisely 

one of  these walks sets out along each perimeter bond and is thus lost! 

Consequently we have 

M 2 = q N - -  B, (4.4) 

which determines the length o f  the boundary as 

L = ( q M  o -- M2)b. (4.5) 

Thus the two leading moments  formed from the characteristic frequen- 

cies determine the area and the boundary  length. In analogy with the 

cont inuum formula (1.7a) we might write, f rom (3.1), (3.2), and (2.16), 

M ( z )  = Y~ exp {[q -- (re~K),%2]z} 

= If2 I/a + �89 [(q I9- F/a) - (L/b)] z 2 O(z3). (4.6) 

Whereas in the cont inuum case we can tell f rom a knowledge of  

I.c2] and L whether the membrane is circular or not, the analogous 

statement here depends on the lattice structure. Thus, if on the square 

lattice it is found that N n 2 while B -  4n for some integral n, the 

membrane must be a perfect square. Similarly, on the triangular lattice 

it will be a perfect hexagon if and only if N - -  3n(n -- 1) + 1 and 

B = 6(2n -- 1). At  other extreme of  shape we can conclude that the 

atoms are connected in the form of a "Cayley tree" (with no closed 

circuits of  bonds) if B = ( q -  2 )N + 2 and we know there is only 

one connected component :  such a "membrane"  would, of  course, 

hardly resemble a drum skin! 

To derive the higher moments  it is convenient to let r~ denote the 

number  of  s-step returns when all sites are interior sites. Then we can 

write 

Me. = Nr.~ -- L,,.1 -- L~2 . . . . .  L~.~ (4.7) 

where L~ is the total number  of  the possible s-step closed walks which 

are lost by passing across a perimeter bond on the t-th step. We see at 
once that a walk cannot be lost on its last step since it would have to 
depart f rom a boundary  site which could have been reached only by 
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crossing a perimeter bond at an earlier stage. Consequently we have 

Ls,~ = O. (4.8) 

On the other hand, as we have seen, a walk can be lost on its first 
step if its origin is adjacent to a boundary site. The fraction of the r, 
possible returns which leave a site along any particular bond is 1/q 

and so for all s 

L.~I ~ B(G/q) .  (4.9) 

To complete the derivation of the third moment  we only need L82, 
the number of  walks lost on the second step that would have returned 
on the third step. Such a walk must form a triangle with one vertex on 

a boundary site and two vertices on adjacent interior sites. Each such 
"A-triangle" contains two perimeter bonds and hence corresponds to 

two lost walks (tracing the triangle in opposite senses). I f  A is the total 
number of  A-triangles we therefore have L~, 2 = 2A and 

Ms = r 3 N -  (r3/q)B --  2A. (4.10) 

This result may be simplified further by considering specific lattices. 
On the plane square lattice there are no triangles and hence A, ra, and 

M3 all vanish (as do the higher order odd moments).  More interesting 
is the plane triangular lattice for which 

q = 6, r3 = 12 (triangular lattice). (4.11) 

In this case, as may be seen by inspecting the simple example in Figure l, 

FIG. 1. A configuration of  a toms on the triangular lattice with N 5, B = 18, and 
A = 6. Interior a toms and bonds are shown by solid circles and heavy lines, boundary 
a toms and perimeter bonds  by open circles and light lines. An angle of  each A-triangle 
has been marked. 

each A-triangle defines an edge bond connecting its two interior sites. 
I f  the edge bonds are traced in sequence, say in an anti-clockwize sense, 
the number of edge sites passed is equal to A. (Note that a particular 
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lattice site may be encountered two or even three times as the edge 
is traversed, but each passing is counted separately. An example of  such 

a doubled edge site occurs at the base of  the "spike" in Figure 1.) 

Suppose the edge sites are labeled ce 1, 2, 3 .. . . .  A and b<~ is the number 

of  perimeter bonds meeting the corresponding site. Evidently we have '~ 

A 

s b. B. (4.12) 

Notice now that as the edge passes the site ce its direction is turned 

toward the interior through an angle 

60~ = (b~ - 2) (..-r/3). (4.13) 

This relation between ba and ,$0, may be checked in Figure 1, where 

all the possibilities for be occur?  Summing (4.13) over c~ yields 

B -- 2A = (3/:r).:!0, (4.14) 

where A0 is the total rotation of  the edge or, equally, of  the boundary 

itself. But on tracing the boundary  of  any simply connected finite region 

of  the plane the total rotat ion is simply 2m Thus each separate connected 

component  of  the membrane contributes 2~ to 10. Conversely the 

boundary  of  any hole contributes a rotation of  2~ in the opposite sense. 

Thus, if C is the number  of  components  and H the total number  of  holes, 

we have 

J0  = 2~(C - .  H)  (4.15) 

so that 
B -- 2A -- 6(C - H). (4.16) 

(This may be checked in Figure 1.) 

Combining these results with (4.10) yields 

M triangular = 1 2 N -  3B + 6 ( C -  H),  (4.17) 

which gives the next term in (4.6). Finally the net connectivity is deter- 

mined from the first three moments  by 

s Notice that in the case of doubled or trebled edge sites b<i includes only those 
bonds crossed as the boundary passes the site. 
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C - H ~ M 3 -- �89 M s + M 0 (triangular lattice). (4.18) 

Thus we have demonstrated that the information about the shape 
which can be extracted from the three leading terms of the generating 
function (1.6) for a continuum membrane model can also be found and, 

indeed, in a simpler way from the corresponding terms for the discrete 

model. 

5. FURTHER QUESTIONS 

i t  is natural to ask whether in the case of a three-dimensional lattice 

containing triangles, such as the face-centered cubic lattice, it is also 
possible to distinguish the topological features with a knowledge of 
the third moment.  Formula (4.10) remains valid but it does not seem 

possible to express the number A simply in terms of, for example, the 

solid angle swept out by a normal to the "surface" of  what is now a 
"crystal" rather than a "membrane ."  The difficulty may be seen, in the 

case of the f.c.c, lattice, by contrasting "flat" surfaces parallel to the 

hexagonal and to the square lattice planes, respectively. 
The result (4.17) applies only to the triangular lattice. Can the net 

connectivity (C -- H)  be determined from the fourth moment  of  the 
square lattice? Similarly, what extra information, if any, can be found 
from the fourth moment  of  the triangular lattice? To answer these ques- 

tions we need general expressions for L4,2 and L4.3, the number of four- 
step closed walks lost on their second and third steps. By the same kind 

of elementary reasoning used before we find 

B 

L4,2-- E ( c . + d o ) ,  
3=1 

B 
L4, a 2S + ~ c,~, 

fl-1 
(5.1) 

where/3 labels the perimeter bonds, c,~ is the number of interior bonds 
meeting the bond /3, d~ is the number of squares passing through the 
bond /3 with at least two vertices on interior sites, and S is the total 
number of squares with one vertex on a boundary site and three on in- 
terior sites. (Compare with the definition of an A-triangle.) 

To obtain reasonably simple results it now becomes necessary to 

impose certain smoothness conditions on the boundary of the mere- 
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brane. (Similar sorts of  conditions are in fact needed for the continuum 

model.) In the case of  the square net we suppose there are no isolated 

sites and no spikes or chains of  single bonds. If  such " fur"  is clipped 

off we find, by examining the various possible different configurations 

of  an edge site, ~ that 

M[qU'~r~ = 3 6 N -  1 4 B -  1 6 ( C -  H ) -  2S (5.2) 

Consequently it is n o t  possible to determine the net connectivity unless 

S is known. Inspection of  examples shows that S is essentially a total 

"surface roughness" or "concavi ty"  parameter which remains zero if 

the boundary  runs parallel to the lattice axes but reaches large values 

when the boundary  runs in staircase fashion at appreciable angles to 

the axes. If  the boundaries of  all holes and connected components  are 

rectangular, however, S 4H and the combinat ion (2C - H) may be 

found. 

For  the triangular lattice the situation is not dissimilar in that only 

certain combinations of  surface curvature parameters can be deter- 

mined. Once again we suppose there are no isolated sites, chains, or 

pendant bonds. There are then six possible configurations for an in- 

terior site and its first neighbor shell which are illustrated in Figure 2. 

i s i i  

o o 

i v  v x 

FIG. 2. Possible configurations of an interior atom and its six neighboring sites on 
the triangular lattice when isolated sites, pendant bonds, and chains are excluded, 

Notice that the configuration (x) corresponds to the "crossing" of  two 
boundaries, while (v) represents a sharp point of  the boundary  and 

There are essentially only three configurations. 
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(s) is associated with a S-square containing three edge sites. If  the overall 

numbers of these configurations are X, V, and S respectively, we find 

m ~  riangular = 90N -- 27B + 60(C -- H) -k 4(X + V + S). (5.3) 

The information gained from the fourth moment is thus somewhat 
involved unless the boundaries are not allowed to turn sharply so that 
configurations (x) and (v) are forbidden. In that case one may determine 
the parameter S, which has much the same significance as on the square 
net (where, however, it could not be resolved from ( C -  H) if only 
the fourth moment was known). 

Since the analysis of the discrete model is so straightforward and 
elementary one might wonder whether the basic asymptotic formula 
(1.7) for the continuum case could not be derived, at least formally, 
merely by letting the lattice spacing h approach zero. The finite differecne 
approximation (2.8) then becomes exact. In fact it is quite easy to check 
for special shapes that the n-th characteristic frequency c%(h) of the dis- 
crete system approaches the n-th frequency (o, of the continuous system 
in the limit h - +  0 while N--+ oo so that If2 1, being proportional to 
Nh 2, remains constant. Physically this is not surprising and should 
hold for fairly arbitrary shapes. By comparing (1.6), (2.15), and (3.1) 
we thus see that one might hope to prove 

l i m e  -(e/h~ M r ~ q  
h-+O 

t-Ol L 1 
2rcr 4(22rv)1/z -k -6- (C -- H). 

The difficulty in carrying this program through stems, however, from 
the fact that as h --~ 0 the number of atoms N and of perimeter bonds 
B must become infinite. Consequently the moments M~ themselves di- 
verge and the simple expansion (3.2) for M(z) loses its meaning! An 
indication of this is the appearance in (5.4) of negative and fractional 
powers of r, whereas (3.1) contains only positive integral powers of z. 
To take the limit h ~- 0 it is, in fact, necessary to know the contributions 
made by N and B to the moments of all orders and hence to study re- 
turning paths of indefinitely many steps. This may be seen clearly if 
we rewrite the result for the triangular lattice in the form required in 
(5.4) as 
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~2 -:1 .4 ] 
e - ~ M ( z )  ~ Ne-~:  l - - r . ~ - ~  - r:~-37- n 4! . . . .  

B - ~  " 3 - 3 T  - 27 4! 

+ (C H) e -~'~ 6 -3)- = 6 0 - 4 T  4 . . .  

- ( X -  V S )  e ~-" 4 4 ~  . . . .  

. . . .  ( 5 . 5 )  

With a little labor  one may prove that  the first line in (5.5) does yield 

the term p ropor t iona l  to ', .(2 i in (5.4) in the limit h - 0. The divergence 

as r approaches  zero is found to be determined only by the behavior  

of  r., for large s 5  The analysis of  the term propor t iona l  to B is, however,  

much more involved and one soon concludes that  Kac ' s  method,  which 

uses the cont inuum model  at the outset  (and considers a cont inuous  

diffusion process or Brownian mot ion  in place of  discrete r andom walks),  

is much to be preferred! 

6. RELATION TO GRAPH THEORY 

Final ly  we may ask:  Does the discrete model  throw any light on the 

uniqueness of  the frequency spectrum for a given shape, that  is, for a 

given configurat ion of  a toms on the lat t ice? This problem falls into 

two par ts  since on the one hand it is clear that  the spectrum of  N eigen- 

values cannot  possibly  do more than determine the posi t ions o f  the 

"ones"  and "zeros"  in the shape matr ix  T, while on the other  hand this 

is not  necessarily sufficient to determine the latt ice configuration.  

Fundamen ta l ly  the matr ix  T is best regarded as the a d j a c e n o '  matri .v 

of the abs t rac t  l inear graph  underlying the configurat ion of  inter ior  a toms 

7 It may be shown generally for two-dimensional walks that r~ ~ Dq~/(s -  1) 
as s ~- ~ where D is a constant. Consequently the first term in (5.5) is approximately 
DNe ~ Zs(qz)~/(s-F 1)! which for large z approximates. 

DNe qz (e-qZ __ I)/qz ~-- DNh2/dT D" [(.2 I/r 

as required by (5.4). 
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and bonds. Thus with each of the N interior atoms or lattice sites we 

associate an abstract point (or vertex) while each bond joining adjacent 

atoms or sites is associated with a line (or edge) of the graph incident 
with the corresponding points. Two graphs are considered to be the 
same (isomorphic) if they differ only by a permutation of the labels 

of the points. The elements Ti~. of the adjacency matrix of a graph are 

unity if there is a (single) edge ( j ,  k) between the point j and k but 
zero if there is no edge. Now the set of eigenvalues of a matrix is un- 

changed by permutations of the row and column labels. Consequently 
the eigenvalues of the adjacency matrix are an intrinsic property of the 

graph. 
Even after allowing for permutations of the labels of the atoms, how- 

ever, it is obvious that the underlying graph need not specify the lattice 
configuration fully. We may say that there are various different embed- 
dings of the graph in the lattice. 8 Thus it is clear that T yields no infor- 

mation on the relative separations and orientations of different com- 

ponents of a disconnected configuration. Equally the reflection or ro- 

tation of parts of a connected component  about an articulation (or 

cutting) point of the graph, as illustrated in Figure 3, cannot be dis- 

FIG. 3. Various configurations on the triangular lattice corresponding to the same 
underlying linear graph. 

tinguished. Less obviously certain articulation pairs of points may 
form a "pivot"  allowing a partial inversion of the configuration but 

leaving T invariant, as shown in Figure 4. Such relatively trivial am- 

biguities might well be ignored. Alternatively they may be excluded 
by disallowing pendant bonds and (x)-type configurations (see Fig- 
ure 2), which correspond to the crossing of boundary curves. With 

8 It is necessary here to consider strong embeddings in which points placed on 
adjacent lattice sites must always be incident on an edge corresponding to the lattice 
bond. 
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these latter restrictions it seems quite probable that the matrix of a 

configuration specifies it essentially uniquely. 

< 
< 

F~G. 4. Two distinct configurations with the same underlying graph illustrating a 
"pivot" formed by an articulation pair. 

The more difficult part of  our problem may be rephrased by asking 

if there exist two N x N symmetric matrices of  zeros and ones which 

have the same eigenvalues but correspond to different graphs. We also 

wish to impose the further conditions (a) that there be no points of  

degree one (and hence no pendant bonds), and, for two-dimensional 

membranes, (b) that the graphs be planar, and (c) that they can be 

embedded in the triangular (or other) lattice s using only the "contig- 

uous"  configurations (i), (s), (ii), (iv), and (v) of  Figure 2 (i.e., excluding 

the crossing configuration). 
By our relation (3.13) the identity of  the first three eigenvalue moments 

M,. of  two graphs implies immediately that they must contain the same 

number of  points, lines, and triangles (that is subgraphs isomorphic 

to a triangle). With the aid of  a systematic list of  graphs 9 one may 

examine the possible returns in three and more steps and check that 

all connected graphs of  six or fewer points satisfying condition (a), 
are in fact uniquely determined by their eigenvalue spectra. It is tempt- 

ing to conjecture that this will hold for all N. Such a conjecture, 
however, is false! Thus in Figure 5 two graphs are exhibited 10 for 

9 See, for example, the article by G. E. Uhlenbeck and G. W. Ford in Studies in 
Statistical Mechanics I, North-Holland, Amsterdam, 1962, edited by J. De Boer and 
G. E. Uhlenbeck. Note the first graph of six points and seven lines in this list is drawn 
incorrectly with one line too many. 

10 It might be mentioned that the clue leading to the discovery of these two graphs 
was the interesting (and related) fact that the number of n-step returns to the origin 
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which  the  e igenva lues  o f  the  ad jacency  ma t r i ces  a re  in b o t h  cases  

g iven  by the  5n roo t s  o f  the  e q u a t i o n  

( ~ - -  O4-- 1)()3--20)2-- 5).+ O)~+ O ) = 0  

6) - -  2 cos  (27rr/n) ,  r = 1, 2 . . . . .  n, 

with  

(6.1) 

A g 
FIG. 5. Two distinct graphs whose adjacency matrices have the same set of eigen- 

values. 

where ,  fo r  the  case  i l lus t ra ted ,  n = 6. T h e  smal les t  g raphs  o f  this  genera l  

f o r m  have  t h r ee fo ld  (n = 3) r a the r  t h a n  s ixfold  s y m m e t r y  and  hence  

have  on ly  f i f teen poin ts ,  n T h e y  are  equa l ly  g o o d  c o u n t e r e x a m p l e s  to  

of the face-centered cubic lattice is the same for all n as on the close-packed hexagonal 
lattice. This has been proved by M. F. Sykes and M. E. Fisher; see C. Domb, Advances 
in Phys. 9, No. 34 (1960), 315-317. 

n Other counterexamples have been given in the literature. Professor Frank Harary 
has kindly told me of the work of L. Collatz and U. Sinogowitz, Abh. Math. Sere. 

Univ. Hamburg 21 (1957) 63, who list two nonisomorphic trees, not therefore satisfiying 
condition (a), which have the same spectrum. (These trees have eight points and may 
be specified by the lines (1, 2) (2, 3) (3, 4) (4, 5) (4, 6) (4, 7) (4, 8) and (1,4) (2, 4) 
(3, 4), (4, 5) (5,6) (5, 7) (5, 8) and their characteristic equation is 2 4 ( / ~  4 - -  7;t ~ + 9) = 0.) 
In his paper, S I A M  Rev. 4 (1962), 202, Harary mentions other known pairs of graphs 
each with 16 points. He asks what is the smallest number of points that such pairs 
must have and suggests the answer might be 16. Our examples, however, show this 
cannot be so. Indeed, if the graphs are allowed to have double lines (i.e., two bonds 
between the same pair of points) we may construct an example with only 9 points. 
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the conjecture but their representation,> in the plane are less easy to 

disentangle at first glance. 

The two graphs (A) and (B) do appear  rather similar and indeed thc 5 

become identical,  a l though differently drawn, if the twehe  points of 

coord ina t ion  number  two are removed from the {diagonal) lines upon 

which they sit. It is thus perhaps not so surprising that  they "sound  

ident ical ."  To prove that the graphs really are distinct, note that  graph 

(A) has subgraphs  of  the type shown in Figure 6 while graph (B) has 

none. 

FIG. 6. Two graphs which are subgraphs of (A) in Figure 5 but not of (B). 

These counterexamples  also satisfy condi t ions (a) and (t)) in that  they 

are evidently p lanar  and without  pendant  bonds.  They are not  em- 

beddable  in the t r iangular  latt ice (as may be proved by considering the 

points  of  sixfold coord ina t ion  8) but  they could clearly be embedded  in 

a sufficiently complex regular  plane lattice. It is not implausible,  however, 

that  examples could be devised along these lines which were embeddable  

in the t r iangular  lattice. On the other  hand,  the final condi t ion of  (c) for- 

bidding (x) or boundary-cross ing  configurat ions,  looks as if it might 

then be a more  severe obstacle to the construct ion of  counterexamples .  

One may hope, however, that  such graphs,  if they exist, will come to 

light in the not-so-dis tant  future since the increasing interest in the 

appl icat ions  of  l inear graphs is leading to the extensive tabula t ion  and 

It is obtained flom the analogs of Figure 5 with n : 3 by replacing each site of coor- 
dination number two and its two incident lines by a double line between the same 
terminal points. Note added in proof: More recently Dr. G. A. Baker kindly pointed 
out two connected graphs of 6 points and 7 lines with identical spectra [although not 
both satisfying condition (a)] whose identity was missed in the original check of the 
author. Baker (to be published) has also found simpler examples of graphs with the 
same spectra that satisfy both conditions (a) and (b). Professor P. W. Kasteleyn has 
observed that, if multiple lines of higher order, or loops and/or disconnected graphs 
are allowed, then counterexamples with very few points exist. 
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c lass i f ica t ion  o f  the i r  p r o p e r t i e s 2  ,lz I f  a c o u n t e r e x a m p l e  can  be  f o u n d  

sa t i s fy ing all  the  c o n d i t i o n s  it w o u l d  be s t rong  p r e s u m p t i v e  ev idence  

tha t  one  c a n n o t  a lways  hea r  the  shape  o f  d r u m !  
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