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This expository paper gives a survey of statistical problems arising in two 
important and widely used scientific methods of dating archaeological deposits, 
namely tree-ring-calibrated radiocarbon dates and seriation. 

1. INTR~DOCTI~N 

Archaeologists are increasingly relying on scientific methods for both relative 
and absolute dating. These methods include numerical techniques such as 
seriation by multidimensional scaling [29, 311, physical methods such as 
potassium-argon dating, thermoluminescent dating, radiocarbon dating [ 11, and 
biological methods such as tree-ring dating [ 171 and varve chronology [61]. 

All these methods involve the measurement of various physical quantities 
with possible errors of a random nature. Thus, in a trivial sense, all these methods 
of dating involve some sort of statistical analysis. But in most cases, the statistical 
problems are overshadowed by the technical difficulties of the method. 

Two important exceptions are radiocarbon dating and seriation; here the 
statistical problems are paramount. The aim of this paper is to give an expository 
survey of various statistical problems and proposed solutions in connection with 
these two methods of dating. 

2. RADIOCARBON DATING 

2.1 Background 

Radiocarbon or carbon-14 is produced in the atmosphere by the action of 
cosmic rays at the rate of two radiocarbon atoms per square centimetre of the 
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earth’s surface per second, or equivalently, 7.5 kg globally per year (see [l]). 
Although these isotopes of carbon are radioactive, they behave chemically like 
ordinary carbon, and so, e.g., they combine with oxygen to produce carbon 
dioxide. This radioactive carbon dioxide is absorbed by plants during photo- 
synthesis, and by animals which eat the plants. While a plant or animal is alive, 
any of its radiocarbon atoms which decay are immediately replaced by “fresh” 
radiocarbon from the atmosphere, and so the concentration of radiocarbon in 
all living matter must be the same as that in the atmosphere, currently 1 in 1012 
relative to the most common isotope, carbon-12. 

However, once an organism dies, its store of radiocarbon is not replaced but 
decays away exponentially at a known rate. Thus in principle, the age of any 
sample of organic matter (such as fragments of wood or charcoal from an 
archaeological site) can be determined simply by measuring the current con- 
centration of radiocarbon in that sample. 

The steady exponential decay of radiocarbon may be represented by the 
equation 

A, = A(x) e-Az, 

where A(x) denotes the concentration of radiocarbon in the sample when it 
“died” x years ago, A,, the measured concentration of radiocarbon in the 
sample noes, and h denotes the decay constant related to the half-life T by 

h = log 2/T. (2) 

In practice, both x and A(x) are unknown. The radiocarbon age, y, of the sample 
is determined by assuming that A(x) = A,, , the concentration of radiocarbon in 
living material now, and solving the equation 

giving 

(3) 

Further details may be found in the nonspecialist articles by Libby [34], 
Michael and Ralph ([38], Ch. l), Renfrew ([46], Ch. 3 and Appendix), while 
[l, 5, 411 discuss the complications which arise in practice. 

In practice, the quantities A, and A,, in (3) are determined by counting for 
several days the emitted beta-particles arising from ‘the disintegration of 
carbon-14 atoms in the sample. Thus every radiocarbon date is subject to un- 
avoidable random errors of measurement, due to the random nature of this 
emission, and to the continual random fluctuations in the background radiation, 
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which cannot be eliminated entirely, despite the use of anti-coincidence counters 
[5, 341. The resultant lack of precision due to “counting errors” of any radio- 
carbon date is expressed in terms of its standard deviation, which may range 
from 40 to 120 yr [14, 37, 581. However, most radiocarbon laboratories ignore 
the possibility of additional noncounting errors [41]. 

In order to date samples from widely different geographical locations, it is 
necessary to assume that the concentration of carbon-14 in living matter at any 
time in the past has been the same all over the world. That is, A(x) is to be 
thought of as this global concentration in all living matter x years ago. Recent 
work [33] confirms this assumption, often called Libby’s principle of simul- 
taneity. 

2.2. Tree-Ring Calibration of Radiocarbon Dates 

Initially, the validity of the radiocarbon dating method was checked by dating 
samples of known age from archaeological sites in Europe and the Middle East. 
Subsequently, more accurate comparisons [16, 651 indicated that in the past 
1300 yr, the atmospheric concentration of carbon-14 had fluctuated by up to 
1.5% (equivalent to 120 yr), but there had been no systematic deviation from 
recent levels, apart from changes in the past century caused by the burning of 
fossil fuels and the explosion of nuclear weapons. 

The situation was transformed by the very long dendrochronology obtained 
by Ferguson [17, 181 using the bristlecone pine Pinus aristata. These trees, 
which grow high in the White Mountains of California, live for up to 4,600 yr 
[52], and it is possible to date fragments which are even older than the oldest 
living tree, by “cross-dating” tree-rings (see [19, 21, 541 for further details). 
In this way, Ferguson was able to date fragments of bristlecone pine up to 
8,200 yr old, with an error claimed to be no greater than 10 yr. 

Nearly 600 tree-ring-dated samples of bristlecone pine have now been 
radiocarbon-dated at three laboratories [14, 37, 57, 581. These results indicate 
major fluctuations in the concentration of radiocarbon prior to 1,000 B.C., the 
radiocarbon dates being systematically younger (i.e., more recent) than the 
corresponding tree-ring or calendar dates by up to 700 yr. Therefore it is 
necessary to correct or calibrate radiocarbon dates, at least for material which 
is more than 3,000 yr old. 

Libby’s principle of simultaneity implies that all samples of age x should have 
the same radiocarbon age F(x), which is related to the radiocarbon concentration 

44 bY 

F(x) = (l/h) log[A,/A(x) e-^“I 

= x + (l/4 h&4,/A(x)]. (4) 
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This “calibration function” F thus defines the theoretical relationship between 
radiocarbon dates and tree-ring or calendar dates. Given the radiocarbon age, 
y0 , of a particular archaeological sample, its real age, or the calibrated radio- 
carbon age, x,, , is given by 

yu = F(xcJ (5) 
Since we have no independent information concerning past variations in A(.), 

the radiocarbon concentration of the atmosphere, F is unknown and must be 
estimated. The data in [ 14, 37, 57, 581 satisfy the equations 

.~i = F(xi) + ei 9 (6) 

where xi denotes the tree-ring or calendar age of a typical bristlecone pine 
sample, yi its corresponding radiocarbon age with its attendant measurement 
error ei , and F(.) denotes the calibration function (4). Since the errors in the 
tree-ring dates are so small, the x’s may be regarded as constants. The problem 
is then that of estimating the regression function F from the approximate values 
of its ordinates at known abscissae (xi>, 

Suess [56] was the first to publish a tree-ring calibration curve for radiocarbon 
dates, based on data from bristlecone pine samples. His revised curve [58], 
extending back to 5,300 B.C., has been widely used by archaeologists; the 
consequent corrections to existing radiocarbon dates from archaeological 
sites have had a dramatic effect on the interpretation and understanding of 
European prehistory (see Renfrew [4446]). 

Suess’s calibration curve contains a large number of irregular undulations or 
“kinks,” implying that several calendar dates may correspond to the same 
radiocarbon date, i.e., Eq. (5) need not have a unique solution for x0 . There has 
been much argument concerning the magnitude, location and even the reality 
of these kinks (see discussion following [58]). Th ere is no intrinsic geophysical 
reason why there should not be kinks in the calibration function, since the rate 
of production of carbon-14 could have changed rapidly in the past, due to 
changes in the cosmic-ray flux, the earth’s magnetic field and/or solar activity 
[7, 131. However, to a statistician, Suess’s curve is most unsatisfactory, since it 
was obtained by freehand smoothing [58, p. 3101. 

The first calibration curve derived by explicit statistical methods [63] tacitly 
assumed that the data satisfied the equations 

xi = G(y,) + e,‘, 

where xi and yi have the same meanings as above, and G(.) denotes an “inverse 
calibration function,” assumed to be a low-order polynomial whose parameters 
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were then estimated by least-squares. Equation (7) implies that there can be 
only one calendar date corresponding to any given radiocarbon date, but it does 
not rule out the possibility of several radiocarbon dates corresponding to the 
same calendar date, which does not make sense geophysically. If the xi’s are 
regarded as constants and the yi’s as random variables, it does not make sense 
to estimate G by least-squares either. 

Alternative calibration curves have been produced [15, 39, 601 with the 
deliberate aim of smoothing out any kinks and so facilitating the calibration of 
dates. These curves, obtained by a combination of polynomial regression and 
moving-average techniques, are not entirely satisfactory from the statistical 
viewpoint, as noted in [47]. In particular, there is a fundamental error in the 
formula given in [ 151 for the standard error of a calibrated radiocarbon date. 

There is broad agreement amongst these various calibration curves, although 
there are differences in detail. The discrepancy between the tree-ring age x and 
the radiocarbon ageF(x) implies that the atmospheric concentration of carbon-14 
in the past (A(x)) has differed from current levels (see Eq. (4)). Various causes of 
this past variation in carbon-14 concentration have been suggested (see Sect. 2.4 
of [l] for a review); it is thought that the long-term fluctuation is related to 
changes in the earth’s magnetic field while the short-term fluctuations reflect solar 
activity. As yet, there is no definitive explanation, and so the formof thecalibration 
function F is largely unknown. Nonparametric estimates [43] of F would there- 
fore seem more appropriate than estimates based on an assumed parametric 
form which could be incorrect. 

2.3. Validity of the Bristlecone Pine Calibration 

The validity of the bristlecone pine calibration of radiocarbon dates has been 
questioned on both geophysical and archaeological [35] grounds. For example, 
Berger [5] has suggested that the carbon-14 concentration of bristlecone pine 
wood could be abnormally high due to in situ production of carbon-14 by cosmic 
rays at the high altitude at which the bristlecone pine grows. Also, it is possible 
that, because of the very narrow rings of the bristlecone pine (typically 0.1 mm), 
the inner rings of a tree may be enriched in radiocarbon by sap from the outer 
(younger) rings. 

The historical calendar of ancient Egypt provides an independent chronology 
for testing the bristecone pine calibration prior to 1500 B.C. Qualitative com- 
parisons by several workers [37, 51, 571 of radiocarbon dates of Egyptian samples 
and the accepted Egyptian chronology show general agreement with the 
bristlecone pine results, within the uncertainties of archaeological context. Clark 
and Renfrew [IO] were the first to conduct a statistical comparison of radiocarbon 
dates of bristlecone pine samples and Egyptian samples, assuming that over the 
time-period considered, namely 3100-1800 B.C., the calibration curve could be 
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represented by either a polynomial or a continuous piecewise linear curve. This 
analysis showed that there was no reason to doubt the validity of the bristlecone 
pine calibration; this conclusion should be regarded as provisional to some 
extent, because of the uncertainties regarding the calendar dates of the Egyptian 
samples. Incidentally, an examination of the radiocarbon dates of paired samples 
indicated that the real errors of measurement could be 40% greater than those 
reported by the laboratories. 

Alternatively, an independent chronology can be obtained by examining the 
annual layers or “varves” found in clays that originate in the beds of lakes 
dammed up by glaciers. Recent comparisons [55, 611 of radiocarbon dates and 
varve chronologies in Sweden and U.S.A. have confirmed the general trends of 
the bristlecone pine calibration. 

The data used in these independent checks on the bristlecone pine calibration 
are not sufficiently precise to either substantiate or refute the kinks in Suess’s 
calibration curve. There is little geophysical evidence for or against the existence 
of kinks. It has been shown [4] that over the past century there is a high negative 
correlation between radiocarbon concentration and sunspot number, implying 
the existence of kinks in the calibration function with a period of about 11 yr. 
However, these kinks are “averaged” out in the bristlecone pine data, because 
all the samples used contain at least 10 consecutive rings, and so each radiocarbon 
date is related to the average concentration over those 10 years. 

In principle, the existence of kinks can be tested statistically by fitting a 
polynomial curve of sufficiently high degree to the bristlecone pine data, and 
comparing the Residual Sum of Squares with some independent estimate of the 
variance of the errors {e,} in (6). Clearly, the errors reported by laboratories 
must be regarded as an underestimate of the real errors, since the reported error 
relates to counting fluctuations only. Many laboratories suggest that noncounting 
errors are negligible, but few have published any statistical evidence to support 
this assertion. It seems unlikely that the question of kinks can be resolved by 
purely statistical methods until a more careful analysis is made of the measure- 
ment errors involved. 

2.4. Calibration of Floaiing Chronologies 

If the calibration curve F contains kinks, a single radiocarbon date may 
correspond to more than one calendar date. However, in such a case, this 
ambiguity regarding the calendar date of an archaeological sample may be 
removed if a floating chronology is available. 

Suppose, e.g., we dig up a large log at a particular archaeological site. We may 
take samples from various parts of the log and determine their radiocarbon 
dates. In addition, we can determine the relative calendar ages of these samples, 
simply by counting the tree-rings on the log. Consequently, although we know 
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the “spacings” between the samples along the calendar-age axis, we do not know 
the absolute date of the sequence of samples; the sequence or chronology may 
be regarded as frosting along the calendar-age axis. 

Since we know the relative ages of the samples in the floating chronology, 
we may construct a short “calibration curve” for the floating chronology. We 
may then compare not only the ordinates but also the derivative of this calibration 
curve with those of the “master” calibration curve derived from the bristlecone 
pine samples. Thus, by “matching the kinks” in these two curves, we may 
eliminate or reduce any ambiguity concerning the calendar age of the floating 
choronology. 

This leads to a most interesting statistical problem which can be formulated 
as follows. Suppose that the master calibration curve is based on data from m 
bristlecone pine samples, whereas the floating chronology under consideration 
contains 71 samples. Let xi and yi denote respectively the tree-ring date and 
radiocarbon date of the ith bristlecone pine sample, i = I, 2,..., m; let xii denote 
the tree-ring date (relative to the arbitrary origin) of the ith sample in the floating 
chronology, and yIa the corresponding radiocarbon date, i = I, 2,..., n. Then we 
have 

yi = F(xJ + ei i = 1, 2,..., m 

xi = F(4 + 4 + eld i = 1, 2 ,..., rz, 

where A, denotes the (unknown) calendar age or tree-ring date of the arbitrary 
origin of the floating chronology. The e’s denote random errors of measurement, 
the x’s are assumed known and error-free, and F is the unknown calibration 
function defined by (4). The problem is to estimate A, , in the presence of the 
“infinite-dimensional” nuisance “parameter” F. 

This is a generalisation in two ways of the well-known problem of inverse 
calibration from a fitted regression line. Firstly, F is not necessarily a linear 
function. Secondly, the classical problem of inverse regression corresponds to 
the special case where all the xii are equal. Here, the 7t points {xii} may be 
distinct, but there is only one location parameter to estimate, namely A, . 

The use of floating chronologies to increase the precision of calibrated radio- 
carbon dates was pioneered by Ferguson et al. [20], using data from a chronology 
comprising 3 11 consecutive rings. These authors used a graphical procedure, 
using Suess’s free-hand curve as an estimate of F in (8). The first statistical 
approach to this problem [9] assumed that, over the relatively short interval of 
interest, the calibration function F in (8) could be represented by a straight line. 
The problem then reduced to that of fitting parallel lines to the two groups of 
data, the parameter A, being proportional to the difference between the inter- 
cepts of these two lines. 
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This approach is not entirely satisfactory, because if F were really linear, only 
one calendar date would correspond to any given radiocarbon date, and there 
would be no ambiguity concerning the date of the floating chronology. In any 
case, the assumption of linearity may not be justified by the data. 

More generally, we could assume that F in (8) can be represented by some 
low-order polynomial whose coefficients are to be estimated from the data. 
However, as noted in [ll J, this leads to a nonlinear model with its resulting 
complications. For example, even if we assume that F is a quadratic, equations 
(8) become 

~3 = B, + B,xi + B,Xi2 + ei i = 1, 2,..., m 

yli = (& + BA + BA2) + (Bl + ~&Jx~~ + B&i + eli i = l,Z-.., n 
(9) 

which are nonlinear ‘in the parameters (A, , B, , Bl , B,). 
In such cases, the linear/nonlinear structure of the model can be used to 

construct significance tests for A, . If A, were replaced by any given hypothetical 
value Al*, the above equations (and the equivalent equations for any higher-order 
polynomial) become linear in the remaining parameters. Standard theory of 
linear models may then be used to construct a significance test for the hypothesis 
A, = A,*. Since this argument holds for any value Al*, confidence limits for 
A, can be found simply as the set of hypothetical values A,* not rejected by the 
chosen significance test. A modified version of this procedure was used in [I I] 
for the simultaneous calibration of the two floating chronologies from Auvernier, 
Switzerland (see below). 

Since the form of F is unknown a priori, it may be more appropriate to 
estimate F by some nonparametric method, such as those proposed by Priestley 
and Chao [43], Nadaraya [40] and Rosenblatt [50]. These methods make no 
assumptions regarding the parametric form of F but merely assume that F 
possesses a certain degree of smoothness. If such an estimator is used, it is 
possible, in principle, to test any hypothetical value of A, as follows. Firstly, 
we obtain an estimate f of F, independent of A, , using the bristlecone pine data 
only. Then for any given hypothetical value A,* of A,, we examine the 
deviations 

4 = Yli - f (A,* + Xd i = 1, 2,..., n 

of the radiocarbon dates of the samples in the floating chronology from the dates 
predicted by the estimated calibration curve. If the hypothetical value is close 
to the correct value, the deviations {Ri} should be collectively “small,” and 
vice versa. The precise formulation of this idea as a significance test is given by 
Clark [8], and is developed for a wide class of estimators f. 
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Suess [59] subsequently used his graphical procedure to calibrate simul- 
taneously two floating chronologies from an archaeological site at Auvernier. 
The data for this analysis may be described by the following model, using an 
obvious extension of the previous notation. 

yi = F(4 + ei i = 1, 2 ,..., m, 

yli = FM + xii) + B + eli i = 1, 2 ,..., n, , (10) 

YS = F(A, + x20 + B + e2i i = 1, 2 ,..., n2 . 

Here, subscripts 1 and 2 refer to the first and second floating sequence, res- 
pectively, and the parameter B denotes a possible systematic difference between 
radiocarbon dates of bristlecone pine and Auvernier wood of the same calendar 
age, due to possible in situ production of carbon-14 in bristlecone pine. In this 
particular case, stratigraphic and dendrochronological evidence showed that the 
second floating chronology was older than the first. In other words, the para- 
meters A, and A, must satisfy a constraint of the form 

-42 3 A, + a, (11) 

where a is a known constant, depending on the choice of arbitrary origin for 
the two chronologies. 

Least-squares solutions of this problem have been obtained [9, 1 l] by 
assuming that F could be represented by various low-order polynomials. The 
parameter B was either estimated from the data or given a hypothetical value 
derived by geophysical arguments. In the latter paper, the prior information (11) 
was taken into account by a suitable truncation of the ordinary unconstrained 
confidence region for (A, , A,). Th e various solutions in these papers showed 
that the constraint (11) and the value of B were more critical than the assumed 
degree of the polynomial form for F. 

2.5. Generalisations and Unsolved Problems 

Clearly, the simultaneous calibration of two floating chronologies can be 
generalised to K > 2 chronologies, the difficulties being technical rather than 
conceptual. 

Alternatively, it would be interesting to adopt a Bayesian approach to the 
Auvernier problem. It seems plausible that the archaeologist’s prior information 
concerning the dates A, and A, of the two sequences is made up of two com- 
ponents. Firstly, the difference (A, - A,) in the dates of the chronologies 
may be estimated from the relative depths at which the relevant material was 
uncovered at the site. Secondly, the date of, say, the younger sequence may be 
estimated by examining any artifacts from the site. If these sources of information 
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are independent, we may postulate a prior density p(A, , A,) for (A, , A,) of 
the form 

P(4 9 4 = A(4 P2(4 - 4 

where pi , p, are density functions. In the Auvernier case pa is positive only on 
some subset of [a, co). 

The distinguishing feature of a floating chronology is that the differences 
{(xii - xlj)} in the calendar dates of the samples in the chronology are known 
exactly. More generally, we may know only that certain differences in the dates 
of our samples are nonnegative. For example, Vogel [62] considers the simul- 
taneous dating of three samples from an archaeological site in which the 
stratigraphic evidence shows that the first sample is older (lower) than the 
second, and in turn that the second sample is older than the third. 

The problem may be represented by the equations, 

yi = F(xi) + ei 
xi = Fhi) + eli 

i = I, 2 ,..., m, 

i = 1, 2, 3, 

where xi ,yi and F have the same meanings as in (8), and xii and yii denote the 
calendar age and radiocarbon age respectively of the ith archaeological sample. 
Again the e’s denote random errors of measurement. The problem is to estimate 
the three parameters xl1 , xi2 , xi3 subject to xl1 > xi2 > xi3 . 

Vogel gives a simple graphical solution using Suess’s free-hand curve, but 
ignoring the fact that this curve is only an estimate of F based on observations 
containing random error. There is as yet no satisfactory statistical solution to 
this problem. 

The determination of the form of the calibration function F remains an 
important practical problem. If, as seems likely, this must be determined 
experimentally rather than theoretically, the magnitude of the errors associated 
with radiocarbon dates becomes crucial. Radiocarbon labora’tories are rarely 
explicit as to how their reported errors of measurement are computed, and it 
seems likely [IO, 411 that most laboratories underestimate the real error. There- 
fore there is an urgent need for radiocarbon laboratories to conduct suitably 
designed experiments just to keep a check on their measurement errors. 

3. SERIATION 

3.1. Background 

A common problem in archeaology is the seriation, i.e., the reconstruction of 
the chronological order, of a set of objects using only information defining the 
degree of similarity between pairs of objects. For example, suppose we have a 

6831413-s 
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number of graves containing different varieties of pottery. Our aim is to place 
these graves in temporal order, using the basic archaeological principle that 
graves which are close together in temporal order are more likely to have similar 
contents than graves which are further apart in temporal order. This principle 
is derived from the assumption that each variety of pottery was in existence 
during a unique relatively short period of time, and that the “mix” of varieties 
has changed gradually with time. 

Such a problem was first considered in 1899 by Petrie [42], who was confronted 
with 900 predynastic Egyptian graves containing a total of about 800 varieties 
of pottery. In the past decade, the availability of high-speed computers has 
rekindled interest in the general problem of seriation. We need not restrict 
ourselves to graves and pottery, for essentially the same problem has arisen in 
other contexts as diverse as philology [6, 121 and epigraphy [53]. 

3.2. Mathematical Formulation 

In order to formulate the above problem in mathematical terms, the following 
definitions [28] will be useful. 

(I) An inci&nce matrix A is one whose typical element aij takes the value 1 
if the jth variety of pottery is present in the ith grave, and is otherwise zero. 

(2) An incidence matrix is in Petrie form if in ewery column there is only a 
single run, if any, of 1’s. 

(3) An incidence matrix A is Petrifable if there exists a permutation matrix 
P such that PA is in Petrie form. 

(4) A symmetric matrix is in Robinson form if, when going to the left or 
down from any position on the main diagonal, the elements never increase. 

Kendall [26-291 has developed a mathematical theory of seriation from inci- 
dence matrices. This is based on the proposition that if each grave contains 
representatives of every variety of pottery extant at the time of internment, and 
the rows (graves) of the given incidence matrix A are rearranged in the correct 
temporal order, then A will be in Petrie form. Of course, the rows of A are 
initially in some arbitrary order, and so the problem of seriation is simply that 
of Petrifying A, i.e., finding that permutation of the rows of A which converts A 
to Petrie form, assuming that this can be done. 

There are two practical difficulties in this approach. Firstly, if some varieties 
are “missing” from some graves, the incidence matrix A will be only approxi- 
mately in Petrie form, even when the rows are rearranged in the correct order. 
Secondly, even if no varieties are missing from any graves, an incorrect ordering 
of the rows may still produce a matrix in Petrie form. In other words, there may 
be more than one way of Petrifying A. 
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Despite these difficulties, further examination of the idealised problem has 
been worthwhile, since it has suggested methods of seriation which, although not 
exact, are satisfactory for real-world problems. 

The possibility of Petrifying A may be examined using results in [22]. The 
main result of this paper may be stated as follows. 

THEOREM. If two incidence matrices A and B have the same number of rows 
and columns, and if A’A = B’B = V, then B can be permuted into Petrie form if 
and only if A can. 

Thus the question of whether A can be Petrified can, in principle, be answered 
if we know only the matrix V derived from A, further reference to A being 
unnecessary. Fulkerson and Gross [22] give a graph-theoretic algorithm for 
identifying Petrifiable incidence matrices from their V matrices. 

Having determined that A can be converted to Petrie form, the following 
theorem of Kendall [271 is relevant to the next problem: that of finding a 
particular permutation for doing this. 

THEOREM. If the incidence matrix A is Petri&able, then the row permutations 
which Petrify A are exactly those which, when applied to the rows and columns of 
G = AA’ simultaneously, put G into Robinson form. Thus the required permutation 
may be found e&her from A or the derived matrix G. 

Both the derived matrices V and G contain information on the chronology 
which is being reconstructed. The (i, j)th component of V is equal to the number 
of graves in which the ith and jth varieties are both present. Thus V contains 
information on the chronology of the varieties, for if the temporal ranges of two 
varieties overlap, they are likely to appear together in a number of graves 
roughly proportional to the extent of their overlap. 

On the other hand, the (i, j)th component of G is equal to the number of 
varieties which are present in both graves i and j. Thus G may be regarded as 
a similarity matrix for the graves, and so by the basic archaeological principle 
stated previously, G contains information on the chronology of the graves. 

The same ideas and results hold good, with only minor modifications [30, 311, 
if we start with an abundance matrix rather than an incidence matrix. In an 
abundance matrix, the (i, j)th element is a nonnegative number specifying the 
frequency of occurrence of the jth variety in the ith grave. 

3.3. Proposed Methods of Solution 

A direct search for the correct row-permutation by examining all possible 
row permutations of A is clearly impractical, once the number of rows (graves) 
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exceeds even 8 or 9. In any case, the incidence matrix A need not necessarily 
be of Petrie form even when the rows are rearranged in the correct order, 
because of “missing” varieties. What is needed is some possibly heuristic 
approach which will yield an acceptable seriation in the presence of small 
perturbations from the ideal mathematical model considered above. 

Petrie himself used a variety of methods based on what Kendall [26] has called 
Petrie’s Concentration Principle. This asserts the following. 

In the best arrangement (of rows of the incidence matrix) the temporal range 
of each separate variety should be minimised. 

This idea was formalised in [26] but the solution given there is unsatisfactory, 
for two reasons. Firstly, the solution still involves the examination of all possible 
permutations, although various techniques [25] may be used to restrict the search 
to selected subsets. Secondly, the mathematical model is highly artificial and 
specific, and recent experiments [32] with this method on real data have given 
unsatisfactory results. 

Kendall’s alternative solution [28, 29, 311 treats the derived matrix G = AA’ 
as a similarity matrix for graves, and thereby uses multidimensional scaling to 
represent each grave by a point in 2-dimensional space. If the graves can be 
seriated, then these points should lie on a straight line. This linear ordering then 
identifies the correct permutation to convert G to Robinson form, or equivalently, 
to convert A to Petrie form. 

Experiments [29, 311 with artificial data show that the correct order of the 
“graves” can be recovered by this method, but with the surprising side-effect 
that the points representing the graves are plotted along a horseshoe curve. 
As a further demonstration of the power of this method, a map of Romania was 
reconstructed [29] knowing only the rankings of pairs of towns in terms of their 
distance apart. In other words, one knows only which pair of towns is the 
closest, which pair is the next closest, and so on, down to the most remote pair, 
but the actual distances between towns are unknown. The resulting map, 
reconstructed from this derived “similarity matrix” for towns, was remarkably 
accurate. 

This method was applied [29] to archaeological data relating to 59 graves, 
from the La T&e Cemetery at Miinsingen-Rain, which contain a total of 70 
varieties of pottery. The computer’s seriation was in good agreement with 
previous results [24] and with the geographical ordering of the graves along the 
major axis of the cemetery. 

Gelfand [23] gives two well-defined algebraic algorithms for transforming, as 
nearly as possible, any given similarity matrix (not necessarily Kendall’s G) into 
Robinson form. Further, he proves that if the given similarity matrix can be 
transformed into Robinson form exactly, then both of his algorithms provide 
the necessary transformation. The results obtained by using these methods on 
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actual data are in good agreement with seriations derived previously [48, 491 by 
independent methods. 

In a paper generalising some of Kendall’s results, Wilkinson [64] notes a close 
connection between the problem of Petrifying incidence matrices and the 
familiar travelling salesman problem. In principle, the row-permutation needed 
to Petrify a given incidence matrix can be determined from the solution of an 
appropriate travelling salesman problem. However, this idea has apparently not 
yet been used in practice. 

Previously, Robinson [49] had considered the slightly different problem of 
seriating a number of archaeological deposits, given only the percentages of 
various types of pottery in each deposit. Since some of these deposits corre- 
sponded to different levels of the same archaeological site, this stratigraphic 
evidence supplied partial prior information on the temporal order of the deposits. 
Robinson constructed a similarity matrix for deposits using as similarity 
coefficient for deposits i and j the quantity 

SC =200- i Ip,,c-pjkI, 
k=l 

where pi, and pjk denote respectively the percentage of pottery at deposits i 
and j which is of the kth type, k = I, 2 ,.,., ~1. He then gave a heuristic two-stage 
procedure for re-arranging the rows and columns of this similarity matrix so 
that it approximates the Robinson form subject to the restriction that the 
known stratigraphic relationships be preserved. 

Since this procedure still involved the examination of a large number of 
possible permutations, several authors developed alternative graphical procedures 
for this type of seriation problem, using either the similarity coefficients [48] or 
the percentage of pottery directly [2, 361. I n g eneral, these extremely rapid 
methods have produced results in close argeement with those obtained by the 
more elaborate methods. 

Finally, although the context is philological and not archaeological, the 
chronological seriation [3, 121 of 7 works of Plato, based on the frequency 
distributions of sentence endings, is worthy of mention. Apart from [26], these 
papers are the only ones on seriation in which a specific probability model is 
used. Assuming the Republic to be the earliest of the seven works and the Laws 
to be the latest, Cox and Brandwood [12] used a simple parametric model to 
estimate the linear order of the remaining five works. The subsequent modifi- 
cation [3] of their method, using a less restrictive probability model, nevertheless 
produced the same estimated order for the 7 works. Recently, Boneva [6] 
produced a seriation of all 45 books of Plato based on the frequency distributions 
of sentence endings, using Kendall’s “horseshoe” program [3 13 and, unlike [ 121, 
treating all 10 books of the Republic and all 12 books of the Laws as separate 
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books. This seriation was in broad agreement with the earlier conclusions of 
both statisticians and philologists. 

3.4. Unsolved Problems. 

Most of the seriation methods described in the preceding section are mathe- 
matical rather than statistical, in the sense that no explicit probability model is 
used. Consequently, there has been little or no examination of the statistical 
performance of these methods in terms of sampling fluctuations. 

For example, certain varieties of pottery may be “missing” from certain graves 
at random, due to either not being deposited in the grave in the first place or 
not being discovered upon excavation. Alternatively, there may be random 
errors in the classification of pottery after excavation. In either case, the graves- 
versus-varieties incidence matrix, and hence the final seriation, will be subject 
to random errors. In principle, the final seriation, will have a probability 
distribution related to the error structure of the incidence matrix. However, 
most of the preceding methods ignore the possibility of random errors in the 
incidence matrix. 

Other questions, which are at present largely unresolved, are as follows. 

(1) What do we mean by a good seriation ? Equivalently, on what basis 
should we compare one possible seriation with another from the same data ? 
Some tentative suggestions may be found in [23, 311. 

(2) How can we test the assumption that seriation is possible ? 

(3) Most methods of seriation assume that each variety was present during 
a single time-interval. What happens if some varieties were in use in several 
disjoint time-intervals ? 

(4) To what extent are the graphical procedures unambiguous ? If different 
people apply these procedures to the same data, will they necessarily obtain the 
same answers ? 

(5) If seriation is possible, do the graphical procedures always produce the 
correct answer I 

Experience has shown that, provided the objects (graves) to be seriated can 
be placed in an approximate serial order, the different methods described above 
will produce seriations which are generally in sufficiently close agreement for 
practical purposes. 

Statistical methods have been used in archaeology in contexts other than 
dating. However, even in the restricted field of archaeological dating surveyed 
in this paper, many of the statistical problems are nontrivial and there are many 
interesting unsolved problems. 
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