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Abstract 

The degree of approximation of infinite-dimensional function classes using finite n-dimensional 
manifolds has been the subject of a classical field of study in the area of mathematical approx- 
imation theory. In Ratsaby and Maiorov (1997), a new quantity p,(F, L,) which measures the 
degree of approximation of a function class F by the best manifold H” of pseudo-dimension 
less than or equal to n in the &-metric has been introduced. For sets F C KY” it is defined as 

pH(F, 1,“) = infHn dist(F, H”), where dist(F, H”) = supXEF inf,tHn Ilx-_vll,; and H” C iw” is any 
set of VC-dimension less than or equal to n where n cm. It measures the degree of approxima- 
tion of the set F by the optimal set H” C R” of VC-dimension less than or equal to n in the 
/r-metric. In this paper we compute p,(F, 1,“) for F being the unit ball BT = {x E W’ : Ilxl(l; < 1) 
for any I< p, q <co, and for F being any subset of the boolean m-cube of size larger than 2”:‘, 
for any i <y < 1. 0 1998 Published by Elsevier Science B.V. All rights reserved. 

1. Introduction 

We will use the following notation. Let the norm &II!,” = cc,“=, Ixil’)“‘. For two 

sets A, B c IX” define the distance dist(A,B, I,“) = supaEA infbEB Ila - bllr;. Let m be a 

positive integer. For a vector x E iw” denote by sgn(x) = [sgn(xl ), . . , sgn(xm)], where 

sgn(x,)=l if xi>0 and sgn(xi)= - 1 if XidO, for lbidm. For a set ACR” de- 

note by sgn(A) = {sgn(x) :x GA}. For any finite set B denote by IBI the cardinal- 

ity of B. The next definition of the VC-dimension of a set F c KY’ follows that of 

Haussler [S]. 

Definition 1 (I/C-dimension of a set in LIP). Let F c KY. For an index set I c { 1, 

2,. . . , m} of cardinality k let 

Fl~={[xil,..., Xb] :x= [XI ,..., x,] E F, ij EZ, 1 <j<k}. 
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The Vapnik-Chervonenkis dimension of F, denoted by VC(F), is the largest k such 

that there exists an index set I of cardinal&y k satisfying ]sgn(FI1)] =2k. 

Definition 2 (Pseudo-dimension of a set in Rm). Let F c LT. For any y E Rk and an 

index set Ic{1,2,..., m} of cardinality k let 

The Pseudo dimension of F, denoted by dim,(F), is the largest k such that there exists 

a y E Rk and an index set I of cardinality k satisfying Isgn(FIZy)] = 2k. 

The VC-dimension of classes of indicator functions of sets was first introduced 

by Vapnik and Chervonenkis [21,22], who also defined a similar notion of capacity 

for real-valued function classes. For real-valued functions, Pollard [14] and Haussler 

[7] later extended the definition of VC-dimension to the pseudo-dimension. By char- 

acterizing an important statistical estimation property of a class of functions these 

dimensions play a central role in the theory of pattern recognition and regression es- 

timation (cf. [20]), empirical processes (cf. [13, 14, 191) and computational learning 

theory (cf. [3, 71). For a class F of functions on X which has a finite VC or pseudo- 

dimension, it is possible to estimate any f E F by some p E F to an arbitrary accuracy 

E and confidence 1 - 6 by just knowing its functional values f (xi) at a finite number 

of randomly drawn points xi E X, 1 <id m < co, where m depends on E and 6. 

Being a measure of capacity, the VC-dimension is related to the more classical 

notion of c-entropy of a functional class, cf. [20]. Similarly, the s-packing number of 

a Euclidean set F is related to its VC-dimension. Haussler [S] has recently improved 

this bound for F being any subset of the boolean m-cube having VC-dimension n cm. 
This improved bound takes the form of O(n/Y) and is essential for obtaining tight 

bounds on the quantities of interest in our work. 

In this paper we study the ability of sets of finite VC-dimension or pseudo-dimension 

in approximating richer sets in Euclidean space. The result is used for determining the 

degree of approximation of infinite-dimensional classes of functions by finite VC or 

pseudo-dimensional manifolds of functions, cf. [ 111, where such manifolds are shown 

to be powerful in approximating standard functional classes. Together with their sta- 

tistical estimation property mentioned above, such manifolds prove to be valuable in 

a framework of learning from examples with partial information, cf. [ 15, 161. Before 

proceeding to describe the main quantity which is estimated in this paper we review 

some elementary notions in the field of approximation theory. This field deals with 

calculating the degree of approximation of sets F, in general, normed linear spaces 

9 by n-dimensional (linear) subspaces H,, of 9 and more generally by non-linear 

n-dimensional manifolds of g. 

The classical Kolmogorov width (cf. [12, 91) measures the degree of approxima- 

tion of F by the optimal subspace over all n-dimensional subspaces H,,. It is defined 

as d,(F,L,) = infHn supfEF infhE,y, Ilf - hllL,, q> 1. The Gelfand width is similar ex- 

cept it considers approximation of F using subspaces H” of co-dimension n. It is 
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defined as d”(F, L4) = infH. supfCF infhEH. I] f - h]]~,. The linear width is defined as 

&(F,L,)=inf~ supfEF Ilf -fW)ll~,, where the infimum is taken over all continuous 

linear operators P, : F + F for which the range of P, is of dimension n. In all three 

widths, elements of F are approximated by elements of linear n-dimensional manifolds. 

The problem of non-linear approximation also occupies a significant portion of research 

in approximation theory. An n-dimensional non-linear manifold J&‘~ is a class of func- 

tions parameterized by a vector a E R” which are, in general, non-linear functions of a. 

For instance, in the non-linear manifold of functions on X = R which are represented 

by single-hidden-layer neural networks, functions take the form ,f(x, a) = cf=, cia( w;x 

+ bi), where cr(z) = l/( 1 + ee’), the parameter a = [cl,. . . , c/, WI,. . . , wl,bl, . , h,]. A 

general non-linear manifold of functions is the image of a mapping M, : R” + ./ii,,. If 

A4,, is a linear mapping then &‘,, is an n-dimensional subspace. 

There are many known function classes F which can be approximated better by non- 

linear manifolds such as splines, neural networks and radial basis functions, than by 

linear manifolds such as polynomials. It is therefore of interest to consider the degree 

of optimal approximation of general classes F by non-linear manifolds. However, the 

space of all non-linear n-dimensional manifolds JY~ is extremely rich. In order to define 

the degree of non-linear approximation of F some restriction must be imposed either 

on the manifolds used for approximation or on the mapping which relates each element 

J‘ E F with its approximation element in u&n. Otherwise, as DeVore [4] notes, a one- 

dimensional non-linear manifold containing a dense subset of F yields an arbitrarily 

small approximation error for any f E F. This makes the degree of approximation of 

F by the space of all n-dimensional manifolds be trivially zero. 

The classical Alexandrov width of a function class (cf. [ 17, 41) is defined as a,(F, L,) 

= infs:F+Rn ,.6l” suPfrF Ilf - Mn(S(f))ilLq where S is constrained to be a continuous 

selection operator mapping F to R” and the infimum is taken over all such S and all 

manifolds &‘,,. For any element f E F, the best approximation is taken as the optimal 

element h in the optimal manifold An, under the constraint that f is mapped to the 

parameter a of h through a continuous mapping S. The Alexandrov width differs from 

the previous widths in permitting not only linear manifolds in the approximation of 

F. It however introduces a continuity restriction on the selection operator S which in 

many applications is not natural since it results in the optimal approximating element 

being not necessarily the closest to the target f among all functions in =&lp,. 

Notions from discrete mathematics are useful in the estimation problems of widths 

in general sets F of normed linear spaces g. It is often the case that F is the image 

of the unit ball in 9 with respect to the &-norm. In such cases it is usually possible 

to reduce the approximation problem into a finite-dimensional problem where instead 

of 9 and F one has R” and Bp” = {x E R” : (1 II i’ x p < l}, p> 1, respectively. Distances 

are measured using the IT-norm, 1 <q <CO. There are several discretization techniques 

used for this reduction, cf. [9, p. 451, 12, p. 2341. Once discretized, the calculation of 

the width of BF leads to an estimate of the width of the original infinite-dimensional 

function class. For instance, Theorem 3.4 in [12] gives upper bounds on d,, d” and 

6, for an infinite-dimensional Sobolev function class directly in terms of d,, d” and 
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6, for Euclidean balls, respectively. In [ll], we estimated a new width p,(F,L4) for 

a function class F using results based on the current work. Thus, the problem of 

estimating widths of Euclidean sets is central to the problem of estimating widths of 

more general infinite-dimensional spaces. 

The classical widths of the ball BP” are well known. For the case 1 <q 6 p < 00, 

1 <n dm, all of the three widths above equal (m - n)(“q)-“P, cf. [9]. The case of 

1 < p d q <co is more involved. For example, in the case of p = 1, q = 2, it is known 

that d,(B;1,1?) = 6,(B;“, Zr) = dm (f or more results cf. [9]). Note that in this 

case if m = con for some constant CO >0 then the widths d,, 6, equal a constant. 

More generally, there are other cases where the approximation error of BP” by the 

optimal n-dimensional linear manifold does not decrease to zero as n increases. This 

is representative of the limitation of linear approximation. In contrast, as we will see 

in this paper, for the same example above, the optimal manifold of VC-dimension n 

achieves an approximation error of l/fi which asymptotically equals zero as n -+ 03, 

for any m 2 cln for some absolute constant cl > 0. 

2. The p,, width 

We mentioned two independent areas of research the first being approximation the- 

ory and the second is VC-theory which mainly studies the statistical estimation prop- 

erties of classes having a finite VC-dimension or any of the other extended definitions 

such as the pseudo-dimension (cf. [7]), scale-sensitive dimension (cf. [l]). There are 

several examples of the cross discipline between these two fields. Warren [23] consid- 

ered a quantity called the number of connected components of a non-linear manifold 

of real-valued functions, which closely resembles the growth function of Vapnik and 

Chervonenkis for set-indicator functions. Using this he determined lower bounds on 

the degree of approximation by certain non-linear manifolds. Maiorov [lo] used these 

ideas to determine the degree of approximation for the non-linear manifold of ridge 

functions which include the manifold of neural networks with a single hidden layer. 

Barron [2] considered the VC-dimension of the dual of a class F of parameterized 

subsets in Euclidean space which is called the coVC-dimension of F. Using central 

limit theorem for empirical processes he determined the degree of approximation of 

a class of functions with bounded variation by the non-linear manifold of neural net- 

works. Gurvits and Koiran [6] used the coVC-dimension to study the approximation 

degree of the closure of convex hulls of general functional classes by classes of convex 

combinations of n functions. Girosi [5] considered target classes of functions which 

are convolutions of some fixed kernel. Using the uniform strong law convergence rate 

obtained by VC-theory he directly obtained bounds on the approximation degree of 

such target classes by the non-linear manifold consisting of all linear combinations of 

n translates of the kernel. 

In combining VC-theory and approximation theory, our works [15, 16, 1 l] differ 

from the last three above in that the VC-dimension is used to impose a constraint on 
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the non-linear manifolds rather than using VC-theory for converting uniform strong 

law results into approximation error results. We defined a new width, denoted as 

P#,J$) = infHn su~,~~~ infh,Hn Ilf - 41~ where H” runs over all function classes 

of pseudo-dimension n which may, of co&e, be non-linear manifolds. One of its pos- 

itive attributes when compared to the Alexandrov width is that pn does not restrict the 

selection operator to be continuous, i.e., the best-approximation mapping, which takes 

an element ,f E F to an element h in some non-linear class H”, is not restricted. In 

[ 1 l] we estimated p,(F,&) for an infinite-dimensional class F of smooth functions 

with Y partial derivatives bounded in the &-norm. 

As for the classical widths mentioned above, the p,-width is well defined for finite- 

dimensional spaces. In this paper we obtain a tight estimate on p,,(BF, I:), for any 

1 < p, q d co, and on p,(K, I:), where K C { - 1, + 1 }” is of an exponential cardina- 

lity in m. The two main quantities of interest in this paper are defined as 

follows: 

Definition 3 (p~c-width). For any set F c R” define the pyc-width of F as 

pVC(F n l”) = inf dist(F H” I”) ’ 4 H” 
9 ‘4 ’ 

where H” runs over all sets in Rm of VC-dimension less than or equal to n. 

We can similarly consider the degree of approximation using sets of pseudo- 

dimension n. 

Definition 4 (pr-width). For any set F c R” define the p:-width of F as 

pL(F, I:) = ir$ dist(F,H”, I,“), 

where H” runs over all sets in R* of Pseudo-dimension less than or equal to n. 

3. Statement of results 

Since for any set F c R”, W(F) < dim,(F), it follows that the family of sets of VC- 

dimension n contains the family of sets of pseudo-dimension n and thus pic(F, 1,“) < pf 

(F, I:). As H” now runs over more than just linear subspaces it is expected that 

pJ’(BF, 1,“) will be less than or equal to the classical widths d,, d” and 6,. This is 

seen in the next result where for 1 <q< p<co, pF’(BF, I,“) matches the three classical 

widths while for 1 dp<q<~, pIC(BF, I,“) is smaller. The constant c = [161og,(8e)l 

is used throughout the following results. 

Theorem 1. For any integers n 2 1, m >cn, we have 

&(m - n) ‘fq-lJp~p~c(B~,Z~)~(m - n)l/qP”p, if 1 dq<pdcc 



86 V. Maiorov, J. Ratsaby / Discrete Applied Mathematics 86 (1998) 81-93 

and 

c2 

n’lP-llq 
1y 1 <p<q<oo, 

where c2 = c W-llP/16. 

In the next theorem we consider the approximation of any set K c E, of cardinality 

larger than 2 Vm for any constant i , <y<l, where E={-l,+l}m. 

Theorem 2. For any 1 <q d CO, arbitrary i < y < 1, and yl> 0 satisfying (1 - y)( 1 

+q)<i. For n31, m>c3n, where c3= [(4/y(l-y))log2(8e)], let Kc{-1,$-l}” be 

any set of cardinality IKI = 2Y”‘. Then 

Corollary 1. As lower and upper bounds on pr(BF, 1:) and pf(K, 1:) we have the 

lower and upper bounds for py’(B,“, 1:) and pI’(K, 1:) of Theorems 1 and 2, respec- 

tively. 

As a further generalization, let /J be a probability measure on the index set 

{ 1,2,. . . , m} and instead of the 1: norm used above, consider the It(p) norm where 

MI:(P) =(CEi cL(i)lXil 1 . 4 ‘h We have the following corollary. 

Corollary 2. For any fixed probability measure p on { 1,2,. . . , m} let I = {i E { 1,2,. . , 

m} : p(i) > O}. Denote by pmin = miniEl p(i) and umax = maxiEI p(i). Provided that p is 

such that the cardinality of I is greater than n then as lower bounds on py’(BF, Z,“(u)) 

and pI’(K, Z:(p)), we have the lower bounds on pl’(Br, I,“) and py’(K, 1:) multiplied 

by a factor of ,a,!,$. As upper bounds on py’(B,M, Z;(u)) and pr’(K, Z,“(p)), we have 

the upper bounds on plc(Bp, 1:) and pz’(K, 1:) multiplied by a factor of &‘$x. 

4. Proofs of the results 

4.1. Proof of Theorem 1 

We first state and prove two auxiliary lemmas. 

Lemma 1. Let ma 16 and E = {-l,+l}m. Then there exists a set G c E of cardi- 

nality 2”f’ b such that for any v, v’ E G, where v # v’, the distance /(v - v’l(ty am/2. 

Proof. We will construct the set G as follows: take the first point v1 E G to be 

v’=[l,..., 11. Fix an 0 < CI < i. Define the set D,I = {vEE: IIv - vlIJj; >2am}. 

The cardinality ]D,I 12 2(1-a)m > 1. We may therefore choose the second point v2 ED,, 
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and thus ((0’ -v2111;” 32am. Denote by D,I the complement of the set D,I. The cardinal- 

ity ID,, nDU,/>,2”-1~,~/--lDU21 d an as an upper bound on both IocI 1, i = 1,2, we may 

use CjE;’ (7) which is bounded from above by 2me-2m(‘i2-~zmjim)2 <2me-2m(‘~2-r)’ < 

2”(‘-L’) where fi = 2( i - CZ)~, the latter following from a standard application of Cheby- 

chev’s inequality for the successes of m independent Bernoulli trials with probability i. 

Thus ID,, nD,.>I 32”-2.2 m(‘-b) which is greater than 1 for all m>2,1/?. We may there- 

fore choose a t13 E D,.I n DD? where /Iv3 - villl;” 32am, 1 <i <2. We may repeat this for 

all remaining points vk, 3 <k <N, picking uk from n:z,’ D,.,, as long as N < 20”. Let- 

ting x = i and N = 2fimf2 and proceeding as above yields a set G c E whose points are 

m/2-separated in the I;“-norm and whose cardinality is 2”:16, for all m> 16. C-1 

Lemma 2. Let E = {- 1, +l}m. Consider any set A” c [w” M’ith k%(A”) = n, ltlhere 

n d m Jc. Then 

Proof. Consider the set G c E defined in Lemma 1. Define the projection operator 

P: G + A” which associates each v E G with the closest point on A” to x in the I;‘- 

norm. Set 

6 = sup inf IIv -x(1’; = dist(G,A”, I;“). 
IEG .rCA” 

Consider any v # v’ E G. We have 

/lsgn(Pv) - wW)IIr~ 

= li(sgn(Pv) - v) + (v’ - sgn(Pv’)) + (v - D/)11,; 

3 /Iv - v/Ill;” - IIv’ - sgn(Pv’)lljy - I(v - sgn(Pv)Ilry. (1) 

Now, for any y E R”, jlv-sgn(y)llly = C,“_, Ivi-sgn(y, )I <2 CL, Iui-yil= 2jlv-yil1~. 

Hence, llv - sgn(Pv)l\ ,;” 6211~ - Pvlll; 626. Hence, from (1) we have 

IlwW) - w@Jv’)ll ‘;” > l/v - V’l//;’ -- 26 - 26 

> ; - 46. (2) 

The set sgn(PG) has VC-dimension VC(sgn(PG)) <n because the set PG c A” and by 

definition VC(A”) = n. Also, k’C(sgn(PG)) = VC(PG) which follows from Definition 1. 

As in the statement of the lemma let us restrict m 3 cn. Assume that 6 f m/16. The 

set sgn(PG) has the following three properties the first two of which follow from the 

assumption: First, by Lemma 1 it has cardinality /sgn(PG)I = 2m”6. This follows since 

for any v# v’ E G the corresponding vertices u = sgn(Pv), and U’ = sgn(Pv’) satisfy 

llu-u’II1~3(m/2)-463m/4>0 and are therefore distinct so (sgn(PG)I =IGI =2”‘16. 

The second property is that for any u # U’ E sgn(PG), IIu - ~‘111; >m/4. The third 

property is that VC(sgn(PG)) d II. 
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From Theorem 1 of Haussler [8] which states an upper bound on the packing num- 

ber of a set in E which has VC-dimension n, it follows that the s-packing number 

of sgn(PG), in the l/mll.l] y- , norm, is upper bounded by e(n + 1)(8e)“, for E = i. 

Since the set sgn(PG) is itself &-separated in the k Il.l(~~-norm then its E-packing num- 

ber is lower bounded by its cardinality which is 2 m/‘6. Then we have the following 

inequality: 

2m/16 <e(n + l)(Se)“. (3) 

As m was chosen to be larger than or equal to 116 log2(8e)ln then (3) reduces to 

2 log,(8e) 6 
log2(4n + 1)) 

n + logd8e) (4) 

which is false for all n 3 1. It follows that the assumption of 6 <m/16 is contra- 

dicted for any n 3 1. Hence 6 >m/16 and using the fact that G c E it follows that 

dist(E,A”, I;“) >dist(G,A”, 1;“) >m/16 which completes the proof. 0 

We now prove the lower bound of Theorem 1. 

Proof of Theorem 1 (Lower bound). Consider G as defined in Lemma 2. Let G= 

{l/m i~J’v:v~G} and l?=((l/m’lP )u:oE{-l,+l}“}. Then /?cBF. If in the proof 

of Lemma 2 we replace the lower bound of (m/2) - 46 by (l/m”P)(m/2) - 46 and 

then change the assumption to 66(l/m’~P)m/16 then we obtain that dist(s,A”, 1;1)> 
m/l6m’iP. From a well known inequality we have for any vector x E R”‘, for a 3 b 3 1 

Hence, for any v~_l?, and any XEA”, J/v -~ll~~>(rn~‘~/rn)lJv -XIII;“. Therefore, 

which holds for any set A”c FP of VC(A”)=n>l, and any 1 <p, qdm. 

For the case that 1 <q < p 6 cm, the right-hand side is bounded from below by 

(1/16)(m-n)“q-“J’, true for all n>l, and m acn which agrees with the 

theorem. 

Next, we prove the lower bound of the theorem for the case of 1 < p <q d 00. Using 

the given condition of m acn, we have 

P?@‘, 14” > = inf sup inf (IX - Y/II,- 
H” C Rm :VC(H”)<n XEBp” yEH” 

3 inf sup inf lb - J+, H” C R” :VC(H”)<n x,q yEH” 
(7) 
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where l].(liY is the norm in [WC” which we take as the projection of R” onto the first 

en coordinates. The expression in (7) may be written as 

inf sup inf IIX ~ VII/y H” n W” :I’C(H”)Gn xEB,y n R<,, yZH” 

inf sup inf IIx - vllr:;, 
H” C R”“.VC(H”)<n xEB;n ,+,, );EH” 

(8) 

where in (8) H” runs over all subsets in R”” rather than R”, of VC-dimension no 

larger than n. The above equality follows since for any H” c IX*, VC(H” f’ KY) 

d VC(H”) dn, i.e., projecting a set in R” onto a subspace KY cannot increase its 

VC-dimension. The expression in (8) is precisely pyc(Br, 16). From (6) it follows 

that $(B;;n, ‘7) > T 1 nl:/J--I 4 which completes the proof of the lower bound on 

p,vC(B;. 1,“‘). 

We will need the following simple auxiliary lemma. 

Lemma 3. D+ze An C R” as 

I?“={xEw:3 ,,..., i,_,E{1,2 ,..., m},x,, = ‘.. =Xlm_,=O}. 

Then VC( kin) = n. 

Proof. There does not exist an XE&” and an ZC {1,2,...,m} with l/l =n + 1 such 

that sgn(xlI) = [+ 1,. . . , +l], where xl, = [xi,, . . . ,xi,+,], il, . . . , in+1 E I. Hence, there does 

not exist such I for which Isgn(Ai,)l = 2”+’ so VC(kn) d ~1. Now, consider the subset 

A={.xER”:X,+, = ‘.’ =x,=O}cfij”. Consider1’={1,2,...,n}. Clearly, Isgn(AI,,)l 

= 2”. Thus, VC(A)>n. Hence, VC(kn)>n. It follows that VC(k’)=n. 0 

The following proof of the upper bound of Theorem 1 is taken from Tikhomirov 

[ 171. We include it here for completeness. 

Proof of Theorem 1 (Upper bound). Consider an x E B;. Let the indices i,, iz, , i, be 

such that IX;, I < IX;* I < . . Ix,, I. Define Qn as the mapping which takes any x E BF to a 

vector y = Qnx E fin such that yiI = ylz = . = Yim_,, = 0, and Y!, = xi, -Ix,_,,_ , Iwtx,, ). 
m-n+l<j<n. ForanyxEBr, 

m--n 

/Ix - a+ = c lbi, lY + lx,m_,2+, p -g 1 (9) 
,&I ,i=m--n+ I 

m--n 

= c lx;, I4 + ~I%,-,+, 19. (10) 
j=l 

Set 6 = ~~=~” lxi, If’. Then xim,m_n+, Ixi, IP < 1 - 6. Hence, we have 

j=m--n+l 
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or 

IXj,_,+, 1 6 (1 - 6)“W’P. 

Also, 

m--n m--n 

C lxij 1’ = C I%, I’IXij /q--p d hIXim_n+l I’-‘. 

j=l j=l 

From (lo)-(12) we obtain for any x EBB” 

IIx - Qnxllyt d ~Ixi,_,+, 1q--p + nIxi,,_.+, 1’ 

< (1 _ q(dlP&-_qYP <n(P-_q)lP 
> 

where the last inequality follows from assuming 1~ p < q < m. 

It follows that 

(11) 

(12) 

(13) 

where H” c IF!“’ is any set of VC-dimension less than or equal to n. 

Now, we prove the upper bound on pyc(BF, 1:) for the case of 1 <q< p<oo. Here 

linear approximation using a projection mapping onto a linear subspace is optimal as 

is seen next since the upper bound obtained differs only by a constant from the lower 

bound on pI’(BF, I,“). For any x E Bp”, let P, be a projection which maps any x E Rm to 

a y E fin as follows: For m - n + 1 <j < m, yj = xj, while for the remaining coordinates 
y1 = . . = y,_, = 0. Since Z?’ is merely R” then its I’C(fi’) = II. For any x E Bp” the 

approximation error becomes 

l/q IlP 
m--n 

IIX-pnxlly = c lx$ 
i ) <(m - rp--llp mjlxi,lP 

j=l ( ) j=l 

< (m - n)llq--llP IIxlly <(m - np--l/P. 

This concludes the proof of the upper bound. I7 

4.2. Proof of Theorem 2 

(15) 

(16) 

Suppose 0 < 01< $. Consider any set K C E = { - 1, +l}” of cardinality 2ym, where 

0 < y < 1. In a similar manner as in Lemma 1, a set G c K may be constructed such 

that for every U,VE G, u# v, we have llu - v/I’;” >2am, and IGI =2”‘” where cl = 

(y + 2(( l/2) - a)2 - 1)/2 m. In order to maximize the range for y we introduce another 
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parameter q > 0 and we choose henceforth x = i - V( 1 - y)( 1 + ~)/2. This yields a set 

G which is 2am-separated in I;“-norm with ICI = 2 q(‘--7)m’2, for any i <y < 1, where the 

condition on 0 < M < i implies y must satisfy (1 - y )( 1 + y ) < i. We now proceed as in 

the lower bound proof of Theorem 1 which appeared under the case of 1 <q < p < c~. 

Fix any set H” c R” with VC(H”) bn and let 6 = &t(G,H”, I;‘), except instead 

of assuming 6 <m/16 we assume 6 < xm/4 where SI is as chosen above. As in (3) 

this leads to a contradiction of the inequality 2P7(‘-~)“~2 <e(n + 1)(8e)” for all n 3 I 

provided that m 3 (4n/(r7( 1 - y)) logz(8e). To convert from the I;l-norm to I,“-norm we 

use (5) and obtain 

ctm’iu 
i;f dist(K, H”, 1,“) 3 - 3 

cc(m - n)“q 

4 4 . 

Substituting for a we then obtain 

(17) 

(18) 

which concludes the proof of the lower bound on pJ’(K, I,“). 

The upper bound easily follows from the upper bound of Theorem 1 for the case 

l<q<p=oo since KCECBL. Thus, we have 

py’(K, I,“)<p~c(B~, Z,“)<(m - n)‘.“ (19) 

which therefore proves Theorem 2. U 

4.3. Proof of Corollary 1 

Since for any set F c R”, p,!f’(F, l,“)<pL(F, I:), the lower bounds of Theorems 1 

and 2 hold also for p~(B~,l~) and pr(K,l,“), respectively. For the upper bounds the 

case is similar since the particular classes I?” and fin of VC-dimension n, which are 

used for the approximation, have a pseudo-dimension II (proven below). Their rate 

of approximation of BP” upper bounds the degree of approximation by any class of 

pseudo-dimension n and hence upper bounds pL(BF, 1,“). As in (19), the upper bound 

on pr(K,lq) is p:(Bk,Z,“). 

We now prove that the pseudo-dimension of the set I?” defined in Lemma 3 is n. 

Suppose that it is greater than n. Then there exists an index set I = {it,. . . , in+, } c { 1, 

2 ,..., m} such that sgn(~i,,y)={-l,+l}“+‘. We havefii;,Y= @:{[x~,+~I ,...,_ x,,_, 

+Yj-l~Yj>Xi,+l+Yj+I,..., xi,+,+y,+l] :x E f?“} since for any x E Z?” there are only n non- 

zero elements. It follows that the set of boolean vectors sgn(fii,y) = UyI!: [f 1, , + 1, 

sgn(yi, ), f 1,. , ill. Clearly, the boolean vector -sgn(y) = - [sgn(yt ), . . , sgn(y,,+ I)] 

e sgn(Z?;,~,,). Hence, there does not exist an I and y such that Isgn(fi;,l,)ll =2n+‘. 

This proves dim,(I?“)<n. We also have dim,(k’)>, VC(fi”)=n. It follows that 

dim,(fi”) = n. The same kind of proof is used to show that dim,(Bn) = n. 0 
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4.4. Proof of Corollary 2 

For any vectors U, z) E [Wm we have 11~ - ~//if(~) = (cjeI ,~(i)lvi - u$)iiq 2,&$ljv 

- u]]~,“. Also, 11~ - fill; = (C,,, ,u(i)Jui - UilQ)“’ which by Holder’s inequality is 

bounded from above by +L&& llz, - ~11”~. Now, provided that the set I, which depends 

on the probability measure ,u, has cardinal&y greater than n then for any set A C BP, 

pic(A, Z~(~)) = inff,rfl supxeA inf,, E H” IIx - ~ilr,-(~) 2~2: infEn supxEA inf,EHe /Ix - yllr; 
= i/q vc pminpn (A, r,“) and pyc(.4, ~~(~))~~~~~~~‘(~, E,“). If the cardinal@ of II/ <n then 

pyC@, E;(,u)) = 0 since then effectively the set A c [wi’l C R”, the latter having a VC- 

dimension n. 
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