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In a recent work by Charpin, Helleseth, and Zinoviev Kloosterman
sums K (a) over a finite field F2m were evaluated modulo 24 in the
case m odd, and the number of those a giving the same value for
K (a) modulo 24 was given. In this paper the same is done in the
case m even. The key techniques used in this paper are different
from those used in the aforementioned work. In particular, we
exploit recent results on the number of irreducible polynomials
with prescribed coefficients.
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1. Introduction

Let F2m denote the finite field of 2m elements, m > 2, and let a ∈ F2m , a �= 0. Kloosterman sums
K (a) over F2m are widely studied for a long time for their own sake as interesting mathematical
objects as well as for their connection to coding theory, most notably to the weight distribution of
the Melas codes (see e.g. [2,6,8] and the bibliography in them).

The value set of K (a) was obtained by Lachaud and Wolfmann [6], and moreover, they gave the
number of preimages of a specific value in terms of Kronecker class numbers. However, very little
is known of the value K (a) for a specific element a. A recent result towards to the solution of this
very difficult but important problem was obtained by Charpin, Helleseth, and Zinoviev [1] who gave
congruences modulo 24 for K (a) in the case m odd. In this paper congruences modulo 24 are derived
in the case m even. The tools used in this paper are different from those used in [1]: there K (a)

is linked to the number of words in a coset of weight 4 in BCH-code with minimum distance 8,
and cubic exponential sums evaluated by Carlitz, but in this paper K (a) is linked to the number
of irreducible cubic polynomials with prescribed norm and trace, and to the number of solutions
of x4 + x3 = a in F2m . In the calculation of the number of those elements a ∈ F

∗
q which yield the
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same value for K (a) modulo 24 explicit evaluations of certain exponential sums are also needed,
and we shall see that the value distribution of K (a) modulo 24 depends on the residue class of m
modulo 24.

The rest of the paper is organized as follows. In Section 2 notations are fixed and some previous
divisibility results needed are recalled. In Section 3 congruences modulo 3 for K (a4 +a3) are obtained
by considering a family of elliptic curves related to the number of irreducible cubic polynomials with
prescribed trace and norm. In Section 4 the number of solutions of x2k +x2k−1 = a in F2m is calculated.
In Section 5, K (a) is evaluated modulo 24 in the case m even (Theorem 11), and finally, in Section 6,
the number of non-zero elements a ∈ F2m which yield the same value for K (a) modulo 24 is given
(Theorems 15 and 18).

2. Preliminaries

In this section we fix some notations and recall some previous divisibility results of Kloosterman
sums needed in the sequel.

Let m > 2 be an integer and let s be a positive factor of m. Let q = 2m and let Fq denote the finite
field of q elements and let F

∗
q = Fq \ {0}. Let Trs denote the trace function from Fq onto F2s i.e.

Trs(x) = x + x2s + x22s + · · · + x2( m
s −1)s ∀x ∈ Fq.

Moreover, we use the notation Tr instead of Tr1.
Let a ∈ Fq and let χ be the canonical additive character of Fq i.e. χ(x) = (−1)Tr(x) for all x ∈ Fq .

We shall use frequently the following well-known result, the orthogonality of characters:

∑
x∈Fq

χ(ax) =
{

q if a = 0,

0 if a �= 0.

Let K (a) denote the Kloosterman sum defined by

K (a) =
∑
x∈F

∗
q

χ
(
x + ax−1).

We have the following result by Helleseth and Zinoviev.

Proposition 1. (See [4].) Let a ∈ F
∗
q . Then

K (a) ≡
{

3 (mod 8) if Tr(a) = 1,

−1 (mod 8) if Tr(a) = 0.

Moreover, we have the following result from [9].

Proposition 2. Let a ∈ F
∗
q . Then K (a) ≡ 0 (mod 3) if and only if one of the following condition holds

(1) m is odd and Tr( 3
√

a) = 0,
(2) m is even, a = b3 for some b ∈ Fq, and Tr2(b) �= 0.

Remark 3. In the case m odd Proposition 2 follows also from Theorem 3 in [1].



176 M. Moisio / Finite Fields and Their Applications 15 (2009) 174–184
3. Kloosterman sums and irreducible cubic polynomials

Let a,b ∈ F
∗
q , and let P3(a,b) denote the number of irreducible polynomials x3 + ax2 + dx + b ∈

Fq[x]. Let X be the projective elliptic curve over Fq defined by

X : y2 + cy + xy = x3,

where c = b/a3, and let |X (Fq)| denote the number of rational points on X .
We have the following special case of [9, Theorem 7.3]

Proposition 4.

P3(a,b) = 1

3

(∣∣X (Fq)
∣∣ − ε

)
,

where ε equals 1 or 0 depending on whether c = 1 or c �= 1.

By using Proposition 4 we are able to prove the main result of this section:

Theorem 5. Let c ∈ F
∗
q , c �= 1. Then

K (c4 + c3) ≡
⎧⎨
⎩

1 (mod 3) if m is even and Tr(c) = 0,

−1 (mod 3) if m is even and Tr(c) = 1,

0 (mod 3) if m is odd.

Proof. By Proposition 4

3P3(1, c) = ∣∣X (Fq)
∣∣

where X : y2 + cy + xy = x3. Write the equation of X in the form

y2 + (x + c)y = x3.

For a fixed x �= c substitute y �→ (x + c)y to get the equation in the form

y2 + y = x3/(x + c)2.

Hence, by the orthogonality of characters, the number of solutions (x, y) with x �= c in F
2
q of

y2 + cy + xy = x3 is equal to

N :=
∑

x∈Fq, x�=c

(
1 + χ

(
x3

(x + c)2

))

x�→x+c= q − 1 +
∑
x∈F

∗
q

χ

(
(x + c)3

x2

)

= q − 1 +
∑
x∈F

∗
q

χ
(
x + c + c2x−1 + c3x−2)

= q − 1 + χ(c)
∑
x∈F

∗
q

χ(x)χ
(
c2x−1)χ(

c3x−2).
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Since Tr(z) = Tr(z2) for all z ∈ Fq , we now get

N = q − 1 + χ(c)
∑
x∈F

∗
q

χ
(
x2 + c4x−2 + c3x−2) = q − 1 + χ(c)K

(
c4 + c3),

where the last equation follows by noting that x �→ x2 is a permutation of Fq .
Since equation y2 + cy + xy = x3 has exactly one solution with x = c, and since X has exactly one

point at infinity, we now get

3P (1, c) = ∣∣X (Fq)
∣∣ = q + 1 + χ(c)K

(
c4 + c3),

and consequently χ(c)K (c4 + c3) ≡ −q − 1 (mod 3). Since q ≡ (−1)m (mod 3), we get

χ(c)K (c4 + c3) ≡
{

1 (mod 3) if m is even,

0 (mod 3) if m is odd.

This completes the proof, since χ(c) = 1,−1 depending on whether Tr(c) = 0,1. �
Remark 6. Theorem 5 is also proved in [4] by using different methods.

Remark 7. If we can prove in the case m even that all such elements a in F
∗
q , which do not satisfy the

condition in Proposition 2, can be written in the form a = c4 + c3, then Proposition 2 and Theorem 5
give the divisibility modulo 3 of K (a) for all a ∈ F

∗
q . We shall see in the next section that this indeed

is the case.

4. The equation x2k + x2k−1 = a

In this section we shall prove the following

Theorem 8. Let k be a positive integer and let a ∈ F
∗
q . The number N(a) of solutions of

x2k + x2k−1 = a (1)

is given by

N(a) =

⎧⎪⎪⎨
⎪⎪⎩

1 if a �= b2k−1 for all b ∈ Fq,

2s if a = b2k−1 for some b ∈ Fq, and Trs(b) = 0,

0 if a = b2k−1 for some b ∈ Fq, and Trs(b) �= 0,

where s = gcd(k,m).

Proof. Substitute x �→ x−1 to (1) and then multiply both sides by x2k
to get an equivalent equation

1 + x = ax2k
.

Now, by the orthogonality of characters, we get

qN(a) =
∑
c∈Fq

∑
x∈Fq

χ
(
c
(
1 + x + ax2k )) = q +

∑
c∈F

∗
q

χ(c)
∑
x∈Fq

χ(cx)χ
(
cax2k )

.
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Since χ(z2k
) = χ(z) for all z ∈ Fq , we obtain

qN(a) = q +
∑
c∈F

∗
q

χ(c)
∑
x∈Fq

χ
((

c2k + ca
)
x2k )

.

Since x �→ x2k
is a permutation of Fq , the orthogonality of characters implies that the inner sum

∑
x∈Fq

χ
((

c2k + ca
)
x2k ) =

{
0 if c2k−1 �= a,

q if c2k−1 = a.

Hence, if c2k−1 = a is not solvable, then N(a) = 1. On the other hand, c2k−1 = a is solvable if and
only if a is in 〈γ 2s−1〉 since gcd(2k − 1,2m − 1) = 2s − 1. Moreover, if b is one solution, then all the

solutions are bα where α runs over F
∗
2s . Hence, if a = b2k−1 for some b ∈ F

∗
q , then

qN(a) = q + q
∑

α∈F
∗
2s

χ(bα) =
{

q2s if Trs(b) = 0,

0 if Trs(b) �= 0,

and therefore, in this case,

N(a) =
{

2s if Trs(b) = 0,

0 if Trs(b) �= 0,

completing the proof. �
Corollary 9. Assume gcd(k,m) = 1. Then

N(a) =
{

2 if Tr(a
1

2k−1 ) = 0,

0 otherwise.

Remark 10. In the case m odd Corollary 9 was also proved in [3] by using different methods. More-
over, Corollary 9, Theorem 5 and Proposition 2 imply that in the case m odd K (a) is divisible by 3 if
and only if a = c4 + c3 for some c ∈ F

∗
q . This is proved in [3] by using Theorem 3 in [1].

5. The evaluation of K (a) modulo 24, m even

We are now able to evaluate K (a) modulo 24:

Theorem 11. Let a ∈ F
∗
q .

(1) Assume a = b3 for some b ∈ Fq with Tr2(b) �= 0. Then, a �= c4 + c3 for all c ∈ F
∗
q , and

K (a) ≡
{

15 (mod 24) if Tr(a) = 0,

3 (mod 24) if Tr(a) = 1.

(2) Otherwise, a = c4 + c3 for some c ∈ F
∗
q , and

K (a) ≡

⎧⎪⎪⎨
⎪⎪⎩

7 (mod 24) if Tr(c) = 0 and Tr(c3) = 0,

19 (mod 24) if Tr(c) = 0 and Tr(c3) = 1,

11 (mod 24) if Tr(c) = 1 and Tr(c3) = 0,
3
23 (mod 24) if Tr(c) = 1 and Tr(c ) = 1.
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Proof. If a = b3 for some b ∈ Fq and Tr2(b) = 0 or a �= b3 for all b ∈ Fq , then a = c4 + c3 for some
c ∈ F

∗
q by Theorem 8 (k = 2). Now, by Theorem 5,

K (a) ≡
{

1 (mod 3) if Tr(c) = 0,

−1 (mod 3) if Tr(c) = 1.

These congruences and the congruences in Proposition 1 imply

K (a) ≡

⎧⎪⎪⎨
⎪⎪⎩

7 (mod 24) if Tr(a) = 0 and Tr(c) = 0,

23 (mod 24) if Tr(a) = 0 and Tr(c) = 1,

19 (mod 24) if Tr(a) = 1 and Tr(c) = 0,

11 (mod 24) if Tr(a) = 1 and Tr(c) = 1.

Since Tr(a) = Tr(c4) + Tr(c3) = Tr(c) + Tr(c3), the proof is complete in this case.
In the remaining case we have a �= c4 + c3 for all c ∈ F

∗
q , by Theorem 8, and the congruences in

Propositions 1 and 2 complete the proof. �
6. The value distribution of K (a) modulo 24, m even

Assume that m is even, and let a ∈ F
∗
q . In this section we shall give the cardinality of the preimage

of the remainder K (a) mod 24 under the map y �→ (K (y) mod 24) defined on F
∗
q . By Theorem 11

it is natural to split the consideration according to whether a can, or can not, be represented in the
form a = c4 + c3 for some c ∈ F

∗
q .

We shall need the following explicit result on exponential sums.

Lemma 12.

∑
x∈Fq

χ
(
x3) = −(−1)

m
2 2

√
q,

∑
x∈Fq

χ
(
x9) =

{
−(−1)

m
2 2

√
q if m ≡ ±1 (mod 3),

−(−1)
m
2 8

√
q if m ≡ 0 (mod 3),

∑
x∈Fq

χ
(
x3 + x

) =
⎧⎨
⎩

−2
√

q if m ≡ 0 (mod 8),

0 if m ≡ 2,6 (mod 8),

2
√

q if m ≡ 4 (mod 8),

∑
x∈Fq

χ
(
x9 + x3) =

⎧⎨
⎩

−8
√

q if m ≡ 0 (mod 8),

2
√

q if m ≡ 2,6 (mod 8),

4
√

q if m ≡ 4 (mod 8).

Proof. Let S( f ) = ∑
x∈Fq

χ( f (x)). If f (x) = x3, or f (x) = x9 and m ≡ 0 (mod 3), the result is well

known (see e.g [7,11]). If m ≡ ±1 (mod 3) then gcd(9,q − 1) = 3, and therefore S(x9) = S(x3). If
f (x) = x3 + x or f (x) = x9 + x3 we refer to [10, p. 191] and [5, Example 5.7], respectively. �
6.1. Case a = c4 + c3 for some c ∈ F

∗
q

Let γ be a primitive element of Fq . Let ε, δ ∈ F2, and let

C(ε, δ) = {
c ∈ F

∗
q \ {1} ∣∣ Tr(c) = ε, Tr

(
c3) = δ

}
.
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Consider the function f on C(ε, δ) defined by the polynomial f (x) = x4 + x3. Let N(ε, δ) denote the
number of elements c in C(ε, δ) satisfying f (c) ∈ 〈γ 3〉.

Lemma 13. The value of K ( f (c)) modulo 24 corresponding to the pair (Tr(c),Tr(c3)) = (ε, δ) in Theorem 11
is attained exactly

#C(ε, δ) − 3
4 N(ε, δ)

times as c varies over C(ε, δ). Moreover,

N(ε, δ) = #

{
i = 1, . . . ,

q − 1

3
− 1

∣∣∣ Tr
(
γ 3i) = ε, Tr

(
γ 9i) = δ

}
.

Proof. Let a be an element in the image of f . Assume a ∈ 〈γ 3〉. Now, by Theorem 8, there are exactly
four elements c ∈ F

∗
q such that f (c) = a. Each such c must belong to C(ε, δ), for otherwise Tr(c) �= ε

or Tr(c3) �= δ leading to a different value K (a) mod 24, by Theorem 11.
If a /∈ 〈γ 3〉, then by Theorem 8, a has exactly one preimage under f and therefore K (a) mod 24

is attained exactly 1
4 N(ε, δ) + N ′(ε, δ) times, where N ′(ε, δ) is the number of elements c in C(ε, δ)

satisfying f (c) /∈ 〈γ 3〉. But N ′(ε, δ) = #C(ε, δ) − N(ε, δ), which proves the first part of the lemma.
To prove the claimed expression for N(ε, δ), we note that a = c3(c + 1) ∈ 〈γ 3〉 if and only if

c + 1 ∈ 〈γ 3〉 if and only if c = γ 3i + 1 for some i = 1, . . . , (q − 1)/3 − 1. If c = γ 3i + 1, then c3 =
γ 9i + γ 6i + γ 3i + 1, and consequently

Tr(c) = Tr
(
γ 3i) + Tr(1) = Tr

(
γ 3i)

and

Tr
(
c3) = Tr

(
γ 9i) + Tr

((
γ 3i)2) + Tr

(
γ 3i) + Tr(1) = Tr

(
γ 9i).

Hence, the number N(ε, δ) of elements c in C(ε, δ) satisfying f (c) ∈ 〈γ 3〉 is given by

N(ε, δ) =
{

i = 1, . . . ,
q − 1

3
− 1

∣∣∣ Tr
(
γ 3i) = ε, Tr

(
γ 9i) = δ

}
,

which completes the proof. �
Next we shall find exponential sum expressions for the numbers N(ε, δ) and #C(ε, δ).

Lemma 14. We have

12N(ε, δ) = q + (−1)δ
∑
x∈Fq

χ
(
x9) + (−1)ε

∑
x∈Fq

χ
(
x3) + (−1)ε+δ

∑
x∈Fq

χ
(
x9 + x3) − 4h,

and

4 · #C(ε, δ) = q + (−1)δ
∑
x∈Fq

χ
(
x3) + (−1)ε+δ

∑
x∈Fq

χ
(
x3 + x

) − 2h,

where h = 4 if ε = δ = 0, and otherwise h = 0.
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Proof. Let us first calculate N(ε, δ). Let z ∈ Fq satisfying Tr(z) = 1 and let ψ be the canonical additive
character of F2. By the orthogonality of characters

4N(ε, δ) =
q−1

3 −1∑
i=1

( ∑
u∈F2

ψ
(
Tr

(
γ 3i + zε

)
u
))( ∑

v∈F2

ψ
(
Tr

(
γ 9i + zδ

)
v
))

=
q−1

3 −1∑
i=1

(
1 + (−1)εχ

(
γ 3i))(1 + (−1)δχ

(
γ 9i))

=
q−1

3 −1∑
i=1

(
1 + (−1)δχ

(
γ 9i) + (−1)εχ

(
γ 3i) + (−1)ε+δχ

(
γ 9i + γ 3i))

=
q−1

3 −1∑
i=0

(
1 + (−1)δχ

(
γ 9i) + (−1)εχ

(
γ 3i) + (−1)ε+δχ

(
γ 9i + γ 3i)) − h,

where h = 1 + (−1)δ + (−1)ε + (−1)ε+δ . Since the values of γ 3i and γ 9i depend only on the residue
class modulo (q − 1)/3 of i, we now get

4N(ε, δ) + h = 1

3

∑
x∈F

∗
q

(
1 + (−1)δχ

(
x9) + (−1)εχ

(
x3) + (−1)ε+δχ

(
x9 + x3))

= 1

3

∑
x∈Fq

(
1 + (−1)δχ

(
x9) + (−1)εχ

(
x3) + (−1)ε+δχ

(
x9 + x3)) − h

3 ,

from which the claimed formula for N(ε, δ) follows.
By the orthogonality of characters we also get

4 · #C(ε, δ) =
q−2∑
i=1

( ∑
u∈F2

ψ
(
Tr

(
γ i + zε

)
u
))( ∑

v∈F2

ψ
(
Tr

(
γ 3i + zδ

)
v
))

=
q−2∑
i=1

(
1 + (−1)δχ

(
γ 3i) + (−1)εχ

(
γ i) + (−1)ε+δχ

(
γ 3i + γ i))

=
∑
x∈Fq

(
1 + (−1)δχ

(
x3) + (−1)εχ(x) + (−1)ε+δχ

(
x3 + x

)) − 2h

= q + (−1)δ
∑
x∈Fq

χ
(
x3) + (−1)ε+δ

∑
x∈Fq

χ
(
x3 + x

) − 2h,

since
∑

x∈Fq
χ(x) = 0. The proof is now complete. �
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Theorem 15. Let k ∈ {7,19,11,23}. The number T (k) of elements a in F
∗
q for which K (a) ≡ k (mod 24) is

given by

m mod 24 T (7) − 3 · 2m−4 T (19) − 3 · 2m−4 T (11) − 3 · 2m−4 T (23) − 3 · 2m−4

0 2
m
2 −3 − 1 2

m
2 −3 −2

m
2 −3 −2

m
2 −3

±6 −2
m
2 −2 − 1 0 2

m
2 −2 0

12 3 · 2
m
2 −3 − 1 −2

m
2 −3 −3 · 2

m
2 −3 2

m
2 −3

±8 −2
m
2 −2 − 1 2

m
2 −1 −2

m
2 −1 2

m
2 −2

±2,±10 2
m
2 −3 − 1 −3 · 2

m
2 −3 5 · 2

m
2 −3 −3 · 2

m
2 −3

±4 −1 2
m
2 −2 −3 · 2

m
2 −2 2

m
2 −1

Proof. Combine Lemmas 14 and 12 to get the following tables for 3
4 N(ε, δ) and #C(ε, δ):

m mod 24 3
4 N(0,0) − 2m−4 3

4 N(0,1) − 2m−4 3
4 N(1,0) − 2m−4 3

4 N(1,1) − 2m−4

0 −9 · 2
m
2 −3 − 1 7 · 2

m
2 −3 2

m
2 −3 2

m
2 −3

±6 3 · 2
m
2 −2 − 1 −2

m
2 −1 2

m
2 −2 −2

m
2 −1

12 −3 · 2
m
2 −3 − 1 2

m
2 −3 −5 · 2

m
2 −3 7 · 2

m
2 −3

±8 −3 · 2
m
2 −2 − 1 2

m
2 −1 2

m
2 −1 −2

m
2 −2

±2,±10 3 · 2
m
2 −3 − 1 −2

m
2 −3 −2

m
2 −3 −2

m
2 −3

±4 −1 −2
m
2 −2 −2

m
2 −2 2

m
2 −1

m mod 8 #C(0,0) − 2m−2 #C(0,1) − 2m−2 #C(1,0) − 2m−2 #C(1,1) − 2m−2

0 −2
m
2 − 2 2

m
2 0 0

±2 2
m
2 −1 − 2 −2

m
2 −1 2

m
2 −1 −2

m
2 −1

4 −2 0 −2
m
2 2

m
2

The definitions of ε and δ together with Lemma 13 and Theorem 11 now completes the proof. �
Example 16. Let m = 6. By [6] we know that the value set of K (a) is S := {−13,−9,−5,−1,3,7,

11,15}. Moreover, each value t in S is attained exactly H(t2 −256) times, where H(d) is the Kronecker
class number of d. Hence, we have the following Table 1

By Theorem 15, T (7) = 3 · 26−4 − 2
6
2 −2 − 1 = 9, T (19) = 3 · 22 = 12, T (11) = 3 · 22 + 2

6
2 −2 = 14 =

6 + 8, and T (23) = T (19) = 12. This is in accordance with Table 1 above. The remaining values T (3)

and T (15) will be verified in the next subsection.

6.2. Case a �= c4 + c3 for all c ∈ F
∗
q

Assume a �= c4 + c3 for all c ∈ F
∗
q , equivalently a = b3 for some b ∈ Fq with Tr2(b) �= 0. Let ε ∈ F2,

let β be an element of F
∗
4, and let

Sβ(ε) = {
b ∈ F

∗
q

∣∣ Tr
(
b3) = ε, Tr2(b) = β

}
.

Table 1

t -13 -9 -5 -1 3 7 11 15

t mod 24 11 15 19 23 3 7 11 15

H(t2 − 256) 6 7 12 12 6 9 8 3
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Lemma 17. The value of K (b3) modulo 24 corresponding to Tr(b3) = ε in Theorem 11 is attained exactly

1

3

∑
β∈F

∗
4

#Sβ(ε)

times as b varies over
⋃

β∈F
∗
4

Sβ(ε).

Proof. Let ζ be a primitive element of F
∗
4, and let β ∈ F

∗
4. If b ∈ Sβ(ε) and i ∈ Z, then Tr((ζ ib)3) =

Tr(b3) = ε and Tr2(ζ
ib) = ζ i Tr2(b), and therefore ζ ib ∈ Sζ iβ(ε). Hence, if a = b3 for some b ∈ Sβ(ε),

then a has exactly three preimages under the map x �→ x3 defined on
⋃

β∈F
∗
4

Sβ(ε). This completes
the proof. �
Theorem 18. Let k ∈ {3,15}. The number T (k) of elements a in F

∗
q for which K (a) ≡ k (mod 24) is given by

m mod 8 T (3) T (15)

0 2m−3 2m−3

2,6 2m−3 − 2
m
2 −2 2m−3 + 2

m
2 −2

4 2m−3 + 2
m
2 −1 2m−3 − 2

m
2 −1

Proof. Let β ∈ F
∗
4, and let ψ and η be the canonical additive characters of F2 and F4. The orthogo-

nality of characters implies

8 · #Sβ(ε) =
∑
x∈F

∗
q

( ∑
u∈F2

ψ
((

Tr
(
x3) + ε

)
u
))( ∑

v∈F4

η
((

Tr2(x) + β
)

v
))

=
∑
x∈F

∗
q

(
1 + (−1)εχ

(
x3)) ∑

v∈F4

χ(xv)ψ(βv).

Now, since v3 = 1 for v ∈ F
∗
4, we get

8
∑
β∈F

∗
4

#Sβ(ε) =
∑
x∈F

∗
q

(
1 + (−1)εχ

(
x3)) ∑

v∈F4

χ(xv)
∑
β∈F

∗
4

ψ(βv)

=
∑
x∈F

∗
q

(
1 + (−1)εχ

(
x3))(3 −

∑
v∈F

∗
4

χ(vx)

)

x�→v−1x=
∑
x∈F

∗
q

(
1 + (−1)εχ

(
x3))(3 −

∑
v∈F

∗
4

χ(x)

)

= 3
∑
x∈F

∗
q

(
1 + (−1)εχ

(
x3))(1 − χ(x)

)
.

Since
∑

x∈F
∗
q
χ(x) = −1, it follows that

8
∑
β∈F

∗
#Sβ(ε) = 3

(
q + (−1)ε

∑
x∈F

∗
q

χ
(
x3) − (−1)ε

∑
x∈F

∗
q

χ
(
x3 + x

))
.

4
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Now, by Lemma 12, we get

8
∑
β∈F

∗
4

#Sβ(ε) = 3

⎧⎨
⎩

q if m ≡ 0 (mod 8),

q + (−1)ε2
√

q if m ≡ 2,6 (mod 8),

q − (−1)ε4
√

q if m ≡ 4 (mod 8).

Lemma 17 now completes the proof. �
Example 19. Let m = 6. By Theorem 18, T (3) = 26−3 −2

6
2 −2 = 6 and T (15) = 26−3 +2

6
2 −2 = 10 = 7+3.

This is in accordance with the table in Example 16.
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