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Background: Omeprazole is one of the most prescribed medications worldwide and within

the class of proton pump inhibitors, it is most frequently associated with drug interactions.

In vitro studies have shown that omeprazole can alter the function of metabolic enzymes

and transporters that are involved in the metabolism of irinotecan, such as uridine diphos-

phate glucuronosyltransferase subfamily 1A1 (UGT1A1), cytochrome P-450 enzymes

subfamily 3A (CYP3A) and ATP-binding cassette drug-transporter G2 (ABCG2). In this

open-label cross-over study we investigated the effects of omeprazole on the pharmacoki-

netics and toxicities of irinotecan.

Methods: Fourteen patients were treated with single agent irinotecan (600 mg i.v., 90 min)

followed 3 weeks later by a second cycle with concurrent use of omeprazole 40 mg once

daily, which was started 2 weeks prior to the second cycle. Plasma samples were

obtained up to 55 h after infusion and analysed for irinotecan and its metabolites

7-ethyl-10-hydroxycampothecin (SN-38), SN-38-glucuronide (SN-38G), 7-ethyl-10-[4-(1-pip-

eridino)-1-amino]-carbonyloxycamptothecin (NPC) and 7-ethyl-10-[4-N-(5-aminopentanoic

acid)-1-piperidino]-carbonyloxycamptothecin (APC) by high-performance liquid chroma-

tography (HPLC). Non-compartmental modelling was performed. Toxicities were monitored

during both cycles. Paired statistical tests were performed with SPSS.

Results: The exposure to irinotecan and its metabolites was not significantly different

between both cycles. Neither were there significant differences in the absolute nadir and per-

centage decrease of WBC and ANC, nor on the incidence and severity of neutropenia, febrile

neutropenia, diarrhoea, nausea and vomiting when irinotecan was combined with omepra-

zole.

Conclusion: Omeprazole 40 mg did not alter the pharmacokinetics and toxicities of irinotecan.

This widely used drug can, therefore, be safely administered during a 3-weekly single agent

irinotecan schedule.
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1. Introduction
Drug–drug interactions can cause serious adverse effects,

especially in oncology, as a result of the narrow therapeutic

window of chemotherapeutic agents. Small changes in the

pharmacokinetics or pharmacodynamics of chemotherapy

caused by another drug can result in significant changes in

its toxicity or efficacy. Because cancer patients often experi-

ence disease- and age-related organ failure, they frequently

use several other drugs, which put them at risk for drug–drug

interactions.1

Proton pump inhibitors (PPIs) act as potent blockers of the

gastric acid pump without major side effects.2 They belong

to one of the most frequently prescribed medications in

the United States (http://www.imshealth.com/deployedfiles/
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Fig. 1 – Metabolism of irinotecan. The pro-drug irinotecan is

metabolised into its active metabolite SN-38 by carboxy-

lesterases type 1 and 2. The affinity for this reaction is low

since only a fraction of irinotecan is directly converted into

SN-38. Competing with the formation of SN-38 is the

oxidation of irinotecan into the inactive metabolites APC

and NPC by CYP3A4 and CYP3A5, which both (partially) can

be converted further into SN-38. To facilitate excretion, SN-

38 is glucuronidated into its inactive metabolite SN-38-

glucuronide (SN-38G) by several UGT1A isoforms; UGT1A1

being the most important. In the intestines, SN-38G can be

de-glucuronidated into SN-38 by b-glucuronidase-producing

bacteria. Several drug transporters are involved in the

elimination of irinotecan and its metabolites. Abbreviations

ABCB1, ATP-binding cassette drug-transporter B1, also

known as P-glycoprotein; ABCC2, ATP-binding cassette

drug-transporter C2, also known as canalicular multispec-

ific organic anion transporter (C-MOAT); ABCG2, ATP-bind-

ing cassette drug-transporter G2, also known as Breast

Cancer Resistance Protein (BCRP); APC, 7-ethyl-10-[4-N-

(5-aminopentanoic acid)-1-piperidino]-carbonyloxycampto-

thecin, inactive metabolite of irinotecan; CES, carboxylest-

erase; CYP3A; cytochrome P-450 enzymes subfamily 3A;

NPC, 7-ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxy-

camptothecin, inactive metabolite of irinotecan; SN-38,

7-ethyl-10-hydroxycampothecin, active metabolite of irino-

tecan; SN-38G, SN-38-glucuronide, inactive metabolite of

SN-38; UGT1A, uridine diphosphate glucuronosyltransfer-

ase subfamily 1A.
,

:

imshealth/Global/Content/StaticFile/Top_Line_Data/Top%20

Therapy%20Classes%20by%20U.S.Sales.pdf).

Omeprazole was the first registered proton pump inhibitor

and is one of the most prescribed drugs worldwide (http://

cnnmoney.eu/2009/08/05/news/companies /top_generic_drugs.

fortune/index.htm and www.rxlist.com). Although widely

used, being approved as over-the-counter product in several

countries, and mostly designated as harmless, omeprazole

is actually known to be involved in several drug–drug

interactions,3 which could potentially be dangerous when

combined with drugs with a narrow therapeutic window,

such as chemotherapeutic agents.

Several drug–drug interaction studies with omeprazole

have been performed, mainly focusing on interactions on

the level of hepatic cytochrome P450 (CYP) enzymes and alter-

ation of the absorption of (oral) drugs via changes in gastric

pH. Clinically, the most important drug–drug interaction of

omeprazole is a 27–54% reduction in clearance of diazepam

due to competitive inhibition of CYP2C19.4,5 Next to this effect

there are in vivo and in vitro results pointing to induction of

UDP-glucuronosyltransferases,6–8 induction9,10 and inhibition

of cytochrome P-450 enzymes subfamily 3A (CYP3A),11,12 and

inhibition of the ATP-binding cassette drug-transporter B1

(ABCB1)11,12 and ATP-binding cassette drug-transporter G2

(ABCG2).13,14 These metabolising enzymes and drug trans-

porters play an important role in the disposition of the topo-

isomerase-I inhibitor irinotecan (Campto�, Pfizer), which is

registered for the treatment of metastatic and/or inoperable

colorectal cancer (Fig. 1).

In vitro research of the combination of irinotecan and ome-

prazole showed an 85% reduction of 7-ethyl-10-[4-(1-piperidi-

no)-1-amino]-carbonyloxycamptothecin (NPC) formation, one

of the metabolites of irinotecan, which could potentially lead

to increased levels of the active metabolite 7-ethyl-10-

hydroxycampothecin (SN-38) and consequently more severe

toxicity.15 We performed comparable in vitro experiments

and the results led us to initiate a clinical study to investigate

the effect of omeprazole on the pharmacokinetics of irinotec-

an and toxicities in cancer patients.

2. Materials and methods

2.1. In vitro studies

In vitro experiments were performed to study the effect of

omeprazole on the metabolism of irinotecan. Pooled human

liver microsomes (Becton Dickinson Gentest) were incubated

for 30 min with irinotecan (10 lM) in the presence or absence

of omeprazole (25 lM) or fluconazole (25 lM; CYP3A inhibitor)

based on an earlier described method.16 The experiments

were performed on four separate occasions. In each experi-

ment, microsomes (1 mg protein/mL) were incubated in tripli-

cate. In another experiment, microsomes (0.8 mg/mL) were

co-incubated for 30 min with SN-38 (5 lM) and omeprazole

(25 lM) and ketoconazol (25 lM; uridine diphosphate glucu-

ronosyltransferase subfamily 1A [UGT1A] inhibitor) based on

methods described.17 Experiments were terminated by the

addition of perchloric acid/methanol. Irinotecan and metabo-

lite concentrations were analysed based on validated as-

says.18,19 HCT116 (colorectal carcinoma) and Caco2

http://www.imshealth.com/deployedfiles/imshealth/Global/Content/StaticFile/Top_Line_Data/Top%20Therapy%20Classes%20by%20U.S.Sales.pdf)
http://www.imshealth.com/deployedfiles/imshealth/Global/Content/StaticFile/Top_Line_Data/Top%20Therapy%20Classes%20by%20U.S.Sales.pdf)
http://www.imshealth.com/deployedfiles/imshealth/Global/Content/StaticFile/Top_Line_Data/Top%20Therapy%20Classes%20by%20U.S.Sales.pdf)
http://cnnmoney.eu/2009/08/05/news/companies/top_generic_drugs.fortune/index.htm
http://cnnmoney.eu/2009/08/05/news/companies/top_generic_drugs.fortune/index.htm
http://cnnmoney.eu/2009/08/05/news/companies/top_generic_drugs.fortune/index.htm
http://www.rxlist.com
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(colorectal adenocarcinoma) cells were cultured in Hepes-buf-

fered RPMI 1640 medium supplemented with Glutamax�, 10%

foetal bovine serum (Gibco), 100 U/mL penicillin and 100 lg/

mL streptomycin at 37 �C in a humidified atmosphere contain-

ing 5% CO2. Cells were cultured for 24 h in the presence of

25 lM omeprazole or 0.1% (v/v) DMSO as solute control. After

24 h, total RNAwas extracted using RNA-Bee (Tel-TEST Temco,

Inc.). Relative UGT1A1 expression levels were measured by real

time RT-PCR using Taqman Universal Master mix and Assay-

On-Demand products from Applied Biosystems (UGT1A1

assay ID: Hs02511055-s1). The human glyceraldehyde-3-

phosphate dehydrogenase (GAPDH assay ID: 4310884E; VIC/

TAMRA) was used for normalisation. Reactions were run on

an ABI PRISM 7900 sequence detector system (Applied Biosys-

tems) using the following cycling conditions: 50 �C for 2 min,

95 �C for 10 min followed by 40 cycles of 95 �C for 15 s, and

60 �C for 1 min.

2.2. Patients

Nineteen patients were included in this open-label cross-over

interaction study. Inclusion criteria were: (1) histological or

cytological confirmed diagnosis of any form of (irresectable

and/or metastatic) cancer, which was thought to be sensitive

to irinotecan-treatment; (2) age P 18 years; (3) WHO perfor-

mance score 6 1; and (4) adequate haematological, renal

and hepatic function. Starting 2 weeks before irinotecan

administration, patients were not allowed to use grapefruit,

star fruit, dietary supplements, St. John’s wort, herbal tea

and herbals or any other known inhibitor and/or inducer of

CYP3A and ABCB1. In addition, the use of proton pump inhib-

itors was prohibited. Specific exclusion criteria were: (1) any

form of anti-cancer treatment within 4 weeks of start of irino-

tecan administration; (2) unresolved bowel obstruction or

chronic colic disease; and (3) any form of illness that would

prohibit the process of understanding and giving of informed

consent. All patients gave written informed consent and the

local institutional review board approved the clinical protocol,

which was written in accordance with the declaration of

Helsinki.

2.3. Treatment

All patients received their first cycle of irinotecan (Campto�,

Pfizer) without and their second cycle with concomitant

omeprazole (Losec�MUPS�, AstraZeneca). Fourteen days be-

fore the start of the second cycle, patients started with ome-

prazole 40 mg once daily until the third day after the second

administration. Irinotecan was administered intravenously

over 90 min at a flat-fixed dose of 600 mg during both cy-

cles.20 All patients received a standard anti-emetic regimen

of intravenous granisetron (1 mg) and dexamethason

(10 mg) 30 min before the administration of irinotecan and

atropine (0.25 mg, subcutaneously) prior to irinotecan infu-

sion, to prevent an acute cholinergic syndrome. For the

treatment of irinotecan-induced diarrhoea, patients received

treatment with loperamide and, when necessary, antibiotics.

A dose-reduction of 25% was performed at the discretion of

the physician when necessary. Patients were asked to record

side-effects, the intake of any other drugs during both treat-
ment cycles and the time of intake of omeprazole in a spe-

cific diary.
2.4. Pharmacokinetic analyses of irinotecan

Pharmacokinetic analyses of irinotecan and its main metabo-

lites SN-38, SN-38G, APC and NPC were performed during

both treatment cycles. Blood samples (5 mL; lithium-hepar-

ine) were collected prior to infusion, 30 min after the start

of infusion, at the end of infusion, as well as 10, 20 and

30 min, and 1, 1.5, 2, 3, 4, 5, 6, 22.5, 30, 46.5 and 53.5 h post-

infusion. Samples were centrifuged for 10 min at 2860g

(4 �C) and plasma was stored at –80 �C until analysis by vali-

dated reversed-phase high-performance liquid chromatogra-

phy assays with fluorescence detection, as described

elsewhere.18,19,21 Pharmacokinetic parameters of irinotecan

and its metabolites were calculated using weighted non-com-

partmental analyses with WinNonLin 5.2 (Pharsight Corp.,

Mountain View, CA).

2.5. Toxicities

During both cycles, patients were seen weekly at the outpatient

clinic for physical examination, toxicity screening and labora-

tory tests. Leucopenia, neutropenia, diarrhoea, nausea and

vomiting were graded using the Common Terminology Criteria

for Adverse Events (CTC) version 3.0 (http://ctep.cancer.gov/

protocolDevelopment /electronic_applications/docs/ctcaev3.

pdf), and were also classified into severe (grade 3–4) and not

severe (grade 0–2). In addition, leucopenia and neutropenia

were evaluated as absolute nadir and as percentage decrease

at nadir from baseline which was calculated as percentage

decrease = [baseline value – nadir value]/baseline value ·
100%. Toxicity analyses were only performed in the group of

patients who received two full dose cycles of irinotecan

(600 mg; N = 12).
2.6. Genotyping

In all patients, UGT1A1-genotype analyses were performed for

the UGT1A1*28 ((TA)6! (TA)7) and UGT1A1*93 (–3156G>A)

polymorphisms as described.22 In addition, patients were

screened for being an ultra-rapid metabolizer of CYP2C19

(CYP2C19*17),23 which may result in a sub-therapeutic expo-

sure to omeprazole.23,24
2.7. Statistics

The primary objective of this study was to investigate the

influence of omeprazole on the plasma pharmacokinetics of

irinotecan and its metabolites in cancer patients. To detect a

25% difference in SN-38 AUC between the cycles with and

without concomitant omeprazole with a two-sided signifi-

cance level of 5% and a power (1-b) of 90%, a sample size of

at least 14 patients was required. For the sample size calcula-

tion, data were used from patients who received two subse-

quent cycles of irinotecan at a flat-fixed dose of 600 mg.22

Dose-reduced patients were excluded from this analysis. The

secondary objective was to compare side effects, especially

http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf
http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf
http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf


Table 1 – Patient characteristics.a

Characteristics N % Median Range
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leucopenia and neutropenia, and late-onset diarrhoea, in the

presence and absence of omeprazole.

Data are presented as mean values with 95% confidence

intervals unless stated otherwise. To compare pharmacologi-

cal parameters and nadir and percentage decrease of neutro-

phils and leucocytes between the cycle with and without

omeprazole, paired t-tests were used. For the comparison of

the CTC-graded toxicities between both cycles, Mc Nemar’s

test was used. Statistical tests were calculated two-sided

and P-values of less than 0.05 were regarded as statistically

significant. All statistical calculations were performed with

SPSS version 15.0 (SPSS Inc., Chicago, IL).

3. Results

3.1. In vitro experiments

As shown in Fig. 2, co-incubation of human liver microsomes

with irinotecan and omeprazole resulted in an 80% inhibition

on NPC formation and a 75% inhibition on APC formation,

which was comparable with results with the CYP3A inhibitor

fluconazole (78% and 74% inhibition, respectively). Although

in vitro no effect of omeprazole was seen on the formation

of SN-38, the inhibition of both NPC and APC formation could

potentially lead to higher SN-38 levels in vivo.
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Fig. 2 – Omeprazole affects the metabolism of irinotecan

in vitro. Effect of omeprazole (striped bars) and CYP3A

inhibitor fluconazole (open bars) on the formation of NPC,

APC and SN-38 during incubation of human liver micro-

somes with irinotecan and effect of omeprazole (striped

bars) and UGT1A1 inhibitor ketoconazole (open bars) on the

formation of SN-38G during incubation with SN-38. The

black bars represent the formation of metabolites in the

absence of a potential inhibitor. Depicted are the mean

values of the formed metabolite + SD. Abbreviations: APC 7-

ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]-car-

bonyloxycamptothecin, inactive metabolite of irinotecan;

CYP3A; cytochrome P-450 enzymes subfamily 3A; NPC, 7-

ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxycampto-

thecin, inactive metabolite of irinotecan; SN-38, 7-ethyl-10-

hydroxycampothecin, active metabolite of irinotecan; SN-

38G, SN-38-glucuronide, inactive metabolite of SN-38;

UGT1A1, uridine diphosphate glucuronosyltransferase

subfamily 1A1.
Also shown in Fig. 2, co-incubation of human liver micro-

somes with SN-38 and omeprazole did not result in reduced

formation of SN-38G, whereas the formation of SN-38G was

reduced with 57% when SN-38 was co-incubated with the

UGT1A1 inhibitor ketoconazole.

A 24-h exposure of the colorectal carcinoma cell lines

HCT116 and Caco2 to 25 lM omeprazole resulted in a two-fold

upregulation of UGT1A1 mRNA levels as determined by quan-

titative RT-PCR.

3.2. Patients

Nineteen patients were included in the clinical study. Two pa-

tients did not start treatment after registration; one due to the

diagnosis of a second malignancy, the other due to progres-

sive liver failure. One patient did not receive a second admin-

istration of irinotecan because of severe toxicity during the

first cycle (grade 4 diarrhoea and haematological toxicity).

One patient was not evaluable for pharmacokinetics due

to ascites with possible third space pharmacokinetics.
Age (years) 65 26–74
BSA (m2) 1.87 1.59–2.38

Sex
Male 9 64%
Female 5 36%

Tumour type
Colorectal 4 29%
Pancreatic 4 29%
(A)CUP 2 14%
Miscellaneousb 4 29%

Smoking status
Smoker 1 7%
Non-smoker 13 93%

UGT1A1*28 genotype
TA6/TA6 (wildtype) 7 50%
TA6/TA7 7 50%
TA7/TA7 0 0%

UGT1A1*93 genotype
GG (wildtype) 9 64%
GA 5 36%
AA 0 0%

CYP2C19*17 genotype
CC (wildtype) 5 36%
CT 7 50%
TT 2 14%

Abbreviations: (A)CUP, (adeno)carcinoma of unknown primary; BSA,

body surface area; UGT1A1*28, polymorphism for an additional

(seventh) repeat in the TATA box of the promotor region of UGT1A1

leading to reduced UGT1A1 formation; UGT1A1*93, polymorphism

in the UGT1A1 gene, also known as –3156G>A, resulting in less

functional UGT1A1; CYP2C19*17, polymorphism in CYP2C19 gene

(–806C>T and –3402C>T), resulting in more functional CYP2C19

(ultra rapid metabolizer).
a N = 14, patients evaluable for two treatment cycles.
b Including primitive neuro-ectodermal tumour (1), cholangiocar-

cinoma (1), jejunal carcinoma (1) and breast cancer (1).
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Another patient was not evaluable due to problems with

pharmacokinetic sampling. Of the 14 evaluable patients for

pharmacokinetics, two patients were not evaluable for toxic-

ity analysis due to 25% dose reduction during their second cy-

cle because of severe toxicity (grade 4 haematological toxicity

plus grade 3 gastro-intestinal toxicities and grade 3 hepato-

logical toxicity, respectively). The pharmacokinetics of these

dose-reduced cycles was extrapolated to full-dose pharmaco-

kinetics, since the pharmacokinetics of irinotecan and its

metabolites are linear in this dose range.25 Patient demo-

graphics are stated in Table 1.

3.3. Irinotecan pharmacokinetics

As shown in Table 2, there was no significant difference in the

area under the curve (AUC) and maximum concentration

(Cmax) of irinotecan (P > 0.24), SN-38 (P > 0.63), SN-38G

(P > 0.07), APC (P > 0.07) and NPC (P > 0.13) between the cycles

with and without omeprazole. Similar results were obtained

when the two ultra-rapid metabolizers of CYP2C19

(CYP2C19*17/*17) were left out of analysis (P > 0.06). Fig. 3

shows the time versus plasma-concentration curves of irino-

tecan and its metabolites as well as the intra-individual AUCs

with and without concomitant omeprazole.

3.4. Toxicities

No statistical differences were seen in the absolute nadir and

percentage decrease of leucocytes and neutrophils after irino-

tecan treatment with or without omeprazole (P > 0.34; Table 3).

In addition, no differences were seen in the incidence of se-

vere leucopenia and neutropenia (P = 1.0). Overall, the inci-
Table 2 – Pharmacokinetics of irinotecan and its metabolites wi

Parametera Omeprazole (–)

Irinotecan
AUC0–55h (ngÆh/mL) 24,498 (16,186–32,811) 2
Cmax (ng/mL) 3700 (2998–4401) 3

SN-38
AUC0–55h (ngÆh/mL) 439 (346–533) 4
Cmax (ng/mL) 41.9 (29.9–53.9) 4

SN-38G
AUC0–55h (ngÆh/mL) 2913 (1874–3953) 3
Cmax (ng/mL) 209 (155–264) 2

APC
AUC0–55h (ngÆh/mL)c 7471 (4944–9998) 6
Cmax (ng/mL)c 587 (393–781) 4

NPC
AUC0–55h (ngÆh/mL) 189 (114–265) 1
Cmax (ng/mL) 19.9 (12.5–27.3) 1

Abbreviations: APC, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidi

AUC0–55h, area under the concentration–time curve from timepoint 0 to 55

1-amino]-carbonyloxycamptothecin, inactive metabolite of irinotecan; SN

SN-38G, SN-38-glucuronide, inactive metabolite of SN-38.
a Data presented as mean with 95% confidence interval in parentheses.
b Ratio of mean pharmacokinetic parameters of irinotecan with and wit
c N = 13, data on pharmacokinetics of APC missing in one patient.
dence of severe (grade 3–4) gastro-intestinal toxicities was

low in our study. Only 2 patients suffered from grade 3 or 4

diarrhoea, nausea and vomiting.

4. Discussion

Here we investigated the possible drug–drug interaction be-

tween the proton pump inhibitor omeprazole and irinotecan.

No effect of the co-administration of omeprazole on the phar-

macokinetics and toxicities of irinotecan and its metabolites

was seen. Two patients in our study were characterised as

CYP2C19-ultra rapid metabolizers, which could have influ-

enced our results as they could have had suboptimal levels

of omeprazole. However, when these patients were excluded

from analysis, there still was no significant influence of ome-

prazole on the pharmacokinetics and toxicities of irinotecan

and its metabolites.

Since irinotecan has a complex disposition profile involv-

ing several drug metabolising enzymes and drug transporters,

drug–drug interactions can occur at several levels. In recent

years, several herbs and drugs were combined with irinotecan

to investigate the possibility of a drug interaction, potentially

explaining the occurrence of treatment failure or severe side

effects, such as neutropenia and late-onset diarrhoea. For

example, a reduced exposure to irinotecan and its potent

metabolite SN-38, was seen when irinotecan was combined

with the CYP3A inducer phenytoin.26,27 Concomitant smoking

also resulted in reduced plasma-concentrations of irinotecan

and SN-38.28 Reduced levels of SN-38 were seen when irino-

tecan was combined with valproic acid,29 and with St. John’s

wort.30 Higher levels of SN-38 were seen in combination with

lopinavir/ritonavir and the combined CYP3A and UGT1A
thout (–) and with (+) concomitant use of omeprazole.

Omeprazole (+) Ratiob P

3,472 (16,195–30,748) 0.97 (0.92–1.02) 0.24
585 (2814–4355) 0.97 (0.90–1.04) 0.34

53 (354–551) 1.05 (0.92–1.19) 0.63
3.0 (31.7–54.3) 1.09 (0.87–1.31) 0.81

167 (1963–4371) 1.08 (0.96–1.19) 0.15
28 (165–291) 1.09 (1.00–1.19) 0.07

438 (5016–7859) 0.94 (0.80–1.07) 0.15
76 (378–575) 0.90 (0.77–1.04) 0.07

54 (119–189) 0.92 (0.75–1.09) 0.25
5.0 (12.5–17.5) 0.89 (0.72–1.05) 0.13

no]-carbonyloxycamptothecin, inactive metabolite of irinotecan;

h; Cmax, maximum concentration; NPC, 7-ethyl-10-[4-(1-piperidino)-

-38, 7-ethyl-10-hydroxycampothecin, active metabolite of irinotecan;

hout omeprazole [ratio = with omeprazole/without omeprazole].
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Fig. 3 – (A–J) Pharmacokinetics of irinotecan with and without concomitant omeprazole. (A–E) Mean (±95% confidence

interval) time versus plasma-concentration curves of irinotecan (A), SN-38 (B), SN-38G (C), APC (D) and NPC (E) in 14 cancer

patients after intravenous infusion of 600 mg irinotecan, with (closed circles) and without (open circles) concomitant use of

omeprazole 40 mg once daily. (F–J) Intra-individual (open circles) and mean (closed circle) area under the curve (AUC) of

irinotecan (F), SN-38 (G), SN-38G (H), APC (I, N = 13) and NPC (J) of 14 cancer patients treated with irinotecan 600 mg

intravenously with and without concomitant use of omeprazole 40 mg once daily. Abbreviations: APC, 7-ethyl-10-[4-N-(5-

aminopentanoic acid)-1-piperidino]-carbonyloxycamptothecin, inactive metabolite of irinotecan; NPC, 7-ethyl-10-[4-(1-

piperidino)-1-amino]-carbonyloxycamptothecin, inactive metabolite of irinotecan; SN-38, 7-ethyl-10-hydroxycampothecin,

active metabolite of irinotecan; SN-38G, SN-38-glucuronide, inactive metabolite of SN-38.
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Table 3 – Toxicities of irinotecan without (–) and with (+) concommitant use of omeprazole of patients who received two full-
dose treatments (N = 12)a.

Parameter Omeprazole (–) Omeprazole (+) P

Leucocytes
Nadir (·109) 2.79 (2.00–3.59) 3.01 (2.07–3.95) 0.46
Decrease (%)b 46.8 (31.3–62.4) 40.3 (17.6–63.0) 0.34
Severe leucopenia (grade 3–4)c 5 (42%) 4 (33%) 1.00d

Neutrophils
Nadir (·109) 1.47 (0.86–2.08) 1.43 (0.88–1.98) 0.87
Decrease (%)b 57.4 (41.8–73.1) 49.6 (25.3–74.0) 0.35
Severe neutropenia (grade 3–4)c 4 (33%) 5 (42%) 1.00d

a Two patients were excluded from this analysis because of dose reduction during the second cycle due to severe toxicities during the first cycle.
b Percentage decrease compared with baseline, [baseline value – nadir value]/baseline value · 100%.
c Number of patients with percentage in parentheses.
d Mc Nemar test.
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inhibitor ketoconazole,17,31,32 and when irinotecan was com-

bined with tacrolimus.33 However, no effect was seen when

irinotecan was combined with medicinal cannabis.34

We detected a modest two-fold increase in UGT1A1 mRNA

levels when colorectal carcinoma cell lines were cultured with

omeprazole for 24 h. Similarly Donato et al. reported a six-

fold induction of UGT1A1 activity in HepG2 cells when they

were cultured in the presence of 50 lM omeprazole for

72 h.8 This can be explained by the agonistic effect of omepra-

zole on the Ah-receptor,35 which is known to be involved in

transcription of the UGT1A1 gene.36 However, in vivo omepra-

zole had no significant inducing effect on the glucuronidation

of SN-38, possibly because in vivo lower concentrations of the

drug are present.

Our results complement outcomes of other drug–drug

interaction studies with omeprazole and anti-cancer drugs.

For example, no effect of omeprazole was seen on the

pharmacokinetics of the CYP3A-substrates imatinib and

bortezomib.37,38 However, the exposure to dasatinib was

reduced in combination with omeprazole (http://www.

clinicalstudyresults.org /documents/company-study_1477_2.

pdf). The mechanism for this effect could be CYP3A4 induction

or reduced gastric acid secretion which influences the absorp-

tion of dasatinib. As irinotecan is administered intravenously,

the latter cannot play a role in a possible interaction. And, in

contrast with dasatinib, where only CYP3A4 is thought to play

an important role in its metabolism,39 irinotecan has multiple

enzymes that are involved in its disposition.

A limitation of our study might be the fixed-sequence de-

sign instead of a randomised design. We chose this design to

avoid a possible influence of the different sequences on the

pharmacokinetics of irinotecan and to avoid treatment delay

due to the 2-weeks induction-period for omeprazole.

Although the sample size was large enough to detect a possi-

ble difference in pharmacokinetics according to the power

analysis, this was a small study and the study was not pow-

ered to detect differences in toxicity outcome.

To conclude, our results indicate that omeprazole 40 mg

once daily can be safely combined with a single agent irino-

tecan schedule, administered once every 3 weeks. Since other

proton pump inhibitors have a different potential for drug–
drug interactions,40 effect of other proton pump inhibitors

on the pharmacokinetics and toxicities of irinotecan should

be further investigated, before they might be safely combined

with irinotecan.
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