Maximal operators and singular integral operators along submanifolds

Hung Viet Le

Department of Mathematics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA

Received 3 September 2003
Available online 10 June 2004
Submitted by J.A. Ball

Abstract

In this paper we prove, for certain values of \(p \), the \(L^p \) boundedness of the maximal operator

\[
\mathcal{I}_f(\bar{x}) = \sup_{h} \left| p.v. \int_{\mathbb{R}^m} \frac{h(|y|)\Omega(y')}{|y|^m} f(\bar{x} - \Gamma(y)) \, dy \right| \quad (\bar{x} \in \mathbb{R}^n; \ n > m \geq 2),
\]

where the supremum is taken over all measurable radial functions \(h \) with \(\|h\|_{L^1(\mathbb{R}^+, \mathbb{R}^+)} \leq 1 \) and \(1 \leq s \leq 2 \). Here \(\Omega \in H^1(\mathbb{S}^{m-1}) \), \(\Gamma(y) = (\phi(|y|)y', \Psi(|y|)) \). We also obtain the range of \(p \) for which the maximal operator above is unbounded. Moreover, we show that the singular integral

\[
T_f(\bar{x}) = p.v. \int_{\mathbb{R}^m} \frac{h(|y|)\Omega(y')}{|y|^m} f(\bar{x} - \Gamma(y)) \, dy
\]

and its associated maximal function \(T_f^*(x) \) are bounded in \(L^p(\mathbb{R}^n) \) for \(1 < p < \infty \).

© 2004 Elsevier Inc. All rights reserved.

Introduction

The authors of [4] proved the \(L^p \) boundedness \((p > ms/(ms - 1), \ 1 \leq s \leq 2) \) for the maximal operator

\[
T_f(x) = \sup_{h} \left| p.v. \int_{\mathbb{R}^m} \frac{h(|y|)\Omega(y')}{|y|^m} f(x - y) \, dy \right| \quad (x \in \mathbb{R}^m; \ m \geq 2),
\]

E-mail address: hung.le@swosu.edu.
where the supremum is taken over all measurable radial functions h with

$$\|h\|_{L^s(\mathbb{R}^+, \frac{dr}{r})} \leq 1 \quad \text{and} \quad 1 \leq s \leq 2.$$

Here Ω is a continuous function on S^{m-1}, is homogeneous of degree zero, and has mean value zero over the sphere S^{m-1}. Note that the range of p obtained above was the best possible range. That is, the operator above fails to be bounded in $L^p(\mathbb{R}^m)$ when $p \leq \frac{ms}{ms - 1}, 1 \leq s \leq 2$ (see [4]).

Their work has motivated us to study the above maximal operator. We wish to extend the results of [4] in some directions: by considering $\Omega \in H^1(S^{m-1})$ instead of $\Omega \in C(S^{m-1})$, by adding some roughness to the kernel, and by considering the maximal operator along some types of submanifolds. We now introduce some notations and definitions, and summarize our results below.

Definition. We say that a function γ satisfies hypothesis A if

(a) $\gamma : [0, \infty) \to [0, \infty)$ is strictly increasing and $\gamma(2t) \geq \lambda \gamma(t)$ for some fixed $\lambda > 1$.
(b) $|\gamma^{(l)}(t)| \geq \alpha \gamma(t)/tl$ on $(0, \infty)$ for some fixed $l \geq 1$ and $\alpha > 0$. If $l = 1$, then $\gamma'(t)$ is assumed to be monotone.

We say that γ satisfies hypothesis B if

(c) $\gamma : (0, \infty) \to (0, \infty)$ is strictly decreasing, $\gamma(t) \geq \lambda \gamma(2t)$ for some fixed $\lambda > 1$.
(d) $|\gamma^{(l)}(t)| \geq \alpha \gamma(t)/tl$ on $(0, \infty)$ for some fixed $l \geq 1$ and $\alpha > 0$. If $l = 1$, then $\gamma'(t)$ is assumed to be monotone.

Finally, γ is said to satisfy hypothesis C if

(e) γ is C^1 and strictly increasing on its compact support, say $[0, b], b < \infty$.
(f) $\gamma'(t)$ is increasing on its support.

For the rest of this paper, we let $\Omega \in H^1(S^{m-1})$ ($m \geq 2$) be homogeneous of degree zero and have the mean value zero property. Let $\Gamma : \mathbb{R}^m \to \mathbb{R}^n$ ($2 \leq m < n$) be defined by $\Gamma(y) = (\phi(|y|) y', \Psi(|y|))$ ($y' = y/|y|$), where ϕ and Ψ are radial functions. Define the maximal operator along submanifold \mathfrak{I}^Γ on the class of Schwartz functions $S(\mathbb{R}^n)$ by

$$\mathfrak{I}^\Gamma f(\bar{x}) = \sup \left\| \text{p.v.} \int_{\mathbb{R}^m} \frac{h(|y|) \Omega(y')}{|y|^m} f(\bar{x} - \Gamma(y)) \, dy \right\| (\bar{x} \in \mathbb{R}^n),$$

where the supremum is taken over all measurable radial functions h with $\|h\|_{L^s(\mathbb{R}^+, \frac{dr}{r})} \leq 1, 1 \leq s \leq 2$. We define the maximal operator \mathfrak{I} acting on $S(\mathbb{R}^m)$ by

$$\mathfrak{I} f(x) = \sup \left\| \text{p.v.} \int_{\mathbb{R}^m} \frac{h(|y|) \Omega(y')}{|y|^m} f(x - \phi(y)y') \, dy \right\| (y' = y/|y|)$$

where the supremum is taken over all measurable radial functions h with $\|h\|_{L^s(\mathbb{R}^+, \frac{dr}{r})} \leq 1, 1 \leq s \leq 2$. We define the maximal operator \mathfrak{I} acting on $S(\mathbb{R}^m)$ by
Finally, let Mg be the maximal operator, defined on $S(\mathbb{R}^{n-m+1})$ by:

$$
Mg(x_1, x_2) = \sup_{k \in \mathbb{Z}} \left\{ \frac{1}{2^{k+1}} \int_{2^k}^{2^{k+1}} |g(x_1 - \phi(t), x_2 - \psi(t))| \, dt \right\}
$$

with $x_1, x_2 \in \mathbb{R}^{n-m}$.

We now state the following theorems.

Theorem 1. Suppose ϕ satisfies either hypothesis A or hypothesis B. If the maximal operator Mg is bounded in $L^p(\mathbb{R}^{n-m+1})$ for all $p > 1$, then \mathcal{S}_f has a bounded extension in $L^p(\mathbb{R}^n)$ for $s/(s-1) \leq p < \infty$ when $1 < s \leq 2$, and for $p = \infty$ when $s = 1$. \mathcal{S}_f is unbounded in $L^p(\mathbb{R}^n)$ for $0 < p < \infty$ when $s = 1$, for $0 < p \leq ms/(ms-1)$ when $1 < s \leq 2$, and for $1 \leq p \leq \infty$ when $0 < s < 1$.

Corollary 1. If $\Gamma(y) = (\phi(|y|) y', \Psi(|y|)) \equiv (|y|^{k_0} y', |y|^{k_1}, \ldots, |y|^{k_{n-m}})$ for some positive real numbers $k_0 < k_1 < \cdots < k_{n-m}$, then \mathcal{S}_f is bounded or unbounded in $L^p(\mathbb{R}^n)$ with the same values of p and s as given in Theorem 1.

Corollary 2. Suppose $\Gamma(y) = (\phi(|y|) y', \Psi(|y|)) \equiv (|y|^{k_0} y', y_1(|y|), \ldots, y_{n-m}(|y|))$, where k is a positive integer, and y_1, \ldots, y_{n-m} are polynomials in $|y|$. Then \mathcal{S}_f is bounded or unbounded in L^p with the same values of p and s as given in Theorem 1.

Corollary 3. Suppose $\Gamma(y) = (\phi(|y|) y', \Psi(|y|)) \equiv (\phi(|y|) y', y_1(|y|), \ldots, y_{n-m}(|y|))$, where ϕ satisfies hypothesis A or B, and Ψ has compact support. Assume that for each...
Also, we will only prove it for the case that \(m \) is bounded in \(L^p(\mathbb{R}^m) \) for \(s/(s-1) \leq p < \infty \) when \(1 < s \leq 2 \), and for \(p = \infty \) when \(s = 1 \). \(\exists f \) is unbounded for \(0 < p \leq ms/(ms - 1) \) when \(1 < s \leq 2 \).

Theorem 2. Assume \(\phi \) satisfies either hypothesis A or hypothesis B. Then \(\exists f \) is bounded in \(L^p(\mathbb{R}^m) \) for \(s/(s-1) \leq p < \infty \) when \(1 < s \leq 2 \), and for \(p = \infty \) when \(s = 1 \). \(\exists f \) is unbounded for \(0 < p \leq ms/(ms - 1) \) when \(1 < s \leq 2 \).

Theorem 3. Let \(\phi \) and \(\Psi \) be given as in Corollaries 1, 2, or 3. Then the singular integral \(T_f \) is bounded in \(L^p(\mathbb{R}^n) \) (\(n > m \geq 2 \)) for \(1 < p < \infty \), whenever \(h \in L^1(\mathbb{R}^+, d\sigma) \), \(1 < s \leq 2 \). Moreover, if \(h \in L^1(\mathbb{R}^+, d\sigma) \cap L^\infty(\mathbb{R}^+) \), then its associated maximal function \(T^*_f \) is bounded in \(L^p(\mathbb{R}^n) \) for \(1 < p < \infty \).

Theorem 4. If \(\phi \) satisfies either hypothesis A or hypothesis B, then the singular integral \(T_f \) is bounded in \(L^p(\mathbb{R}^m) \) (\(m \geq 2 \)) for \(1 < p < \infty \), whenever \(h \in L^1(\mathbb{R}^+, d\sigma) \), \(1 < s \leq 2 \). Moreover, if \(h \in L^1(\mathbb{R}^+, d\sigma) \cap L^\infty(\mathbb{R}^+) \), then its associated maximal function \(T^*_f \) is bounded in \(L^p(\mathbb{R}^m) \) for \(1 < p < \infty \).

Example. Let \(\phi : [0, \infty) \to [0, \infty) \) be a function of the types \(t^\alpha (q \neq 0) \), \(t^\alpha e^{\beta t} (\alpha \geq 1, \beta \geq 0) \) or \(t^{-\alpha} e^{-\beta t} (\alpha > 0, \beta \geq 0) \). For each \(j = 1, \ldots, n-m \), let \(\gamma_j(t) = t^{\alpha j} (q_j \geq 1, \beta_j \geq 0) \) with compact support. Then by Corollary 3, the operator \(\exists_{\Gamma} f \) is bounded in \(L^p \), where the values of \(p \) are given in Theorem 1. Moreover, the operators \(T_{\Gamma} f \) and \(T^*_{\Gamma} f \) are also bounded in \(L^p \) for \(1 < p < \infty \). Observe that the coordinates of \((\phi(t), \gamma_1(t), \ldots, \gamma_{n-m}(t)) \) in this example are not necessarily linearly independent.

For the rest of this paper, we will denote \(C \) as a constant, which is not necessarily the same each time it appears. Note that the proof of Theorem 1 follows some ideas in [4].

Proof of Theorem 1. In view of the atomic decomposition of \(\Omega \) (see [5,7]) and the fact that \(\exists \) is sublinear, it suffices to prove the \(L^p \) boundedness of the operator

\[
\exists_a f(x, \tilde{x}) = \sup_h \left\| \text{p.v.} \int_{\mathbb{R}^m} h(|y|)a(y') f(x - \phi(|y|)y', \tilde{x} - \Psi(|y|)) dy \right\|,
\]

\((x \in \mathbb{R}^m, \tilde{x} \in \mathbb{R}^{n-m})\),

with the bound independent of the regular \(\infty \)-atom \(a \) in the atomic decomposition of \(\Omega \). Also, we will only prove it for the case that \(m \geq 3 \) and \(\phi \) satisfies hypothesis A, since the proofs of the remaining cases are essentially the same. By Hölder’s inequality, we have

\[
\exists_a f(x, \tilde{x}) = \sup_h \left\| \int_0^\infty h(r) \int_{S^{m-1}} a(y') f(x - \phi(r) y', \tilde{x} - \Psi(r)) d\sigma(y') \frac{dr}{r} \right\|
\]

\[\leq \left\| \int_{S^{m-1}} a(y') f(x - \phi(r) y', \tilde{x} - \Psi(r)) d\sigma(y') \right\|_{L^p(\mathbb{R}^+, \frac{dr}{r})},\]
where s' is the conjugate of s. We first consider the case $s = 2$. Then

$$
\mathcal{A}_u f(x, \tilde{x}) \leq \left(\int_0^\infty \left| \int_{\mathbb{S}^{n-1}} a(y') f(x - \phi(r)y', \tilde{x} - \Psi(r)) d\sigma(y') \right|^2 \frac{dr}{r} \right)^{1/2}
$$

$$
= \left(\sum_k \left| \int_1^2 \int_{\mathbb{S}^{n-1}} a(y') f(x - \phi(2^k r)y', \tilde{x} - \Psi(2^k r)) d\sigma(y') \right|^2 \frac{dr}{r} \right)^{1/2}.
$$

(1)

Take a smooth positive function p supported on the set $\{ r \in \mathbb{R}: 1/2 < |r| < 2 \}$ with $\sum_k p(a_k r) = 1$ for all $r \neq 0$. Here $\{a_k\}$ is a lacunary sequence of positive real numbers, defined by $a_k = \phi(2^k)$ for all $k \in \mathbb{Z}$. For $\rho > 0$, let $A_\rho : \mathbb{R}^m \to \mathbb{R}^m$ be the linear mapping defined by $A_\rho \xi = (\rho^2 \xi_1, \rho \xi_2, \ldots, \rho \xi_m)$, where $\xi = (\xi_1, \xi_2, \ldots, \xi_m)$. Define Δ on \mathbb{R}^m by $\Delta(\xi) = p(|A_\rho \xi|)$ and denote $\Delta_{a_k}(\gamma) = a_k^{-m} \Delta(a_k^{-1} \gamma)$. Then $\Delta_{a_k}(\xi) = \tilde{\Delta}(a_k \xi) = p(a_k |A_\rho \xi|)$. Now define $S_k f$ by $S_k f(x, \tilde{x}) = (\Delta_{a_k} \otimes \delta_{n-m}) * f(x, \tilde{x})$, where δ_{n-m} is the Dirac distribution acting on the variable $\tilde{x} \in \mathbb{R}^{n-m}$. It is clear that $f(x, \tilde{x}) = \sum_k S_k f(x, \tilde{x})$ for any $j \in \mathbb{Z}$ (at least for a Schwartz function f). Thus

$$
\mathcal{A}_u f(x, \tilde{x})
$$

$$
\leq \left\{ \sum_k \left[\sum_j \int_1^2 \int_{\mathbb{S}^{n-1}} a(y') S_k f(x - \phi(2^k r)y', \tilde{x} - \Psi(2^k r)) d\sigma(y') \right]^2 \frac{dr}{r} \right\}^{1/2}
$$

$$
\leq \left\{ \sum_k \left[\sum_j \int_1^2 \int_{\mathbb{S}^{n-1}} a(y') S_k f(x - \phi(2^k r)y', \tilde{x} - \Psi(2^k r)) d\sigma(y') \right]^2 \frac{dr}{r} \right\}^{1/2}
$$

$$
= \sum_j \int_1^2 \int_{\mathbb{S}^{n-1}} a(y') S_k f(x - \phi(2^k r)y', \tilde{x} - \Psi(2^k r)) d\sigma(y') \frac{dr}{r}
$$

(2)

where the last two inequalities follow from Minkowski’s inequality. We now calculate the L^2 norm of $T_j f$. Denote

$$
F_k(x, \tilde{x}; r) = \int_{\mathbb{S}^{n-1}} a(y') S_k f(x - \phi(2^k r)y', \tilde{x} - \Psi(2^k r)) d\sigma(y').
$$

(3)
By Fubini’s and Plancherel’s theorems, we have
\[
\|T_j f\|_2^2 = \sum_{k=1}^{2} \|\hat{F}_k(\cdot, \cdot; r)\|_2^2 \frac{dr}{r},
\]
where \(\hat{F}_k\) denotes the Fourier transform with respect to the first two variables of \(F_k\), and
\[
\hat{F}_k(\xi, \eta; r) = \hat{S}_{k+j} f(\xi, \eta) \int_{S^{m-1}} a(y) e^{i\xi|\phi(2^jr)|\zeta} e^{i\eta|\Psi(2^jr)|} d\sigma(y).
\]
We may assume without loss of generality that \(\text{supp}(a) \subset B(1, \rho) \cap S^{m-1}\), where \(1 = (1, 0, 0, \ldots, 0)\). For \(\zeta \neq 0\), we choose a rotation \(\theta\) such that \(\theta(\zeta) = |\zeta|1 = |\zeta|(1, 0, 0, \ldots, 0)\), and let \(\theta^{-1}\) denote its inverse. Note that \(a(\theta^{-1}(y'))\) is again a regular \(\infty\)-atom with support in \(B(\zeta', \rho) \cap S^{m-1}\), \(\zeta' = \zeta/|\zeta|\). Let \(y' = (v, y_2', \ldots, y_m')\). We then have
\[
\hat{F}_k(\xi, \eta; r) = e^{i\eta|\Psi(2^jr)|} \hat{S}_{k+j} f(\xi, \eta) \int_{S^{m-1}} a(\theta^{-1}(y')) e^{i\xi|\phi(2^jr)|\zeta} e^{i\eta|\Psi(2^jr)|} d\sigma(y')
\]
\[
= e^{i\eta|\Psi(2^jr)|} p(a_{k+j}|A_{\rho} \zeta|) \hat{f}(\xi, \eta) \int_{S^{m-1}} e^{i\xi|\phi(2^jr)|\zeta} E_a(v, \zeta') dv,
\]
where
\[
E_a(v, \zeta') = (1 - s^2)^{(n-3)/2} \chi_{(-1,1)}(s) \int_{S^{m-1}} a(s, (1 - s^2)^{1/2} \tilde{y}) d\sigma(\tilde{y}).
\]
Recall that \(E_a(v, \zeta')\) (see [7, Lemma 2.1]) has support in \((\zeta'_1 - 3w, \zeta'_1 + 3w)\) and \(w \equiv w(\zeta') = |(\rho^2 \zeta'_1, \rho \zeta'_2, \rho \zeta'_3, \ldots, \rho \zeta'_m)| = |A_{\rho} \zeta'|/|\zeta|\). We now show that \(\|T_j f\|_2 \leq C_{\lambda^{-1}/|S|} \|f\|_2\) by considering two separate cases: \(j \geq 0\) and \(j < 0\).

Case \(j \geq 0\). By the cancellation property of \(E_a(v, \zeta')\), we obtain
\[
\left|\hat{F}_k(\xi, \eta; r)\right| \leq p(a_{k+j}|A_{\rho} \zeta|) \left|\hat{f}(\xi, \eta)\phi(2^jr)|\zeta| \int_{\zeta'_1 - 3w}^{\zeta'_1 + 3w} \left|v E_a(v, \zeta')\right| dv
\]
\[
\leq C p(a_{k+j}|A_{\rho} \zeta|) \left|\hat{f}(\xi, \eta)\phi(2^jr)|\zeta| \int_{\zeta'_1 - 3w}^{\zeta'_1 + 3w} |v| dv
\]
\[
\leq C p(a_{k+j}|A_{\rho} \zeta|) \left|\hat{f}(\xi, \eta)\phi(2^jr)|A_{\rho} \zeta|.
\]
Therefore,
\[
\|T_j f\|_2^2 = \sum_{k=1}^{2} \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} \left|\hat{F}_k(\xi, \eta; r)\right|^2 d\xi d\eta \frac{dr}{r}
\]
\[
\leq C \sum_{k=1}^{2} \int_{\mathbb{R}^n} \int_{\mathbb{R}^m} \left|\hat{f}(\xi, \eta)\phi(2^jr)\right|^2 d\xi d\eta \frac{dr}{r}
\]
\[= \sum_k \int_{\mathbb{R}^n} \int_1^2 \left| \hat{F}_k(\xi, \eta; r) \right|^2 \frac{dr}{r} d\xi d\eta \]
\[\leq C \sum_k \int_{\mathbb{R}^n} \int_{D_k+j} p^2(a_k + j|A_\rho \xi|)\phi(2^{k+1})|A_\rho \xi|^2 \left| \hat{f}(\xi, \eta) \right|^2 d\xi d\eta,\]

where \(D_k+j = \{ \xi \in \mathbb{R}^m : 1/2 < a_k + j|A_\rho \xi| < 2 \} \). Recall that \(a_k = \phi(2^k) \). Because of the support \(D_k+j \) of \(p \) and the fact that \(\phi \) satisfies hypothesis A, we have \(2 > \phi(2^{k+j})|A_\rho \xi| > \lambda^{j-1}\phi(2^{k+1})|A_\rho \xi| \). Thus \(\phi(2^{k+1})|A_\rho \xi| < C\lambda^{-j}, \ j \geq 0 \). Therefore,

\[\|T_j f\|_2 \leq C\lambda^{-j} \|f\|_2, \quad j \geq 0. \tag{8}\]

Case \(j < 0 \). From Eq. (5), we have

\[\int_1^2 \left| \hat{F}_k(\xi, \eta; r) \right|^2 \frac{dr}{r} = p^2(a_k + j|A_\rho \xi|)\left| \hat{f}(\xi, \eta) \right|^2 \int_1^2 \left| \int e^{i|\phi(2^{k+1})r|v} E_{\alpha}(v, \zeta') dv \right|^2 \frac{dr}{r} \]
\[= p^2(a_k + j|A_\rho \xi|)\left| \hat{f}(\xi, \eta) \right|^2 \int_1^2 \left(\int e^{i|\phi(2^{k+1})r|v} E_{\alpha}(v, \zeta') dv \right) dv \frac{dr}{r} \]
\[= p^2(a_k + j|A_\rho \xi|)\left| \hat{f}(\xi, \eta) \right|^2 \int_1^2 \left(\int e^{i|\phi(2^{k+1})r|v} dv \right) E_{\alpha}(v, \zeta') dv \frac{dr}{r} \]
\[\leq p^2(a_k + j|A_\rho \xi|)\left| \hat{f}(\xi, \eta) \right|^2 \int_1^2 \left(\int \frac{1}{r^{d-1}} dv \right) E_{\alpha}(v, \zeta') dv \frac{dr}{r}, \tag{9}\]

where \(r(r) = \int e^{i|\phi(2^{k+1})r|v} dv, \ 1 \leq r \leq 2 \). By applying van der Corput’s lemma and by using the fact that \(\phi \) satisfies hypothesis A, we obtain \(|r(r)| \leq r(a_k|\xi||v - \bar{v}|)^{-1/2}\). Thus by integrating by parts, we have

\[\left| \int_1^2 e^{i|\phi(2^{k+1})r|v} \frac{dr}{r} \right| = \left| \int_1^2 \frac{1}{r} \tau'(r) \ dr \right| \leq C(a_k|\xi||v - \bar{v}|)^{-1/2}, \quad l \geq 1.\]

It is also obvious that

\[\left| \int_1^2 e^{i|\phi(2^{k+1})r|v} \frac{dr}{r} \right| \leq \ln 2.\]
Thus
\[
\left| \int_1^2 \psi|\phi(2^k r)|e^{i\psi(r - \tilde{\psi})} \frac{dr}{r} \right| \leq C \min \left\{ 1, (a_k \|v - \tilde{v}\|) \right\} \leq C (a_k \|v - \tilde{v}\|)^{-1/2}.
\]
\(l \geq 1. \) \tag{10}

Therefore,
\[
\int_1^2 |\tilde{F}_k(\xi, \eta; r)|^2 \frac{dr}{r} \leq C p^2 (a_k + j |A_\rho \xi|) |\hat{f}(\xi, \eta)|^2
\]
\[
\times \int \left\{ \int (a_k \|v - \tilde{v}\|)^{-1/2} |E_a(v, \tilde{v})| \frac{dv}{\tilde{v}} \right\} |\tilde{F}_a(v, \tilde{v})| \frac{dv}{\tilde{v}} \tag{11}
\]
\[
\leq C p^2 (a_k + j |A_\rho \xi|) |\hat{f}(\xi, \eta)|^2 \left(a_k \|v - \tilde{v}\| \right)^{-1/2}
\]
\[
\times \int \left[\int |v - \tilde{v}|^{-1/2} d\tilde{v} \right] |\tilde{F}_a(v, \tilde{v})| \frac{dv}{\tilde{v}}
\]
\[
\leq C p^2 (a_k + j |A_\rho \xi|) |\hat{f}(\xi, \eta)|^2 \left(a_k \|v - \tilde{v}\| \right)^{-1/2}
\]
\[
\times \int \left[\int |v - \tilde{v}|^{-1/2} d\tilde{v} \right] |\tilde{F}_a(v, \tilde{v})| \frac{dv}{\tilde{v}}
\]
\[
\leq C p^2 (a_k + j |A_\rho \xi|) |\hat{f}(\xi, \eta)|^2 \left(a_k \|A_\rho \xi\| \right)^{-1/2}.
\]
\tag{12}

Thus
\[
\|T_j f\|^2 = \sum_k \int_{\mathbb{R}^{n-m}} \int_{D_{k+j}} |\tilde{F}_k(\xi, \eta; r)|^2 \frac{dr}{r} d\xi d\eta
\]
\[
\leq C \sum_k \int_{\mathbb{R}^{n-m}} \int_{D_{k+j}} p^2 (a_k + j |A_\rho \xi|) |\hat{f}(\xi, \eta)|^2 \left(a_k \|A_\rho \xi\| \right)^{-1/2} d\xi d\eta.
\]

Since \(\phi \) satisfies hypothesis A and because of the support \(D_{k+j} \) of \(p \), we have for \(j < 0, 1/2 < a_{k+j} |A_\rho \xi| = \phi(2^{k+j}) |A_\rho \xi| \leq \lambda^{-j/2} |A_\rho \xi| \) and \(a_{k+j} |A_\rho \xi| |\phi(2^k) |A_\rho \xi| \leq \lambda^{-j/2} a_k |A_\rho \xi| \), whence \((a_k |A_\rho \xi|)^{-1/2} \leq C \lambda^{-j/2} \). Hence,
\[
\|T_j f\|_2 \leq C \lambda^{-j/2} \|f\|_2, \quad j < 0. \tag{13}
\]
Combining inequalities (8) and (13), we obtain
\[\|T_j f\|_2 \leq C\lambda^{-|j|/M} \|f\|_2 \quad \text{for all } j \in \mathbb{Z}. \] \hfill (14)

Finally, an application of Minkowski’s inequality yields
\[\|\mathcal{I} a f\|_2 \leq \sum_j \|T_j f\|_2 \leq C\|f\|_2. \] \hfill (15)

Our next step is to obtain the L^p norm of $T_j f$ for $2 < p < \infty$. Let $q = (p/2)'$, $2 < p < \infty$, and let $g \in L^q(\mathbb{R}^n)$ with $\|g\|_q \leq 1$. By Hölder’s inequality and by a change of variables, we have
\[
\left| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} [T_j f(x, \tilde{x})]^2 g(x, \tilde{x}) \, dx \, d\tilde{x} \right| \\
\leq \sum_k \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} a(y') |S_{k+j} f(x - \phi(2^k r)y', \tilde{x} - \psi(2^k r))| \, dx \, d\tilde{x} \, dr \\
\leq \|a\|_1 \sum_k \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left| a(y') \right| \left| S_{k+j} f(x - \phi(2^k r)y', \tilde{x} - \psi(2^k r)) \right|^2 \, dx \, d\tilde{x} \, dr \\
= C \sum_k \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left| a(y') \right| \left| S_{k+j} f(x, \tilde{x}) \right|^2 |g(x + \phi(2^k r)y', \tilde{x} + \psi(2^k r))| \, dx \, d\tilde{x} \, dr \\
= C \sum_k \left(\int_{\mathbb{R}^n} |S_{k+j} f(x, \tilde{x})|^2 dx \, d\tilde{x} \right) \frac{dr}{r} \\
= C \int_{\mathbb{R}^n} \sum_k |S_{k+j} f(x, \tilde{x})|^2 \\
\times \left(\int_{\mathbb{R}^n} \left| a(y') \right| |g(x + \phi(2^k r)y', \tilde{x} + \psi(2^k r))| \, dx \, d\tilde{x} \frac{dr}{r} \right) \, dx \, d\tilde{x}. \hfill (16)
Note that
\[
\int_1^2 \int_{S^{m-1}} |a(y')| g(x + \phi(2^k r)y', \tilde{x} + \Psi(2^k r)) \, d\sigma(y') \frac{dr}{r} \\
\leq \int_1^2 \int_{S^{m-1}} |a(y')| \left\{ \frac{1}{2^k} \int_{2^k}^{2^{k+1}} \left| g(x + \phi(r)y', \tilde{x} + \Psi(r)) \right| \, dr \right\} \, d\sigma(y') \\
\leq \int_1^2 \int_{S^{m-1}} |a(y')| M^r \tilde{g}(-x, -\tilde{x}) \, d\sigma(y'),
\]
where
\[
M^r \tilde{g}(-x, -\tilde{x}) = \sup_{k \in \mathbb{Z}} \left\{ \frac{1}{2^k} \int_{2^k}^{2^{k+1}} \left| \tilde{g}(-x - \phi(r)y', -\tilde{x} - \Psi(r)) \right| \, dr \right\}
\]
and \(\tilde{g}\) is defined to be \(\tilde{g}(x, \tilde{x}) = g(-x, -\tilde{x})\). Observe that by the method of rotation and by the hypothesis of Theorem 1, \(M^r \tilde{g}\) is bounded in \(L^q\) for \(1 < p < \infty\), and the bound is independent of the vector \(y' \in S^{m-1}\). Therefore, by Minkowski’s inequality, the \(L^q\) norm of the integral above is not greater than \(C \|a\|_1 \|g\|_q\). Thus an application of Hölder’s inequality to (16) yields
\[
\left| \int_1^2 \int_{S^{m-1}} T_j f(x, \tilde{x}) \left\{ \sum_k |S_{k+j}f|^2 \right\}^{1/2} \, d\sigma(y') \right| \leq C \|f\|_p \|g\|_q,
\]
where the last inequality follows from the Littlewood–Paley theorem. Now let \(g\) run over the unit ball of \(L^q\). The inequality above implies that
\[
\|T_j f\|_p \leq C \|f\|_p \quad \text{for } 2 < p < \infty.
\]
Interpolating between (14) and (17) (see [3]) yields \(\|T_j f\|_p \leq C \lambda^{-\epsilon |j|} \|f\|_p\) for some \(\epsilon > 0\), \(2 < p < \infty\), and thus
\[
\|S_a f\|_p \leq \sum_j \|T_j f\|_p \leq C \|f\|_p, \quad 2 < p < \infty.
\]
Combining (15) and (18), we obtain
\[
\|S_a f\|_p \leq C \|f\|_p \quad \text{for } 2 < p < \infty, \quad s = 2.
\]
We now consider the case \(s = 1\). If \(f \in L^\infty(\mathbb{R}^n)\) and \(h \in L^1(\mathbb{R}^+, \frac{dr}{r})\), then
\[
\int_0^\infty h(r) \int_{S^{m-1}} a(y') f(x - \phi(r)y', \tilde{x} - \Psi(r)) \, d\sigma(y') \frac{dr}{r}.
\]
\[
\|f\|_{L^p} \leq \int_0^\infty |h(r)| \int_{S^{n-1}} |a(y')||f| \|\|_\infty \, d\sigma(y') \frac{dr}{r} \leq \|a\|_1 \|h\|_{L^1(\mathbb{R}^+, \frac{dr}{r})} \|f\|_{L^\infty}
\]

for almost every \((x, \tilde{x})\). Taking the supremum on both sides of the above inequality over all radial functions \(h\) with \(\|h\|_{L^1(\mathbb{R}^+, \frac{dr}{r})} \leq 1\) yields \(\|\mathfrak{S}_a f(x, \tilde{x})\|_{L^p} \leq C\|f\|_{L^\infty}\) for almost every \((x, \tilde{x}) \in \mathbb{R}^n\). Hence

\[
\|\mathfrak{S}_a f\|_{L^\infty} \leq C\|f\|_{L^\infty}.
\]

It remains to show the \(L^p\) boundedness of \(\mathfrak{S}_a f\) when \(1 < s < 2\). By duality,

\[
\mathfrak{S}_a f(x, \tilde{x}) = \left\| \int_{S^{n-1}} a(y') f(x - \phi(r)y', \tilde{x} - \psi(r)) \, d\sigma(y') \right\|_{L^p(\mathbb{R}^+, \frac{dr}{r})},
\]

where \(s'\) is the conjugate of \(s\). Thus

\[
\|\mathfrak{S}_a f\|_{L^p(\mathbb{R}^n)} = \left\| \int_{S^{n-1}} a(y') f(x - \phi(r)y', \tilde{x} - \psi(r)) \, d\sigma(y') \right\|_{L^p(L^s(\mathbb{R}^+, \frac{dr}{r}), \mathbb{R}^n)}
\]

where \(H : L^p(\mathbb{R}^n) \to L^p(L^s(\mathbb{R}^+, \frac{dr}{r}), \mathbb{R}^n)\) is a linear operator defined by

\[
H(f)(x, \tilde{x}, r) = \int_{S^{n-1}} a(y') f(x - \phi(r)y', \tilde{x} - \psi(r)) \, d\sigma(y').
\]

From inequalities (20) and (21), we interpret that \(\|Hf\|_{L^p(L^s(\mathbb{R}^+, \frac{dr}{r}), \mathbb{R}^n)} \leq C\|f\|_p\) for \(2 < p < \infty\) and that \(\|Hf\|_{L^\infty(L^\infty(\mathbb{R}^+, \frac{dr}{r}), \mathbb{R}^n)} \leq C\|f\|_{L^\infty}\). Applying the real interpolation theorem for Lebesgue mixed norm spaces to the above results (see [2]), we conclude that \(\|Hf\|_{L^p(L^s(\mathbb{R}^+, \frac{dr}{r}), \mathbb{R}^n)} \leq C\|f\|_p\) for \(p \geq s'\). That is, \(\|\mathfrak{S}_a f\|_{L^p(\mathbb{R}^n)} \leq C\|f\|_{L^p(\mathbb{R}^n)}\) for \(s/(s-1) \leq p < \infty\), \(1 < s < 2\). Putting all the results together, we obtain \(\|\mathfrak{S}_a f\|_{L^p(\mathbb{R}^n)} \leq C\|f\|_{L^p(\mathbb{R}^n)}\) for \(s/(s-1) \leq p < \infty\) when \(1 < s \leq 2\), and for \(p = \infty\) when \(s = 1\). The proof of the \(L^p\) boundedness of \(\mathfrak{S}_a\) is complete. We now show that \(\mathfrak{S}_a f\) is unbounded for some values of \(p\) and \(s\).

Case \(s = 1\), \(0 < p < \infty\). We pick an \(\Omega \in H^1(S^{m-1})\) such that \(\Omega\) is continuous on \(S^{m-1}\), and choose \(\phi(|y|) = |y|\). Now choose a ball \(B \subset S^{m-1}\) such that \(\Omega(y') \geq c > 0\) on \(B\), and let \(y_0\) be the center of this ball. Reduce the size of this ball by a factor of three, and let \(\epsilon\) denote the radius of this new ball, call it \(\tilde{B}\). Now let \(f(x, \tilde{x}) = |\tilde{x}|^{-1/2} \chi_1(\tilde{x}) \chi_1(x)\), where \(\chi_1\) is the characteristic function on the unit ball. It is clear that \(f \in L^p(\mathbb{R}^n)\) for \(0 < p < \infty\). Consider the integral

\[
I_p(x, \tilde{x}) = \int_{S^{n-1}} \Omega(y') f(x - \phi(r)y', \tilde{x} - \psi(r)) \, d\sigma(y')
\]

with \(f\) defined above and \(\phi(r) = r\). Observe that whenever \(|x| \geq \epsilon^{-1}, x' = x/|x| \in \tilde{B}\), and \(|x| - 1/2 \leq r \leq |x| + 1/2\), we have
Again, we choose ω of positive measure should be less than s for any positive real number p. But note that if ϕ and Ψ above, the maximal operator $M_g(x_1, x_2)$ is bounded in $L^p(\mathbb{R}^{n-m+1})$ for all $p > 1$. Now let $f(x, \tilde{x}) = 1/(|x|^{|m-s|}) \chi_{10}(x) \chi_1(\tilde{x})$. Then $f \in L^p(\mathbb{R}^n)$ if $p < m/(m-\alpha)$. By duality,

$$\left\{ \mathcal{M}_f(x, \tilde{x}) \right\}' = \int_0^\infty \int_{S^{m-1}} \frac{\Omega(y') f(x, \phi(r)y', \tilde{x} - \Psi(r)) d\sigma(y')}{r} dr$$

$$\geq \frac{2\alpha}{a} \int_0^\infty \int_{S^{m-1}} \frac{\Omega(y') f(x, \phi(r)y', \tilde{x} - \Psi(r)) d\sigma(y')}{r} dr$$

for any positive real number a. We wish to show the integral above blows up on a subset of \mathbb{R}^n of positive measure. But note that if $s' \leq p < \infty$, then by applying Minkowski’s inequality twice we see that

$$\left\| \left(\int_0^\infty \int_{S^{m-1}} \frac{\Omega(y') f(x, \phi(r)y', \tilde{x} - \Psi(r)) d\sigma(y')}{r} dr \right)^{s'} \right\|_{L^p(\mathbb{R}^n)}^{1/s'}$$

$$\leq C \| \Omega \|_{L^1(S^{m-1})} \| f \|_p$$

for $s' \leq p < \infty$. This implies that the integral is finite for almost every $(x, \tilde{x}) \in \mathbb{R}^n$. Therefore, we expect that the range of p for which the above integral blows up on a subset of \mathbb{R}^n of positive measure should be less than $s' = s/(s - 1)$.
Now consider \((x, \tilde{x}) \in \mathbb{R}^n\) such that \(0 < |x| < 1, x' = x/|x| \in \tilde{B}, \) and \(|\tilde{x}| < 1\). Recall that \(B, \tilde{B}\) are concentric balls centered at \(y_0'\) with radii \(\epsilon\) and \(3\epsilon\), respectively, which were constructed in the previous example for the case \(s = 1\), \(0 < p < \infty\). Now let \(B_1 \subset S^{m - 1}\) be the ball centered at \(x'\) with the same radius \(\epsilon\). Then \(B_1 \subset B, \) and \(\Omega(s') \geq c\) on \(B_1\). With the choice of \(f\) above, we have

\[
\left\{\nabla_B f(x, \tilde{x})\right\}^s \geq \int_{|x|}^{2|x|} \int_{S^{m - 1}} \frac{\Omega(y') d\sigma(y')}{|x - r y'|^{m - a}} \frac{r^{s'} dr}{r}
\]

\[
= |x|^{(a - m)s'} \int_{1}^{2} \int_{S^{m - 1}} \frac{\Omega(y') d\sigma(y')}{|x' - y'|^{m - a}} \frac{r^{s'} dr}{r}
\]

\[
\geq C \int_{1}^{r_0} \int_{S^{m - 1}} \frac{\Omega(y') d\sigma(y')}{|x' - y'|^{m - a}} \frac{r^{s'} dr}{r},
\]

where \(1 < r_0 < 2\). We choose \(r_0\) to be sufficiently close to 1 so that \(1 - 1/r_0 \leq \epsilon\). Denote \(u_r = 1 - 1/r\) and \(u_{r_0} = 1 - 1/r_0\). Note that by our choice of \(r_0, u_r \leq u_{r_0} \leq \epsilon\) for \(1 \leq r \leq r_0\). Now denote the integral above by \(I_r(x, \tilde{x})\) and write

\[
I_r(x, \tilde{x}) = \int_{B_1} \frac{\Omega(y') d\sigma(y')}{|x' - y'|^{m - a}} \geq c \int_{B_1} \left(\frac{1}{r} - 1 + |x' - y'|\right)^{a - m} d\sigma(y')
\]

\[
= c \int_{B_1} \left(u_r + |x' - y'|\right)^{a - m} d\sigma(y')
\]

\[
= c \omega_m \int_{0}^{\sqrt{1 - \cos \theta}} (u_r + \sqrt{2} \sqrt{1 - \cos \theta})^{a - m} (\sin \theta)^{m - 2} d\theta,
\]

where \(\omega_m\) is a constant depending on \(m\). By a change of variable \(t = \sqrt{2} \sqrt{1 - \cos \theta}\), we have

\[
I_{r_0}(x, \tilde{x}) \geq C \epsilon \int_{0}^{\epsilon} (u_r + t)^{a - m} m - 2 \ dt \geq C \epsilon \int_{0}^{u_{r_0}} (u_r + t)^{a - m} m - 2 \ dt
\]

\[
= C \epsilon (a - 1) \int_{0}^{u_{r_0}} (1 + t)^{a - m} m - 2 \ dt \geq C \epsilon (1 + t)^{a - m} m - 2 \ dt
\]
Thus if \(r_0 \) is sufficiently close to 1, and \(\alpha \leq 1/s \), then
\[
\mathcal{M}_f(x, \tilde{x})^s \geq C \int_1^{r_0} \left(1 - \frac{|I^{(1)}(x, \tilde{x})|}{|I^{(1)}(x, \tilde{x})|} \right)^{s'} \frac{dr}{r} \]
\[
\geq C \int_1^{r_0} (r - 1)^{(a-1)s'} dr = \infty.
\]
Combining the two inequalities \(p < m/(m - 1) \) and \(\alpha \leq 1/s \), we see that if \(p < ms/(ms - 1) \), then \(\mathcal{M}_f(x, \tilde{x}) \) is infinite on the set \((A \times F) \cap \mathbb{R}^n\) of positive measure, where
\[
A = \{ x \in \mathbb{R}^m : |x| < 1, x'/|x| \in \tilde{B} \} \quad \text{and} \quad F = \{ \tilde{x} \in \mathbb{R}^{n-m} : |	ilde{x}| < 1 \}.
\]

For the case \(p = ms/(ms - 1) \), we will get the same result by repeating the same argument above with a new function \(f \) defined by
\[
f(x, \tilde{x}) = \frac{1}{|x|^{m-1/s} \ln(100/|x|)} \chi_{10}(x) \chi_1(\tilde{x}).
\]
Consequently, \(\mathcal{M}_f \) is unbounded in \(L^p(\mathbb{R}^n) \) for \(0 < p \leq ms/(ms - 1) \), \(1 < s \leq 2 \).

Case \(s < 1, 1 \leq p \leq \infty \). Putting all the results we have obtained so far, it is obvious that \(\mathcal{M}_f \) must be unbounded in \(L^p(\mathbb{R}^n) \) for \(1 \leq p \leq \infty \) when \(s < 1 \), for otherwise interpolation would lead to a contradiction to the case \(s = 1 \). Theorem 1 is proved. □

Remark.

(1) For the case \(s = \infty \), the authors in [1] showed that there is a function \(f \in L^p \) such that the maximal operator acting on \(f \) yields an identically infinite function.

(2) For the proof of the case \(m = 2 \), we apply [7, Lemma 2.2] instead of [7, Lemma 2.1] with some slight modifications. For instance, \(E_a(v, \zeta') \) in Eq. (5) should be replaced by \(e_a(v, \zeta') \), where \(e_a(v, \zeta') \) is a \(q \)-atom for some fixed \(q \) in the interval \((1, 2)\). The exponent \(-1/(2l)\) in inequality (10) should be replaced by \(-1/(2lq')\), where \(q' \) is the conjugate of \(q \). By applying Hölder’s inequality to the inner integral on the RHS of inequality (11), we will get a similar estimate as in inequality (12), with the exponent \(-1/(2l)\) being replaced by \(-1/(2lq')\).

(3) If \(\phi \) satisfies hypothesis B instead of hypothesis A, then some minor adjustments should be noted as follows: the lacunary sequence \(\{a_k\} \) should be defined by \(a_k = \phi(2^{-k}) \), \(k \in \mathbb{Z} \). Also, the factor \(2^k \) appearing in Eq. (1) should be replaced by \(2^{-k} \), etc.

Proof of Corollaries 1 and 2. It suffices to show that under the hypotheses of \(\phi \) and \(\Psi \) given in these corollaries, the maximal operator \(M_g(x_1, x_2) \) is bounded in \(L^p(\mathbb{R}^{n-m+1}) \) for all \(p > 1 \). For this proof, see [6,10]. □
Proof of Corollary 3. We must show that \(Mg(x_1, x_2) \) is bounded in \(L^p(\mathbb{R}^{n-m+1}) \) for all \(p > 1 \). To prove this, we repeatedly apply Theorem C [6]. We only consider the case that \(\phi \) satisfies hypothesis A, since the proof for the other case (hypothesis B) is essentially the same. For \(k \in \mathbb{Z} \), define the measures \(\mu_k \) and \(\mu_k^{(0)} \) by

\[
\hat{\mu}_k(\zeta, \eta) = \frac{1}{2^k} \int_{2^k} e^{i \xi \phi(r)} e^{i \eta \Psi(r)} \, dr \quad (\zeta \in \mathbb{R}, \eta \in \mathbb{R}^{n-m})
\]

and

\[
\hat{\mu}_k^{(0)}(\eta) = \hat{\mu}_k(0, \eta) = \frac{1}{2^k} \int_{2^k} e^{i \eta \Psi(r)} \, dr.
\]

Then \(\mu_k \) and \(\mu_k^{(0)} \) are finite positive Borel measures. For nonnegative Schwartz functions \(f \) on \(\mathbb{R}^{n-m+1} \) and \(g \) on \(\mathbb{R}^{n-m} \), we have

\[
\mu_k * f(x_1, x_2) = \frac{1}{2^k} \int_{2^k} f(x_1 - \phi(t), x_2 - \Psi(t)) \, dt,
\]

\[
\mu_k^{(0)} * g(x_2) = \frac{1}{2^k} \int_{2^k} g(x_2 - \Psi(t)) \, dt \quad (x_1 \in \mathbb{R}, x_2 \in \mathbb{R}^{n-m}).
\]

We need to show that

\[
|\hat{\mu}_k(\zeta, \eta) - \hat{\mu}_k(0, \eta)| \leq C|a_k + 1/\zeta|,
\]

\[
|\hat{\mu}_k(\zeta, \eta)| \leq C|a_k \zeta|^{-1/\ell}
\]

(where \(a_k = \phi(2^k) \) is a lacunary sequence of positive real numbers) and \(\sup_{k \in \mathbb{Z}} |\mu_k^{(0)} * g(x_2)| \) is a bounded operator in \(L^p(\mathbb{R}^{n-m}) \) for all \(p > 1 \). It is clear that \(|\hat{\mu}_k(\zeta, \eta) - \hat{\mu}_k(0, \eta)| \leq C|a_{k+1} \zeta| \). Denote \(\tau(r) \) by \(\tau(r) = \int_{1}^{r} e^{i \xi \phi(2^k)} \, dt \) for \(1 \leq r \leq 2 \). Then

\[
|\hat{\mu}_k(\zeta, \eta)| = \left| \int_{1}^{2} e^{i \xi \phi(2^k)} e^{i \eta \Psi(2^k)} \, dr \right| = \left| \int_{1}^{2} \tau'(r) e^{i \eta \Psi(2^k)} \, dr \right|
\]

\[
\leq C|a_k \zeta|^{-1/\ell} \left(1 + \int_{2^k}^{2^{k+1}} |\eta \cdot \Psi'(r)| \, dr \right) \leq C|a_k \zeta|^{-1/\ell}.
\]

The first inequality follows from van der Corput’s lemma. The second inequality follows since for \(i = 1, 2, \ldots, n-m \), \(\int_{2^k}^{2^{k+1}} |\eta_i(\gamma_r)| \, dr \leq C\|\gamma\|_{\infty} \), and \(C \) is independent of \(\eta_i \).

It remains to show the \(L^p \) boundedness of the operator \(\sup_{k \in \mathbb{Z}} |\mu_k^{(0)} * g(x_2)| \). We prove this by induction on the dimension \(n-m \). For the sake of argument, let \(d = n-m \). When \(d = 1 \), by an easy application of [6, Theorem A] (or see [8, Corollary 1]), we see that
sup_{k \in \mathbb{Z}} |\mu_k^{(0)} \ast g(x_2)| is bounded in L^p for all p > 1. Now assume that the result is true for curves in \(\mathbb{R}^{d-1} \). For \(k \in \mathbb{Z} \) define the measures \(\nu_k \) and \(\nu_k^{(0)} \) by

\[
\hat{\nu}_k(\zeta, \zeta_d) = \frac{1}{2^k} \int_{2^k}^{2^{k+1}} e^{i(\gamma_1(t) + \cdots + \gamma_d(t))} \, dt \quad \text{and}
\]

\[
\hat{\nu}_k^{(0)}(\zeta) = \frac{1}{2^k} \int_{2^k}^{2^{k+1}} e^{i(\gamma_1(t) + \cdots + \gamma_d(t))} \, dt.
\]

(\(\hat{\nu}_k \equiv (\zeta_1, \ldots, \zeta_d) \in \mathbb{R}^{d-1}, \zeta_d \in \mathbb{R} \)).

Then \(\nu_k \) and \(\nu_k^{(0)} \) are finite positive Borel measures. For nonnegative Schwartz functions \(f \) on \(\mathbb{R}^d \) and \(g \) on \(\mathbb{R}^{d-1} \), we have

\[
\nu_k \ast f(\hat{x}, x_d) = \frac{1}{2^k} \int_{2^k}^{2^{k+1}} f(x_1 - \gamma_1(t), \ldots, x_d - \gamma_d(t)) \, dt,
\]

\[
\nu_k^{(0)} \ast g(x) = \frac{1}{2^k} \int_{2^k}^{2^{k+1}} g(x_1 - \gamma_1(t), \ldots, x_{d-1} - \gamma_{d-1}(t)) \, dt \quad (x \in \mathbb{R}^{d-1}, x_d \in \mathbb{R}).
\]

By applying [6, Theorem C], we must show that

\[
|\hat{\nu}_k(\zeta, \zeta_d) - \hat{\nu}_k(\zeta, 0)| \leq C|b_k + 1\zeta_d|,
\]

\[
|\hat{\nu}_k(\zeta, \zeta_d)| \leq C|b_k \zeta_d|^{-\varepsilon} \quad \text{for some positive } \varepsilon > 0.
\]

Here \(\{b_k\} = \{\gamma_2(2^k)\} \) is a lacunary sequence of positive real numbers. The first inequality is obvious. The proof of the second estimate for \(|\hat{\nu}_k(\zeta, \zeta_d)| \) is analogous to the proof of the second estimate of \(|\mu_k(\zeta, \eta)| \) (with \(\tau(\zeta) \)) being defined as \(\tau(\zeta) = \int_{2^k}^{2^{k+1}} e^{i(\gamma_1(t) + \cdots + \gamma_d(t))} \, dt \), etc.). Finally, we need to prove that the operator \(\sup_{k \in \mathbb{Z}} |\nu_k^{(0)} \ast g(x)| \) is a bounded operator in \(L^p(\mathbb{R}^{d-1}) \) for all \(p > 1 \). But this is true from the induction hypothesis. Thus \(\sup_{k \in \mathbb{Z}} |\nu_k \ast f(x, x_d)| \) or equivalently \(\sup_{k \in \mathbb{Z}} |\mu_k^{(0)} \ast g(x_2)| \) is bounded in \(L^p \) for all \(p > 1 \). Consequently, \(Mg(x_1, x_2) \) is bounded in \(L^p(\mathbb{R}^{n-m+1}) \) for all \(p > 1 \). Corollary 3 is proved.

Proof of Theorem 2. The proof of this theorem is partially an application of Theorem 1, with \(\Psi \equiv 0 \). Again, it suffices to consider the \(\infty \)-atom in place of \(\Omega \). Now for each \(f \in L^p(\mathbb{R}^m) \), the function \(\hat{f} \) defined by \(\hat{f}(\hat{x}, \tilde{x}) = f(x) \chi_1(\tilde{x}) \) (\(x \in \mathbb{R}^m, \tilde{x} \in \mathbb{R}^{n-m} \)) is clearly in \(L^p(\mathbb{R}^n) \); and \(\|\hat{f}\|_{L^p(\mathbb{R}^n)} \leq |B| \|f\|_{L^p(\mathbb{R}^m)} \) where \(|B| \) is the Lebesgue measure of the unit ball \(B \) in \(\mathbb{R}^{n-m} \). Thus for every \(f \in L^p(\mathbb{R}^m) \), \(s/(s-1) \leq p < \infty \), \(1 < s \leq 2 \), we have \(|B| \|\hat{f}\|_{L^p(\mathbb{R}^n)} \leq C \|f\|_{L^p(\mathbb{R}^m)} \) (\(C = |B| \|f\|_{L^p(\mathbb{R}^m)} \)). The first equality follows from Fubini’s theorem and the observation that \(\hat{\odot} \hat{f}(\hat{x}, \tilde{x}) = \hat{\odot} f(x) \chi_1(\tilde{x}) \); and the inequality above follows from Theorem 1. This implies that \(\|\hat{\odot} f\|_p \leq C \|f\|_p \) for all...
$f \in L^p(\mathbb{R}^m)$ with $s/(s - 1) \leq p < \infty$, $1 < s \leq 2$. The proof for the remaining cases of p and s are essentially the same as in the proof of Theorem 1. Theorem 2 is proved. □

Proof of Theorem 3. It suffices to consider the regular ∞-atom a in place of Ω. There is no loss of generality to assume that $\|h\|_{L^1(\mathbb{R}^+, \varphi_\epsilon)} = 1$. It is then obvious from Theorem 1 that $T_{\epsilon}f$ is bounded in $L^p(\mathbb{R}^n)$ for $s/(s - 1) \leq p < \infty$, $1 < s \leq 2$. We claim that the truncated operator $T_{\epsilon}f$ ($\epsilon > 0$) is also bounded in $L^p(\mathbb{R}^n)$ with the same ranges of p and s as above, and the bound is independent of ϵ. To see this, write

$$T_{\epsilon}f(x, \tilde{x}) = \int_{|y| > \epsilon} \frac{h(|y|)a(y')}{|y|^m} f(x - \phi(|y|)) y' + \Psi(|y|) dy$$

where $\tilde{h}(|y|) = h(|y|) \chi_\epsilon(|y|)$ and $\chi_\epsilon(|y|)$ is the characteristic function on the set $\{ y \in \mathbb{R}^m : |y| > \epsilon \}$. Then $\|\tilde{h}\|_{L^1(\mathbb{R}^+, \varphi_\epsilon)} \leq \|h\|_{L^1(\mathbb{R}^+, \varphi_\epsilon)} = 1$ for all $\epsilon > 0$. Therefore by Theorem 1, $\|T_{\epsilon}f\|_p \leq \sup_{\epsilon} \|T_{\epsilon}f\|_p = \|T_{\epsilon}f\|_p \leq C \|f\|_p$ for $s/(s - 1) \leq p < \infty$, $1 < s \leq 2$, and C is independent of ϵ. By the routine duality argument, $T_{\epsilon}f$ is bounded in $L^p(\mathbb{R}^n)$ for $1 < p < s$, $1 < s < 2$, and the bound is again independent of ϵ. Passing to the limit as $\epsilon \rightarrow 0$, Fatou’s lemma gives $\|T_{\epsilon}f\|_p \leq C \|f\|_p$ for $1 < p < s$, $1 < s < 2$. Now if $s = 2$ then we are done; otherwise an application of the real interpolation theorem gives the L^p bounds of $T_{\epsilon}f$ for the remaining range of p: $s < p < s/(s - 1)$. Finally, using density argument, we may infer that $T_{\epsilon}f$ has a bounded extension in $L^p(\mathbb{R}^n)$ for $1 < p < \infty$. It remains to prove the L^p bounds for $T_{\epsilon}^\star f$; and for this proof, we need the following lemmas.

Lemma 1. Assume that $h \in L^2(\mathbb{R}^+, \frac{dz}{z}) \cap L^\infty(\mathbb{R}^+) \ (1 < s \leq 2)$. For a measurable, locally integrable function f on \mathbb{R}^n, define a sequence of finite measures σ_k on \mathbb{R}^n by

$$\sigma_k * f(\tilde{x}) = \int_{|y| \geq 2^k} \frac{a(y') h(|y|)}{|y|^m} f (\tilde{x} - \Gamma(y)) dy, \quad y \in \mathbb{R}^m, 2 \leq m < n,$$

where $a(y')$ is an ∞-atom on S^{m-1}.

If ϕ satisfies hypothesis A, then for all $k \in \mathbb{Z}$,

$$|\hat{\sigma}_k(\zeta, \eta)| \leq C \min \{ |ak+1 A_p \zeta|, |ak A_p \zeta|^{-1/4} \}, \quad \text{where } a_k = \phi(2^k).$$

Here $(\zeta, \eta) \in \mathbb{R}^m$ with $\zeta \in \mathbb{R}^m$, $\eta \in \mathbb{R}^{n-m}$, and recall that $A_p \zeta = (\rho^2 \zeta_1, \rho \zeta_2, \ldots, \rho \zeta_m)$. If ϕ satisfies hypothesis B, then for all $k \in \mathbb{Z}$,

$$|\hat{\sigma}_k(\zeta, \eta)| \leq C \min \{ |b_{-k} A_p \zeta|, |b_{-k-1} A_p \zeta|^{-1/4} \}, \quad \text{where } b_k = \phi(2^{-k}).$$

Lemma 2. Let $|\sigma_k|$ denote the total variations of the measures σ_k, and denote $\sigma^\star f(x, \tilde{x}) = \sup_{k \in \mathbb{Z}} |\sigma_k| * f(x, \tilde{x})$, $f \in L^p(\mathbb{R}^n)$. Then $\|\sigma_k\|_1 \leq C$ for all $k \in \mathbb{Z}$ and $\|\sigma^\star f\|_p \leq C \|f\|_p$ for all p with $1 < p < \infty$.
Proof of Lemma 1. We only prove for the case \(m \geq 3 \) and the case that \(\phi \) satisfies hypothesis A, since the proofs of the remaining cases are essentially the same. By taking the Fourier transform of \(\sigma_k \ast f \), we see that

\[
\hat{\sigma}_k(\zeta, \eta) = \int_{|y| \leq 2^k} |y|^{m-1} a(y') |h(|y|)| e^{i|\zeta|\phi(|y|)^{m}'} e^{i\eta \cdot \Psi(|y|)} dy \quad (\zeta, \eta \in \mathbb{R}^m, y \in \mathbb{R}^{n-m}).
\]

We may assume that \(\text{supp}(a) \subset B(1, \rho) \cap S^{m-1} \), where \(1 = (1, 0, 0, \ldots, 0) \). For \(\zeta \neq 0 \), we choose a rotation \(\theta \) such that \(\theta(\zeta) = |\zeta| \cdot (1, 0, 0, \ldots, 0) \), and let \(\theta^{-1} \) denote its inverse. Let \(y' = (v, y'_2, \ldots, y'_m) \).

Then

\[
\hat{\sigma}_k(\zeta, \eta) = \int_{2^k}^{2^{k+1}} \int_{S^{m-1}} h(r)a(\theta^{-1}(y')) e^{i|\zeta|\phi(r)^{m}'} e^{i\eta \cdot \Psi(r)} d\sigma(y') \frac{dr}{r},
\]

where \(E_a(v, \zeta') \) has support in \(\{ (\rho^2 \zeta'_1, \rho \zeta'_2, \rho \zeta'_3, \ldots, \rho \zeta'_n) \} \).

By the cancellation property of \(E_a \), one easily sees that

\[
|\hat{\sigma}_k(\zeta, \eta)| \leq C \phi(2^{k+1}) |A_{\rho} \zeta| = C a_{k+1} |A_{\rho} \zeta| \cdot
\]

On the other hand, by Hölder’s inequality, we have

\[
|\hat{\sigma}_k(\zeta, \eta)|^2 \leq \left\{ \int_{2^k}^{2^{k+1}} |h(r)|^2 \frac{dr}{r} \right\}^{\frac{1}{2}} \left\{ \int_{2^k}^{2^{k+1}} e^{i|\zeta|\phi(r)^{m}'} E_a(v, \zeta') d\sigma(v) \frac{dr}{r} \right\}^{\frac{1}{2}} \cdot
\]

\[
\leq C \left\{ \int_{2^k}^{2^{k+1}} e^{i|\zeta|\phi(2^{k+1})^m} \frac{dr}{r} \right\}^{\frac{1}{2}} E_a(\tilde{v}, \zeta') E_a(\tilde{v}, \zeta') d\sigma(\tilde{v}) d\tilde{v}
\]

\[
\leq C |a_{k+1} A_{\rho} \zeta|^{-1/2}. \]

The last inequality follows by a similar calculation as in the calculation of

\[
\int_{1}^{2} |\tilde{F}_k(\zeta, \eta; r)|^2 \frac{dr}{r}
\]

in the proof of Theorem 1 (see Eqs. (9)–(12)). Lemma 1 is proved. \(\square \)

Proof of Lemma 2. It is clear that \(\|\sigma_k\|_1 \leq C \|a\|_{L^1(S^{m-1})} \|h\|_{L^1(\mathbb{R}^n, d\rho)} \leq C \), and the bound is independent of \(k \in \mathbb{Z} \). Observe that

\[
\sigma^* f(x, \tilde{x}) \leq \|h\|_{\infty} \int_{S^{m-1}} |a(v)| M^{V'} f(x, \tilde{x}) d\sigma(y'),
\]
where

\[M^{y'} f(x, \tilde{x}) = \sup_{k \in \mathbb{Z}} \left\{ \frac{1}{2^k} \int_{2^k}^{2^{k+1}} |f(x - \phi(r)y', x - \Psi(r))| \, dr \right\}. \]

Recall that by the method of rotation and by the hypothesis of Theorem 1, \(M^{y'} \) is bounded in \(L^p \) for \(1 < p < \infty \), and the bound is independent of the vector \(y' \in S^{m-1} \). Thus by Minkowski’s inequality, we have \(\|\sigma^* f\|_p \leq C\|a\|_1 \|f\|_p \leq C\|f\|_p \) for \(1 < p < \infty \). Lemma 2 is proved.

Now observe that

\[T_k^p f(\tilde{x}) = \sup_{\epsilon > 0} \left| \int_{|y| > \epsilon} \frac{h(|y|)\Omega(y')}{|y|^m} f(x - \phi(|y|)y', \tilde{x} - \Psi(|y|)) \, dy \right| \]

\[\leq \sup_{k \in \mathbb{Z}} \sum_{j=k}^{\infty} \sigma_j * f(x, \tilde{x}) + \sup_{k \in \mathbb{Z}} \|\sigma_k \| f(x, \tilde{x}) \]

\[= \sup_{k \in \mathbb{Z}} \|T_k f(x, \tilde{x})\| + \sup_{k \in \mathbb{Z}} \|\sigma_k \| f(x, \tilde{x})\| . \]

By Lemma 2, the second term on the RHS of the inequality above is bounded in \(L^p(\mathbb{R}^n) \) for \(1 < p < \infty \). To show the \(L^p \) boundedness of \(\sup_{k \in \mathbb{Z}} |T_k f(x, \tilde{x})| \), we take a radial Schwartz function \(\kappa \) on \(\mathbb{R}^m \) such that \(\kappa(\zeta) = \kappa(|\zeta|) = 1 \) when \(|\zeta| < \lambda^{-1} \) and \(\kappa(\zeta) = 0 \) when \(|\zeta| > \lambda \). Recall that the number \(\lambda \) comes from the sequence \(\{a_k\} \) or \(\{b_k\} \) as in Lemma 2. Note that in both cases, \(\inf_{k \in \mathbb{Z}} |a_{k+1}/a_k| = \lambda = \inf_{k \in \mathbb{Z}} |b_{k+1}/b_k| \). It suffices to consider the sequence \(\{a_k\} \). Define \(\Phi_k \) on \(\mathbb{R}^m \) by \(\Phi_k(\zeta) = \kappa(a_k|A_p\zeta|) \), and let \(\delta_n, \delta_{n-m} \) be the Dirac distributions on \(\mathbb{R}^n \) and \(\mathbb{R}^{n-m} \), respectively. We then write \(T_k f \) in a similar fashion as in [6]. That is,

\[T_k f = (\Phi_k \otimes \delta_{n-m}) * (T_k f - \sum_{j=-\infty}^{k-1} \sigma_j * f) + (\delta_n - \Phi_k \otimes \delta_{n-m}) \sum_{j=k}^\infty \sigma_j * f, \]

(22)

Note that \(|\Phi_k \otimes \delta_{n-m} * T_{\kappa} f(x, \tilde{x})| \leq C M^H_m \circ M^H_{m-1} \circ \cdots \circ M^H_1 T_r f(x, \tilde{x}) \) for all \(k \in \mathbb{Z} \). Here \(M^H_i g(x, \tilde{x}) \) denotes the Hardy–Littlewood maximal function acting on the \(i \)-th coordinate of the \(x \)-variable of \(g(x, \tilde{x}) \). Thus

\[\|\sup_{k \in \mathbb{Z}} |\Phi_k \otimes \delta_{n-m} * T_{\kappa} f| \|_p \leq C \|M^H_m \circ M^H_{m-1} \circ \cdots \circ M^H_1 T_r f\|_p \leq C \|T_r f\|_p \leq C \|f\|_p, \quad 1 < p < \infty. \]

Meanwhile,

\[\sup_{k \in \mathbb{Z}} |\Phi_k \otimes \delta_{n-m} * \sum_{j=-\infty}^{k-1} \sigma_j * f| \leq \sup_{k \in \mathbb{Z}} \sum_{j=1}^\infty |\sigma_{k-j} \otimes \Phi_k \otimes \delta_{n-m} \otimes f| , \]
where each summand in the sum above is bounded in L^p, due to the L^p boundedness of σ^* (see Lemma 2). Moreover, each term in the sum above has an L^2-norm of order λ^{-j}. To see this, note that \(\sup_{k \in \mathbb{Z}} |\sigma_{k-j} \ast \Phi_k \otimes \delta_{n-m} \ast f| \leq (\sum_{\infty} \sigma_{k-j} \ast \Phi_k \otimes \delta_{n-m} \ast f^2)^{1/2} \).

By Plancherel’s theorem, it is enough to show that \(\sum_{\infty} |\hat{\sigma}_{k-j} (\xi, \eta) \hat{\Phi}_k (\xi)|^2 \leq C \lambda^{-2j} \) \((j \geq 1)\). There exists an \(m \in \mathbb{Z} \) such that \(a_{m+1}^{-1} \leq |A_p \xi| \leq a_m^{-1} \) for \(\xi \neq 0 \). Using Lemma 1 and the support condition on \(\kappa \), we find that \(\sum_{\infty} |\hat{\sigma}_{k-j} (\xi, \eta) \hat{\Phi}_k (\xi)|^2 \leq C \sum_{\infty} |a_{k-j+1} a_m^{-1}|^2 \leq C \lambda^{-2j} \) for \(j \geq 1 \). Applying interpolation theory to the L^2-norm and the L^{p_0}-norm, \(p_0 > p \), we obtain a factor of $\lambda^{-\epsilon j} (\epsilon > 0)$ in the L^p-norm for each summand in the sum above. Finally, by applying Minkowski’s inequality, we see that the L^p-norm of the sum above converges. By using similar arguments as above, we see that \(\sup_{k \in \mathbb{Z}} |(\delta_n - \Phi_k \otimes \delta_{n-m}) \ast \sigma_j \ast f| \) is also bounded in $L^p(\mathbb{R}^n)$ for \(1 < p < \infty \). Therefore, \(\sup_{k \in \mathbb{Z}} |T_k f| \), and hence $T^* f$ is bounded in L^p for \(1 < p < \infty \). Theorem 3 is proved.

Remark. If \(\Psi \) satisfies hypothesis B, then the proof for the L^p boundedness of the maximal function $T^* f$ undergoes some slight changes. We let \(T_k f = \sum_{j=k+1}^{\infty} \sigma_j \ast f \), and instead of (22), we write

\[
T_k f = (\Phi_k \otimes \delta_{n-m}) \ast \sum_{j=k+1}^{\infty} \sigma_j \ast f + (\delta_n - \Phi_k \otimes \delta_{n-m}) \ast \left(T_f - \sum_{j=\infty}^{k} \sigma_j \ast f \right).
\]

Proof of Theorem 4. The idea for the proof of the L^p boundedness of $T f$ is similar to the idea in the proof of Theorem 2 (with $\Psi \equiv 0$). The proof for the L^p bound of $T^* f$ is essentially a repetition of the proof of $T^* f$ in Theorem 3 with a slight modification. That is, instead of (22), we write $T_k f$ (for the case ϕ satisfying hypothesis A) as

\[
T_k f = \Phi_k \ast \left(T_f - \sum_{j=\infty}^{k-1} \sigma_j \ast f \right) + (\delta_m - \Phi_k) \ast \sum_{j=k}^{\infty} \sigma_j \ast f.
\]

Therefore, we omit the details. Theorem 4 is proved.

Comment. When the radial function \(h \) is merely in $L^\infty(\mathbb{R}^n)$, the operators $T f$ and $T^* f$ in Theorem 3 are still bounded in L^p for \(1 < p < \infty \). Indeed, by mimicking the proof of Theorem 1 in [9] with some slight changes, one can prove the following theorem.

Theorem 5. Let ϕ satisfy either hypothesis A or hypothesis B, and let $h \in L^\infty(\mathbb{R}^n)$. If Ψ is given as in Corollaries 2 or 3, or if $\Psi(t) = (t^1, t^2, \ldots, t^{k_{n-m}})$ with $0 < k_1 < k_2 < \cdots < k_{n-m}$, then the operators $T f$ and $T^* f$ are bounded in $L^p(\mathbb{R}^n)$ for \(1 < p < \infty \).

Acknowledgment

The author expresses his gratitude to the referee for his/her helpful suggestions.
References