
Hypothesis

A mechano-chemical model for energy transduction in cytochrome c
oxidase: the work of a Maxwell’s god

Anto¤nio V. Xavier�

Instituto de Tecnologia Qu|¤mica e Biolo¤gica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6 - Apt. 127, 2780-156 Oeiras, Portugal

Received 16 August 2002; revised 4 November 2002; accepted 6 November 2002

First published online 19 November 2002

Edited by Vladimir Skulachev

Abstract Cytochrome c3 has a central role in the energetics of
Desulfovibrio sp., where it performs an electroprotonic energy
transduction step. This process uses a network of cooperativi-
ties, largely based on anti-Coulomb components, resulting from
a mechano-chemical energy coupling mechanism. This mecha-
nism provides a model coherent with the data available for the
redox chemistry of haem a of cytochrome c oxidase and its link
to the activation of protons. A crucial feature of the model is an
anti-Coulomb e¡ect that sets the stage for a molecular ratchet,
ensuring vectoriality for the redox-driven localised movement of
protons across the membrane, against an electrochemical gra-
dient.
 2002 Federation of European Biochemical Societies. Pub-
lished by Elsevier Science B.V. All rights reserved.
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1. Introduction

The molecular basis for the ¢ne regulation of several types
of cooperativity (i.e. e⁄cient coupling of energetic processes)
is well established [1^3]. In particular, the complex network of
homo- and heterotropic cooperativities present in haemoglo-
bin (i.e. cooperativities between functional centres binding
identical or di¡erent molecules/particles [4]) makes it a para-
digm for studies on cooperativity [1,5]. In haemoglobin, the
cooperative e¡ect between the a⁄nity of the di¡erent haems
for oxygen and their antagonistic dependence on the proto-
nation of acid/base centres (Bohr e¡ect) is governed by an
equilibrium between two structural states, linked by a mecha-
no-chemical coupling mechanism: the tense, T (structure of
low energy, with low a⁄nity for oxygen and high a⁄nity for
protons), and the relaxed, R (structure of high energy, with
inverse a⁄nities).
Comparatively, less is known about the structural basis for

electron/electron and electron/proton cooperativities [6^10]

and its relevance to energy transduction processes, leading
to oxidative phosphorylation. Electroprotonic energy trans-
duction mechanisms must involve a thermodynamic link (co-
operativity) [4] between redox and protolytic centres (i.e.
a⁄nity for electrons, Em, and protons, pKa, such that in mV
vEm;acid=base =vpKredox

a = pKred
a 3pKox

a g0). By analogy with
haemoglobin, this coupling between redox and protolytic
centres is called redox-Bohr e¡ect, rB [4,7,11]. Thus, in order
to understand cooperativity at molecular and structural levels,
the thermodynamic parameters for the functional centres and
their cooperativities must be assessed and related to relevant
conformation features [9,10]. This is usually di⁄cult to
achieve for transmembrane enzymes, e.g. those of oxygen res-
piratory chains. However, mechanisms established for smaller
proteins can provide models to test their relevance in explain-
ing the molecular and structural bases that control energy
transduction in more complex systems [12,13]. The character-
isation of small and soluble proteins has demonstrated that
the interactions between a redox and a protolytic centre can
generate either positive cooperativity, rBþ (i.e. vpKredox

a s 0),
when dominated by direct electrostatic interactions [7] (Fig.
1A), or negative cooperativity, rB3 (i.e. vpKredox

a 6 0 [12]),
when dominated by mechano-chemical components [8] that
oppose the electrostatic contribution. This negative rB can
be described adapting the haemoglobin structural switch mod-
el [1] (Fig. 1B).
The detailed structural and thermodynamic characterisation

of the redox and protolytic centres of tetrahaem cytochrome
c3 from Desulfovibrio sp., Cytc3, including their pairwise co-
operative e¡ects, show how the interactions between charged
residues control its functional mechanism [6^10]. The molec-
ular basis for this control is a redox-linked conformational
change [9,10], resulting in cooperativity e¡ects with marked
deviations from Coulomb’s law [8]. In particular, this mecha-
no-chemical coupling controls an anti-Coulomb positive co-
operativity between two haems that leads to a concerted two-
electron step [7,14], but can also reinforce the electrostatic
e¡ect of some positive rBs [8]. These e¡ects govern the re-
dox-linked activation of protons performed by Cytc3, which
is coupled to (and stimulates) hydrogenase activity [7]. Anoth-
er example of an antielectrostatic e¡ect is that controlled by
the haem reduction-linked structural change in Metylophilus
methylotrophus cytochrome cQ, which results in acidi¢cation of
a haem propionic substituent [15].
These anti-Coulomb e¡ects are examples of how misleading

it may be to consider that functional mechanistic models for
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proteins must involve only direct electrostatic e¡ects [12]. In-
deed, conformational changes can induce redistribution of
charges within the protein [5] and elicit e¡ects that oppose
direct electrostatic interactions [12,13].

2. Cytochrome c oxidase (COX)

COX is a terminal oxidase of oxygen respiration (O2+

4e3+4Hþ
C2H2O). It contains four redox centres: CuA,

haem a (Fea), and the active site, a binuclear centre with
haem a3 (Fea3) and CuB [16^18]. Electrons supplied to CuA
by reduced cytochrome c are sequentially transferred through
Fea to the active site.
Wikstro«m’s work showing that, coupled to the reductase

activity, COX translocates protons across a membrane against
a protonic electrochemical potential to activate ATP synthase
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Fig. 1. Mechanisms for rBs: A: Positive (vpKredox
a s 0). The energy transducting cycle starts with protein, P, in the oxidised and unprotonated

state bound to the donor, Pox
D . It can receive a low redox potential electron (high reducing energy, since the Em;base is low). Once reduced, the

pKa of the coupled protolytic centre increases and it can recruit a proton to form the common intermediate H-Pred, which then binds to the ac-
ceptor (H-Pred

A ). Reoxidation by the acceptor (with a high Em;acid) results in the acidi¢cation (energisation, i.e. low pKox
a ) of the protolytic group

(HVPox
A ), which can then give its proton to the acceptor. This electroprotonic energy transduction mechanism can be achieved by direct elec-

trostatic interactions and depends only on the stepwise speci¢c recognition (i.e. binding) of the oxidised and deprotonated (reduced and proton-
ated) state of the transduction protein to the relevant state of the donor (acceptor), as in the proton activation mechanism performed by Cytc3
[7]. B: Negative (rB3, vpKredox

a 6 0). The rB3 e¡ect involves a redox-linked conformation switch between the structures of low and high energy
(TCR, i.e. a T-state with high a⁄nity for protons, high pKox

a , and low a⁄nity for electrons, low Em;acid, and an R-state, with inverse a⁄nities).
Starting in the T-state with the protein in the oxidised, but already protonated state (H-Tox), recruitment of an energised electron (low Em) trig-
gers the structural modi¢cation, acidifying the acid (HVPred

R , where the tilde represents the acidi¢cation of the common intermediate of this
mechanism), which becomes primed to eject the proton. Concomitantly, the redox potential is lowered by the direct electrostatic e¡ect operative
within the R-states (output face of the cube), and the electron can be transferred to the next redox centre. State-dependent protein recognition
(A) and unfavourable overall thermodynamics (B) select out the steps represented by thin grey lines, which would short-circuit the energy trans-
duction mechanism. Grey arrows represent the coupled redox/conformation change steps, also shown as the combined step represented by blue/
red shading arrows. Blue (deenergised) and red (energised) are used for comparative purposes. Subscripts T and R indicate the conformational
states of the protein. N and P subscripts (B) represent protons recruited (ejected) from (towards) the negatively (positively) charged side of the
membrane (see text and Section 2.1).
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[19], and his proposal for a ‘redox-linked proton pump’ mech-
anism ([16] and references therein) generated an enormous
amount of work to seek the primary mechanism for this im-
portant function. A further boost to this e¡ort came from the
availability of the ¢rst X-ray crystal structures [20,21]. Never-
theless, this objective has not yet been accomplished [18] and
the explanation for several experimental observations remains
debatable [12,13,17,18,22].
One of the aspects that has remained problematic for lon-

gest is the redox chemistry of the low-spin haem a : Having
the highest redox potential (cf. legend of [23]), this centre is
reduced at the very beginning of enzyme reduction, but its
redox potential has a deceptively small pH dependence, as
reported for the unliganded and the CN- and CO-liganded
enzyme [24^27]. In this context, the recent awareness that,
in contrast to general expectation [18], proton(s) may be
translocated during the reductive phase of the catalytic cycle
[28,29] and the controversy generated thereafter [22,30] sup-
port the need to invoke an unorthodox mechanism. Collec-
tively, these observations suggest the involvement of a rB3

[12,13], in contradiction with the current models used to ex-
plain the proton activation mechanism of COX [31], which
include only direct electrostatic e¡ects, even though this gen-
eralisation has been disputed [32].
It is in this scenario that a new mechanism is discussed

[12,13]. It takes into consideration cooperativity mechanisms
known to operate in small proteins and, in particular, the
veri¢cation that they can use a redox-linked conformational
modi¢cation to control, and even override direct electrostatic

interactions [8]. The experimental data cited above for Fea are
fully compatible with a mechanism that includes a rB3 as the
basis to elicit anticooperativity between an incoming electron
and a previously protonated group. Indeed, as shown in Fig.
1B, inclusion of a redox-linked conformational change ex-
plains how reduction of Fea can energise an acid group (i.e.
pKred

a 6 pKox
a ) to eject its proton. Furthermore, the pH depen-

dence of EFea
m , much smaller than the 60 mV/pH unit expected

from one direct rBþ group, is easily explained by including a
protolytic centre with a rB3 [12] : As shown in Fig. 2, reliable
experimental data obtained for CN-COX [26] can easily be
simulated with the simultaneous implication of rB e¡ects of
opposite sign, considering the interaction with two protolytic
centres (1 and 2), such that pKox

a1 6 pKred
a2 6 pKox

a2 6 pKred
a1 [13].

Furthermore, the inversion of the midpoint reduction poten-
tials of haems Fea and Fea3, between the ¢rst electron input to
Fea (from CuA) and its output (to Fea3) [23], is consistent with
the inclusion of the above combination of rBs for Fea (Fig. 2),
linked to the well-established rBþ a¡ecting Fea3 [23,25,31^36].
In fact, as previously shown for the unliganded enzyme [23] in
blue upon electron transfer from Fea to Fea3, the Em of Fea
decreases from 390 to 220 mV, and that of Fea3 increases
from 200 to 390 mV. The drop of 170 mV for the EFea

m is
su⁄cient to accommodate the redox interaction e¡ect due to
the reduction of Fea3 (335 mV [25]), leaving 135 mV for the
vEFea

m caused by its rBs. Indeed, both protonation of the rBþ
Fea

and deprotonation of the rB3
Fea groups contribute to the ob-

served decrease of EFea
m (cf. Fig. 1). On the contrary, due to

the mandatory reciprocity of cooperativities [14], if this drop
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Fig. 2. Simulation of the pH dependence of the Fea Em in CN-liganded COX. The blue curve was calculated for the rB of two protolytic
centres, adapting equation 4 of [27] to use the following microscopic pKas: pKox

a1 = 6.5 and pKred
a1 = 9.0, rBþ

1 , and pKox
a2 = 8.5 and pKred

a2 = 7.0,
rB3

2 . Even without trying to optimise the pKas, an excellent simulation of previously published experimental points (dots taken from [26]) is ob-
tained, particularly when compared with a linear slope (cf. ¢gure 3 of [26] and the data points obtained for the enzyme in other conditions
[24,25,27]). It should be noted that upon reduction at intermediate pH values, centre 2 ejects a proton and group 1 recruits another proton.
Also, that although compatible with the values used, this solution is not unique. In particular, similar simulations can be obtained including
more protolytic groups, each one accounting for part of the total e¡ect. In fact, the global rBþ

1 can result from two complementary £anking
groups (1A and 1B, see text). Indeed, the same curve is obtained with: (i) pKox

a1A =pKox
a1 ; (ii) pK

red
a1 = pKred

a1B ; (iii) pK
red
a1A = pKox

a1B ; and (iv) main-
taining the pKas for the rB3

2 . Colour code, subscripts, and superscripts used are the same as those of Fig. 1.
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was due to the Fea/Fea3 redox interaction [23], the reciprocal
redox e¡ect due to the reoxidation of Fea would contribute
with 170 mV (not 35 mV) to the 190 mV increase of EFea3

m .
This would leave only 20 mV for rBþ

Fea3 (vpKredox
a = 0.34 pH

units, instead of the previously obtained 1.5 [25]), which is
obviously too small a value for a rBþ

Fea3 to be functional.
The conformational change governing the rB3 is also co-

herent with the low electron transfer rate observed for this
output step [37].

2.1. A minimal model
The anti-Coulomb contribution used to explain these widely

accepted data involves an antagonist e¡ect between the reduc-
tion of Fea and the protonation of a coupled protolytic centre
(cf. Fig. 1B). Also, this mechanistic feature can be used as the
core of a minimal model coherent with the proton activation
mechanism of COX, which prompts ATP synthase [12]. Fig. 3
illustrates how such a model can link the rB3 of Fea to the
functional activation of protons previously recruited from the
N-side (negatively charged side) of the membrane. Mechano-
chemical energy coupling governs the rB3 of a speci¢c proto-
lytic group, which underlies a molecular ratchet mechanism
that sets the stage to ensure vectoriality for the redox-linked

movement of protons (see Fig. 1B, where the cubane para-
digm for energy transduction is used (cf. [16] and references
therein), but changing the generally accepted order of steps to
the thermodynamic requirements of the rB3). When Feoxa is
reduced by CuredA , the rB3 group (high pKox

a , thus previously
protonated by recruiting a proton from the N-side) is acidi¢ed
(low pKred

a ) by the redox-linked structural energisation. The
resulting acidi¢ed state, HVPred

R (Figs. 1B and 3), functions
as the common intermediate state, mandatory for biological
energy coupling processes. In this energised state, the proton
is ready to be ejected towards the P-side (positively charged
side of the membrane) and assist ATP synthesis. When Fea is
reoxidised, the enzyme returns to the T-state and the proto-
lytic group can be reloaded. The electron follows to the binu-
clear centre, where the highly exergonic reduction of oxygen
ensures the turnover of the proton activation cycle.
It is noteworthy that the mandatory redox-linked confor-

mation switch of the negative rB can enforce directionality by
alternating the link/break communication between the entry
and the exit sides of the proton channel, a mechanism whose
importance has often been stressed [38,39]. Also, although for
the sake of clarity only the rB3 (rB3

2 of Fig. 2) e¡ect in Fea is
included in the above description of the minimal model (Fig.
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Fig. 3. Minimal model for proton activation by COX: A molecular ratchet mechanism using the rB3 protolytic group as a pawl. The function-
ality of the cycle implies that the starting state is protonated (H-Pox

T ), which prevalence depends on the (exogenous) initial experimental condi-
tions that control its stability (cf. [29]). Thus, proton activation can obviously be restricted by experimental conditions. The T to R redox-
linked conformational change of the protolytic group is represented by the blue and red squares, respectively. The crucial functional states of
Fig. 1B are shown in parentheses; the colour code, subscripts, and superscripts used in the previous ¢gures is maintained; Hþ

N and Hþ
P repre-

sent protons recruited from the N-side and ejected towards the P-side of the membrane, respectively. Again, it should be stressed that, although
making the schematic description of the model more complex, inclusion of the £anking protolytic centres with positive rBs with Fea (rBþ

1A and
rBþ

1B, see text) will contribute to reinforce the directional aspects of the model. The black arrows with crosses represent ine⁄cient movement of
protons due to the relevant pKas of the £anking protolytic groups (valves) at the entry (rBþ

1B) and exit (rBþ
1A) channels (see text and legend of

Fig. 2), which were not included in the ¢gure for the sake of clarity. Colour code, subscripts, and superscripts used are the same as those of
Fig. 1.
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3), the rBþ e¡ect required to explain the redox chemistry of
Fea (Fig. 2) can contribute to the vectoriality of the proton
movement. To explain this point it is necessary to further
analyse the ¢t of Fig. 2 (see legend): The pKas of the rBþ

1
can result from the combined e¡ects of two microscopic rBþ

1 s,
one with more acidic pKas, rBþ

1A, and another with more basic
pKas, rBþ

1B, with the value of pKred
a1AWpKox

a1B and optimised to
work at the relevant ‘local pHs’ [44]. In this situation,
pKox

a1B 6 pKox
a2 and pKred

a1A s pKred
a2 will contribute to block the

movement of protons back to the N-side (see black arrows
with crosses in Fig. 3).
The molecular ratchet mechanism that confers vectoriality

to the redox-linked movement of protons can be seen as a
paradoxical e¡ect, in the sense that a positively charged par-
ticle (bound to the rB3

2 group, the ratchet pawl) is ejected
upon binding of a negatively charged one. This type of e¡ects
is often observed in life chemistry processes, where they are
commonly described as the work of a Maxwell’s demon [40].
The common characteristic of the processes generally consid-
ered as one of the many reincarnations of Maxwell’s demon is
that they proceed in apparent violation of the second law of
thermodynamics. The stepwise choice of the electron transfer
pathway and the conformational change that governs the
thermodynamic link between the redox and the rB3 group
are essential components to provide the pawl of the ratchet
mechanism that warrants a productive catalytic cycle of COX.
Thus, the structure of COX evolved towards a level of orga-
nisation such that the topology [41] and molecular choreogra-
phy [3] of its functional centres can restrict alternative path-
ways, which could lead to eventually faster, but futile cycles
[16] that would uncouple the proton energisation activity of
the enzyme. Actually, since the work of this envisioned crea-
ture accomplishes essential steps for life chemistry, such as the
proton activation of COX, it would be better described as a
Maxwell’s god [12].

3. Conclusions and perspectives

In contradistinction with the use of direct electrostatics,
inclusion of an electron/proton antagonistic e¡ect adequately
describes the redox chemistry of COX Fea and its involvement
in the productive activation of protons. Interestingly, the
small conformational change required by this mechanism
might not be detectable by X-ray crystallography, as is the
case for anti-Coulomb interactions even in small proteins [10].
This deceptively simple, but counterintuitive mechanism is

coherent with the experimental data available, ful¢lling the
¢rst objective of a model. However, another objective in pro-
posing a new model is its usefulness. Clearly, this model is
amenable to further tests and improvements by supporting
and explaining either existing data, mechanisms, and hypoth-
eses, or data obtained by speci¢cally designed experiments.
One example is the observation that Fea senses the pH of
the N-side [24]. Another is the comparison of the X-ray struc-
tures of oxidised and reduced bovine heart COX, showing
that upon reduction the carboxylate group of Asp51 moves
from the interior of the protein to a solvent exposed region on
the P-side [42]. This redox-linked structural rearrangement is
fully compatible with a rB3 e¡ect. Curiously, this involves the
rearrangement of an H-bond network, reminiscent of that
used by Desulfovibrio gigas Cytc3 to promote an antielectro-
static two-electron step [10]. Furthermore, this mechanism is

phenomenologically equivalent to that used in the bacterio-
rhodopsin photocycle, where a mechano-chemical component
prompts the ejection of a proton from a group protonated
prior to photoisomerisation (see ¢gure 1 of [43]). It should
be stressed that this minimal model does not take into con-
sideration all possible interactions involving haem a with oth-
er coupled protolytic groups and redox centres [25] and sub-
sequent rereductions of Fea [44^46]. However, a complete
quantitative description of this mechanism must await further
thermodynamic, kinetic, and structural data for the unli-
ganded and liganded enzyme.
In the light of this model, the proton motive force is

achieved when activated protons reach the exit gate, primed
to assist ATP synthesis [12]. Although using a novel mecha-
nism and including a common chemical intermediate, this
model is conceptually compatible with Williams’ seminal pro-
posal, which considers that the primary step to create the
proton motive force is the energisation of protons localised
in the transducer, acquiring and storing a high electrochemical
potential that does not equilibrate with that of the P-phase
[47]. This is in contrast with Mitchell’s proposal [48] in which
delocalised protons are conducted to the P-phase through
spatially oriented proton wells, equilibrating with the electro-
chemical potential of the bulk phase (see [49] and references
therein). According to the central feature of the chemiosmosis
theory [48], the resulting electrochemical potential gradient
across the membrane (which in Williams’ proposal is a sec-
ondary result of the steady-state equilibrium [47]) is the cou-
pling intermediary for oxidative phosphorylation. The new
mechanism also brings to memory the structural [50] and
chemical [51] coupling hypotheses. Ironically, it is di⁄cult to
envisage how the energised mechano-chemical common inter-
mediate state (HVPred

R ) could be detected using the tech-
niques available at the time when, on the basis of negative
results, these mechanistic hypotheses were discarded.
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