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Adaptive vascular remodeling in response to arterial occlusion takes the form of capillary growth
(angiogenesis) and outward remodeling of pre-existing collateral arteries (arteriogenesis). However,
the relative contributions of angiogenesis and arteriogenesis toward the overall reperfusion response
are both highly debated and poorly understood. Here, we tested the hypothesis that myoglobin
overexpressing transgenic mice (MbTgþ) exhibit impaired angiogenesis in the setting of normal
arteriogenesis in response to femoral artery ligation, and thereby serve as a model for disconnecting
these two vascular growth processes. After femoral artery ligation, MbTgþ mice were characterized by
delayed distal limb reperfusion (by laser Doppler perfusion imaging), decreased foot use, and
impaired distal limb muscle angiogenesis in both glycolytic and oxidative muscle fiber regions at day
7. Substantial arteriogenesis occurred in the primary collaterals supplying the ischemic limb in both
wild-type and MbTgþ mice; however, there were no significant differences between groups, indicating
that myoglobin overexpression does not affect arteriogenesis. Together, these results uniquely
demonstrate that functional collateral arteriogenesis alone is not necessarily sufficient for adequate
reperfusion after arterial occlusion. Angiogenesis is a key component of an effective reperfusion
response, and clinical strategies that target both angiogenesis and arteriogenesis could yield the
most efficacious treatments for peripheral arterial disease. (Am J Pathol 2013, 183: 1710e1718;
http://dx.doi.org/10.1016/j.ajpath.2013.08.005)
Supported by the American Heart Association grants 10GRNT3490001
and 09PRE2060385 and NIH grants R01-HL074082, T32-GM0072, and
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Peripheral arterial disease (PAD) is caused by atherosclerosis
and is characterized by the progressive and often complete
occlusion of large- and medium-size arteries at sites other
than the heart. PAD most often occurs in the lower limbs,
with progressive PAD leading to the debilitating conse-
quences of intermittent claudication and critical limb
ischemia. Given the high prevalence (>20% of those >65
years of age1) and economic impact ($4.4 billion estimated
treatment costs2) of PAD, along with few therapeutic op-
tions, there is a critical need for developing new therapeutic
modalities. One promising approach entails stimulating
adaptive vascular remodeling to enhance perfusion around
occlusions. To date, however, trials using this approach have
largely failed. An improper understanding of the balance of
angiogenesis versus arteriogenesis has been cited as a reason
for many of these failures.3e5
stigative Pathology.
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Adaptive vascular remodeling to arterial occlusion(s) can
be broken down into two aspects. First, in ischemic tissues
downstream of an arterial occlusion, capillaries grow from
existing vessels via angiogenesis, expanding blood flow
distribution throughout the ischemic tissue. In contrast,
collateral arteries around the occlusion are stimulated to
undergo structural lumenal expansion (ie, arteriogenesis)
that allows for greater in-flow into the distal, ischemic
tissue. Therapeutic clinical trials have largely focused on
only one process (either angiogenesis or arterio-
genesis).3e5 The most direct examples of an unbalanced
approach come from the early and prominent failures of

https://core.ac.uk/display/82611899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:rprice@virginia.edu
http://dx.doi.org/10.1016/j.ajpath.2013.08.005
http://dx.doi.org/10.1016/j.ajpath.2013.08.005
http://ajp.amjpathol.org
http://dx.doi.org/10.1016/j.ajpath.2013.08.005


MbTgþ Impaired Reperfusion
many large clinical trials using predominantly angiogenic
factors (eg, vascular endothelial growth factor and hypoxia
inducible factor 1-a) to induce angiogenesis.6e8 However,
trials targeting factors chosen specifically for their arteriogenic
potential (eg, fibroblast growth factor 2 or granulocyte
macrophage-colony stimulating factor) have also reported
only marginal success.9e12 A more fruitful strategy was
recently hinted at in a study by West et al,13 which suggested
that even in the presence of increased perfusion pressure to
the distal tissue after a percutaneous intervention, revascu-
larization is unable to restore microvascular perfusion in PAD
patients. This suggests that microvascular perfusion impair-
ments must be addressed for full functional recovery. More-
over, strategies that do not change large vessel occlusion but
alter angiogenesis can be clinically beneficial. In summary,
these findings suggest the need to better understand how
angiogenesis and arteriogenesis work together to improve
reperfusion after arterial occlusion.

Data demonstrating how angiogenesis and arteriogenesis
separately contribute to reperfusion after arterial occlusion
could outline how targeting both aspects of neovasculari-
zation could improve therapy. However, being able to
identify how angiogenesis and arteriogenesis each
contribute to reperfusion after ischemic injury requires both a
condition that does not simultaneously impact arteriogenesis
and angiogenesis, and methods for separately quantifying
angiogenesis and arteriogenesis. Myoglobin overexpression
in skeletal muscle may serve as a unique stimulus that has an
effect on tissue reperfusion during ischemia, but has uncou-
pled effects on arteriogenesis and angiogenesis. Skeletal
muscle myoglobin overexpression has been previously
documented to impair angiogenesis and reperfusion in a se-
vere hindlimb ischemia model.14 The impaired angiogenesis
was proposed to arise from the excess myoglobin acting as a
sink for nitric oxide,14,15 which resulted in the loss of key
trophic and angiogenic factors during ischemia.16,17 The close
physical association of the endothelium with muscle fibers
required for this mechanism occurs at the capillary level, but
the greater separation of collateral arteries from the paren-
chymalmuscle tissue reduces the potential for this mechanism
on arteriogenesis.18,19 The potential angiogenesis-specific
impairment is further supported by the delayed time course
of the perfusion deficit.14,20 However, because the more se-
vere ischemia model was chosen, the ability to assess arte-
riogenesis was limited.21 Alternatively, a milder hindlimb
ischemia model [ie, femoral artery ligation (FAL) without
excision] can be used to produce consistent collateral artery
remodeling needed for the precise quantification of arterio-
genesis.21e23 Therefore, we hypothesized that coupling the
MbTgþ transgenic model with the milder FAL ischemic
stimulus would permit quantification of the degree to which
impairment in angiogenesis alone can contribute to the
reperfusion response after arterial occlusion. Here, we present
a unique dataset demonstrating that angiogenesis is required
along with normal arteriogenesis for a more fully effective
revascularization response.
The American Journal of Pathology - ajp.amjpathol.org
Materials and Methods

Animals

All animal protocols were approved by the Institutional
Animal Care and Use Committee at the University of Vir-
ginia and conformed to all regulations for the ethical use of
animals as outlined in the American Heart Association
Guidelines for the Use of Animals in Research. The intact
myoglobin gene and promoter regions of transgenic mice
(MbTgþ) produce a moderate level (approximately 200% of
normal) of myoglobin overexpression specific to cardiac
and skeletal muscle tissue.14,24 Transgenic mice were
backcrossed for nine generations into C57Bl/6 mice before
use. MbTgþ and wild-type (WT) littermates were identified
using previously described markers.14,24 Only male mice
were used for this study.

Femoral Artery Ligation Model

FAL was performed similar to that previously de-
scribed.21,23,25,26 The protocol produces consistent remod-
eling of the collateral arterial pathway traversing the gracilis
adductor muscle, representative of upper hindlimb arterio-
genesis, and produces a moderate level of ischemia in the
downstream tissue. Age-matched mice (5.3 � 0.9 months of
age) were anesthetized (120 mg/kg ketamine i.p., 12 mg/kg
xylazine, and 0.08 mg/kg atropine) and prepared for aseptic
surgery. On the left leg, a small incision was made to expose
the femoral artery, which was then isolated from the femoral
vein and nerve. Two ligatures of 6-0 silk suture were placed
around the femoral artery (one immediately distal to the
epigastric artery and the other proximal to the saphenous-
popliteal artery bifurcation). The artery segment between
the two ligatures was then severed, and the surgical site was
closed. A sham operation was performed on the opposite (ie,
right) limb, in which the femoral artery was exposed, but not
ligated. Mice received injections of buprenorphine for anal-
gesia immediately after the procedure and 8 to 12 hours later.

Functional Assessment of Ischemic Injury

To quantify the extent of functional injury induced by FAL,
mice were assessed for postoperative weight loss and gain,
and for foot use at days 2, 4, and 7 after FAL. Foot use score
was assessed similar to that previously described,26 with
each scored as: 0, normal use; 1, no flexion of the toes; 2, no
plantar flexion; and 3, dragging of the foot.

Laser Doppler Perfusion Imaging

Laser Doppler perfusion imaging was performed to monitor
blood flow recovery in response to FAL as previously
described.23,25 Briefly, mice were anesthetized (120 mg/kg
ketamine i.p., 12 mg/kg xylazine, and 0.08 mg/kg atropine)
and placed prone on a surgical heating pad for 5 minutes to
1711
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minimize temperature variation and allow imaging of the
soles of the feet. The lower limbs were scanned (Lisca PIM
laser Doppler imager; Perimed AB, Stockholm, Sweden),
and mean voltage of foot perfusion was used to calculate
relative perfusion ratio (ligated:unligated).

Tissue Harvesting

Immediately before tissue collection, gracilis muscles of
anesthetized mice were exposed and drip perfused with 10�4

M adenosine in warmed Ringer’s physiological saline solu-
tion. Mice were then euthanized by an overdose of anesthetic
and then flushed with 2% heparinized saline and perfusion
fixed with 10% neutral buffered formalin via cardiac can-
nulation. After 30 minutes of fixation, gracilis muscles were
removed for whole mount immunofluorescence analysis, and
calf muscles (containing the gastrocnemius and plantaris
muscles) were removed and prepared for paraffin embedding
by the University of Virginia Research Histology Core.

Whole Mount Immunofluorescence and Collateral
Network Image Analysis

Harvested gracilis muscles were labeled by immunofluo-
rescence for smooth muscle a-actin to visualize the collat-
eral vasculature, similar to that previously described.23,25

Immediately after harvesting, gracilis muscles were
washed, and then incubated with 1:200 anti-smooth muscle
a-actineCy3 (1A4 clone; Sigma-Aldrich, St. Louis, MO)
antibody in blocking buffer (PBS with 0.1% saponin, 2%
bovine serum albumin, and 0.2% sodium azide) for 72 hours
at 4�C. Gracilis muscles were then washed and cleared in
50% glycerol in PBS overnight at 4�C. Clear tissues were
mounted between two coverslips using 500 mm thick
spacers (645501; Grace Bio-Labs, Bend, Oregon) to keep
constant thickness between muscles. The muscles were
imaged (magnification,�4) on aNikon (Melville,NY)TE300
fluorescence microscope with a CCD camera (Microfire,
Optronics, Goleta, CA). Individual fields of view were
montaged together for network analysis (Photoshop CS2;
Adobe Systems Inc., San Jose, CA).

Each head of the gracilis muscle (anterior and posterior)
contained one primary collateral pathway that connected the
muscular branch artery (also known as the profundus fem-
oris or lateral caudal femoral artery) to the saphenous artery.
The diameter was measured at nine evenly spaced intervals
along the length of each primary collateral using the Fiji
image analysis platform (http://fiji.sc, last accessed June 1,
2011).27 The diameter measurements across both heads of the
gracilis muscles were pooled to determine mean collateral
diameter per muscle.

Cross Section Immunofluorescence

Sections (5 mm) of formalin-fixed, paraffin-embedded calf
muscles underwent immunofluorescence labeling for CD31
1712
(PECAM1). Dewaxed and rehydrated slides underwent
heat-mediated antigen retrieval in a 1200 W microwave for
20 minutes in citrate-based antigen retrieval buffer (H-3300;
Vector Laboratories, Burlingame, CA). Slides were then
blocked and labeled with primary antibody [rat anti-CD31
(1:100, SZ31 clone; HistoBioTec LLC, Miami Beach, FL)]
overnight at 4�C. Slides were then washed and incubated
with goat-anti rat Alexa Fluor 647 (1:200; Life Technolo-
gies, Carlsbad, CA) for 45 minutes at room temperature.
Nuclei were counterstained using 10 nmol/L SYTOX green
(Life Technologies). Slides were then sealed with Prolong
Gold (Life Technologies) to minimize photobleaching.

Capillary Growth (Angiogenesis) Analysis

Cross sections of calf muscle stained for CD31 were used to
determine capillary density metrics. Because there are two
largely distinctive regions of the harvested calf muscle with
significantly different capillary and muscle fiber composition,
analysis was separated into two regions: the superficial region
(comprised of the white gastrocnemius muscle) and the deep
region (comprised of the plantaris and red gastrocnemius
muscle, termed here as the glycolytic and oxidative regions,
respectively).28e30 Two fields of view from each region in
each section (two separate sections per muscle) were imaged
(magnification, �20) on a Nikon TE2000 C1 laser scanning
confocal microscope. Number of capillaries (CD31þ struc-
tures, <7 mm in diameter), mature and regenerating muscle
fibers (identified from autofluorescence), and muscle area
were counted in each field of view using Fiji image analysis
software. For comparison across the calf muscle regions,
values were normalized to the mean metric (eg, capillary:fiber
ratio) from the unligated limb. The presence of centrally
located nuclei was used to identify regenerating fibers. Each
field of view yielded >100 and >200 muscle fibers per
glycolytic or oxidative region per muscle, respectively.

Statistics

All results are reported as means � SE. All images were ran-
domized and de-identified to enable blinded analysis (J.K.M.).
All data were first tested for normality. Statistical significance
was assessed by one- and two-way analysis of variance, fol-
lowed by paired comparisons using theHolm-Sidakmethod for
multiple comparisons (SigmaStat 3.5; Systat Inc., Chicago, IL).
Significance was assessed at P < 0.05.

Results

Myoglobin Overexpression Impairs Perfusion and
Functional Recovery after FAL

The time course of reperfusion after FAL was assessed by
Laser Doppler Perfusion Imaging in myoglobin over-
expression mice (MbTgþ) and control littermates (WT). Both
MbTgþ and WT mice show a perfusion deficit only within
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Collateral artery development in gracilis adductor muscle
induced by FAL. A: Schematic illustration showing the position of the femoral
artery ligation (X) relative to the gracilis collateral arteries (dashed-line boxes)
that experience a significant increase in flow and undergo arteriogenesis. Flow
directions are denoted with white arrows. B: Gracilis muscle whole mount
regions from the ligated and unligated limbs of WT and myoglobin over-
expressing transgenic mice (MbTgþ) mice 28 days after FAL fluorescently
labeled for smooth muscle a-actin to identify and quantify collateral artery
remodeling (arrows). Images were taken from the collateral artery regions
shown in A. C: Whole mount collateral artery diameters were quantified,
showing outward remodeling of collateral arteries within the ligated limb
starting at day 7 after FAL, but no additional growth by day 28 after FAL. There
were no differences between MbTgþ and WT mice (n Z 5 and 4 at day 7 and
nZ 11 and 7 at day 28, respectively). Scale bars: 500 mm (AeC). *P < 0.05
between ligated versus unligated limbs within MbTgþ and WT mice.
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Figure 1 Myoglobin overexpression impairs perfusion recovery after
FAL. A: Laser Doppler perfusion recovery curve [ischemic ligated leg (L);
normalized to nonischemic sham (R), leg] between myoglobin over-
expressing transgenic mice (MbTgþ) mice and WT littermate controls out
to day 28 (n Z 9 and 5, respectively). B: Early perfusion recovery within
the first 7 days after FAL (n Z 14 and 9, respectively). Functional re-
covery as determined by after FAL weight recovery (C) and foot use (D)
[scaled from 0 (normal) to 3]. *P < 0.05 between MbTgþ and WT within
the given time point. yP < 0.05 between MbTgþ and WT recovery curves
across all time points.

MbTgþ Impaired Reperfusion
the first 7 days after FAL, with a return to baseline perfusion
levels by 10 days after FAL (Figure 1A and Supplemental
Figure S1). After day 10, perfusion was higher in the
ligated limb during ketamine- and xylazine-induced anes-
thesia. Within the window of reduced perfusion (ie, <7 days
post-FAL), there is a significant deficit in perfusion within the
MbTgþ mice (Figure 1, A and B). This perfusion recovery
deficit is further reflected in a functional deficit in terms of
postoperative weight loss and foot use score within the
MbTgþ mice (Figure 1, C and D). However, both foot use
and weight were fully restored by day 28 after FAL in both
groups [no mice had foot use >0 in either group; �1.89 �
0.38 g and �1.36 � 0.31 g weight change for MbTgþ

(n Z 11) and WT (n Z 7) mice, respectively; P Z 0.33].

Myoglobin Overexpression Does Not Alter
Arteriogenesis in Response to FAL

As previously demonstrated, the FAL method used pro-
duced consistent arteriogenesis in the collateral pathways
within the gracilis adductor muscle (Figure 2A).21e23

Immunofluorescence labeling of smooth muscle a-actin
was used for the identification and measurement of collat-
eral artery diameter along the length of the collateral
pathway spanning the gracilis muscle (Figure 2B). Both
MbTgþ and WT mice showed a similar degree of outward
remodeling (ie, arteriogenesis) within the ligated limb by 7
days after FAL that was maintained to day 28 after FAL,
without further expansion (Figure 2C). This matches the
reperfusion time course, with limited additional gains in foot
The American Journal of Pathology - ajp.amjpathol.org 1713
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Figure 3 Morphometric muscle and capillary
analysis within distal calf muscle cross sections.
Endothelial cells were labeled with CD31 and
imaged in the oxidative (plantaris and deep gas-
trocnemius) and glycolytic (superficial gastrocne-
mius) regions of the calf muscle (Supplemental
Figure S2). AeF: Quantification of capillary to
muscle fiber ratio (A and B), mean fiber cross-
sectional area (CeD), and percentage of regener-
ating fibers (EeF) within the glycolytic and
oxidative regions of ligated and unligated limbs in
myoglobin overexpressing transgenic mice
(MbTgþ) and WT control mice at 7 days [nZ 5 and
4, respectively (A, C, and E)] and at 28 days [nZ 11
and 7, respectively (B, D, and F)] days after FAL. *P
< 0.05 between groups denoted by bars. yP< 0.05
between MbTgþ and WT within ligated or unligated
muscles.

Meisner et al
perfusion at 7 days after FAL. At no time did the mean
collateral diameters within the ligated or unligated limb
significantly differ between MbTgþ and WT groups,
showing no indications of differences in baseline or
remodeled collateral diameters (Figure 2C).

Myoglobin Overexpression Inhibits Angiogenesis and
Delays Skeletal Muscle Recovery after FAL

To determine whether the impaired perfusion recovery
seen in the MbTgþ mice was related to impairments in
capillary remodeling in the downstream ischemic tissue,
capillary, and muscle fiber structures were analyzed in
cross sections of calf muscle at days 7 and 28 after FAL
(Supplemental Figure S2). Because of the spatial clustering
1714
of muscle fiber type in the muscle30,31 and the variation in
myoglobin expression across fiber types and muscle
groups,24 analysis was divided into glycolytic (superficial,
white gastrocnemius muscle, predominantly IIB and IIDB
fibers) and oxidative (deep, plantaris, and red gastrocnemius
muscle, mixed IID, IIAD, IIA, and I) regions.29,31 As ex-
pected, at baseline (unligated limb), glycolytic regions
showed larger average fiber size (1585 � 53 mm2, MbTgþ;
1544 � 55 mm2, WT, n Z 16 and 11, respectively, from
pooled day 7 and 28 groups) and lower capillary to muscle
fiber ratio (1.160 � 0.024 capillary:fiber, MbTgþ; 1.163 �
0.021 C:F, WT) than oxidative regions (1203� 41 mm2 and
1.927 � 0.045 C:F, MbTgþ; 1161 � 41 mm2 and 1.896 �
0.036 C:F, WT), with no significant differences between
WT and MbTgþ mice, as previously seen.14 To enable
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 Myoglobin transgene production increased within ischemic
calf muscle. A and B: Cross sections (low magnification, �4) of immuno-
labeled (hemaglutinnin)-tagged myoglobin transgene production using
anti-hemaglutinnin epitope antibody (green) in myoglobin overexpressing
transgenic mice (MbTgþ) (A), and WT mice (B). Autofluoresence (red) and
nuclear counterstain (blue) provide contrast for muscle visualization. Yel-
low borders define the oxidative region (OX), containing the plantaris
muscle (PL) and glycolytic regions (GL) of the calf muscle. CeF: Images of
myoglobin transgene production in nonischemic [unligated (C and D)] and
ischemic [ligated (E and F)] limbs in oxidative (C and E) and glycolytic (D
and F) regions of the calf muscle (high magnification,�20). Scale bars: 500
mm (AeF).

MbTgþ Impaired Reperfusion
comparisons across muscle regions, the fiber size and
capillary to muscle fiber ratio data were normalized to the
averages from the unligated limb (Figure 3). At 7 days after
FAL, which showed significant perfusion deficits, MbTgþ

mice showed a moderate, yet statistically significant,
decrease in normalized capillary to muscle fiber ratio across
both muscle regions that was not present in WT mice
(Figure 3A). Not surprisingly, there were only moderate
effects on capillary tomusclefiber ratio in the ischemic limbs
of either WT or MbTgþmice at 28 days after FAL, in which
there was a modest, but significant increase in capillary to
muscle fiber ratio within the MbTgþ mice (Figure 3B). This
increase in capillarity occurred in a setting of delayed re-
generation, in which MbTgþmice showed a larger presence
of regenerating fibers than WT mice, which showed few
regenerating fibers and a return to baseline fiber size by
28 days after FAL (Figure 3, CeF).

Myoglobin Overexpression Increases within Ischemic
Glycolytic and Oxidative Muscle Regions

To assess the degree of myoglobin overexpression (transgene
tagged with a hemaglutinnin-epitope) across fiber regions,
cross sections of calf muscle were labeled with anti-hema-
glutinnin epitope using immunofluorescence. The specificity
of staining was illustrated by comparing an unligated MbTgþ

mouse (Figure 4A) to a negative control WT mouse
(Figure 4B). As previously demonstrated,24 baseline pro-
duction of the myoglobin transgene was higher in the
oxidative region of the calf muscle (Figure 4C) with limited
production in the glycolytic regions (Figure 4D). However,
by day 7 after FAL, the transgene was strongly produced in
both glycolytic and oxidative regions, particularly within
regenerating muscle fibers (Figure 4, E and F).

Discussion

The major finding of our study is that the impairment in
capillary growth within the distal ischemic hindlimb after
FAL is sufficient to impair limb function and reperfusion,
even in the setting of normal upstream arteriogenesis. We
base this central conclusion on three key pieces of infor-
mation from the response to FAL in MbTgþ mice. First, we
confirmed the deficit in reperfusion capacity of MbTgþ that
was previously identified (Figure 1).14 In the relatively mild
ischemia model chosen here, the more distal femoral arterial
ligation procedure allowed for full perfusion recovery to
baseline levels by 10 days after FAL (Figure 1). Nonethe-
less, MbTgþ mice still showed decreased reperfusion during
this initial ischemic window. Although the milder ischemic
stimulus decreased the extent of functional tissue damage
and duration of reperfusion deficit, it also allowed for
reproducible quantification of potential differences in the
arteriogenic capacity within the two strains (Figure 2).
Second, when arteriogenic capacity was quantified, it
demonstrated that the deficit in perfusion capacity seen in
The American Journal of Pathology - ajp.amjpathol.org
MbTgþ mice could not be attributed to impaired arterio-
genesis. Third, MbTgþ mice showed a moderate, yet sig-
nificant, impairment in their angiogenic capacity, as assessed
by capillary to muscle fiber ratio at day 7 (Figure 3C), which
corresponds to the period of significant perfusion deficit
(Figure 1B). These data are consistent with previous findings,
whereinMbTgþmice showed decreased angiogenesis during
active ischemia in the distal muscle at 28 days due to reduced
nitric oxide (NO) bioavailability.14 The degree of angiogenic
inhibition seen here in MbTgþmice was more moderate than
previously reported14; however, this was not surprising as we
used a less severe ischemic stimulus. Although capillary
density differences were not present>2 weeks after ischemia
resolution, the impact of impaired angiogenesis is likely
attributed to the decreased perfusion recovery seen inMbTgþ
1715
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mice during the first 7 days after FAL, when angiogenesis
is more prominent.32 Together, these data provide evidence
that microvascular impairment in capillary growth within
the distal ischemic hindlimb is sufficient to impair limb
function and reperfusion without any impairment in upstream
arteriogenesis.

Relative Contributions of Arteriogenesis and
Angiogenesis to Perfusion Recovery

Understanding how arteriogenesis and angiogenesis con-
tribute to the vascular reperfusion response is critical for
determining the optimal approach for therapeutic revascu-
larization. Few studies have made detailed analyses of the
relative contribution of the collateral vasculature versus
remodeling of the distal microcirculation to the decreased
resistance of the vascular tree downstream of an arterial
occlusion. However, those that have clearly demonstrated
that arteriogenesis and the expansion of the pre-existing
collateral circulation are the predominant contributors to
lowering the resistance imposed by the occlusion of a major
artery (Ziegler et al33). A similar observation is present in
the current data, whereby the collateral growth seen at
7 days after FAL correlates well with the large increase in
perfusion within the first several days. However, there is still
a perfusion deficit within the MbTgþ mice, and perfusion
continues to increase, despite no further evidence of arte-
riogenesis. Although this does not conflict with the well-
founded conclusion that arteriogenesis is the most efficient
means of lowering bulk resistance to the distal tissue,22,32,33

it does not preclude angiogenesis from still playing a sig-
nificant and critical role in the total revascularization
response, as is suggested in the current data.

As such, there is a need to view the total contribution
of both elements to the vascular remodeling process (ie,
angiogenesis and arteriogenesis) to understand the full impact
on the reperfusion response to ischemia. Our results present
one such example, but there likely exists multiple instances in
which such a view could be beneficial. For example, it was
recently demonstrated that Rac2�/� mice have significantly
impaired tissue reperfusion after FAL with a significant
increase in muscle damage in the downstream ischemic tis-
sue.21,34 However, through a detailed analysis of arterio-
genesis, the investigators showed no effect on collateral
remodeling that could sufficiently explain the deficits in
perfusion or increased tissue damage.21 However, incorpo-
rating the known deficit in angiogenesis seen inRac2�/�mice
may provide sufficient explanation for the total impairment in
reperfusion response.34 A similar case can be made in the
opposite direction. One example is the involvement of CD18
and intercellular adhesion molecule 1. The documented im-
pairment in arteriogenesis seen with a blockade of intercel-
lular adhesionmolecule 135 or arteriogenic enhancement with
additional CD18 signaling23 offers a strong alternative, or at
least synergistic explanation of EPC-mediated effects on
angiogenesis alone in response to ischemia.36e38
1716
Clinical Impetus for a Combined Role of Arteriogenesis
and Angiogenesis in PAD

The controversy and conflicting conclusions arising from
focusing on arteriogenesis in comparison with angiogenesis,
and vice versa, may, in part, be explained by the different
roles arteriogenesis and angiogenesis play during revascu-
larization. Without sufficient arteriogenic remodeling, up-
stream resistance at the site of an arterial occlusion will
remain high and limit the resolution of ischemia. However,
it is important to note that improving bulk flow to the distal,
ischemic tissue alone, as occurs during revascularization
procedures, is insufficient to yield functional improvements
or even tissue perfusion.13 Furthermore, the functional
outcomes induced by supervised exercise, one of the few
class IA recommendations for the treatment of PAD,39 is
preceded and correlated with angiogenic expansion within
the ischemic muscle.40,41 Taken together, these findings
suggest that, even if microvascular remodeling does not
contribute to the bulk flow into the ischemic tissue (Ziegler
et al33), microvascular function and capillary remodeling
can play a significant role in the functional reperfusion
within the distal tissue of PAD patients. By demonstrat-
ing that a selective impairment in angiogenesis alone can
functionally contribute to the reperfusion process during
hindlimb ischemia, the most widely used pre-clinical model
to study the response to arterial occlusion, we hope to bridge
the divide between looking at perfusion solely through the
lens of arteriogenesis or angiogenesis. Rather, these data
suggest that to reach functional recovery and a full, healthy
reperfusion response, it requires both a functional arterio-
genesis and angiogenesis capacity. Therefore, clinical stra-
tegies that target both elements of vascular remodeling will
likely yield the greatest therapeutic benefits for PAD.
Supplemental Data

Supplemental material for this article can be found at
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