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1. INTRODUCTION

Suppose that {X;, =0} is a standard Markov process with ¢-compact
metrizable state space S and o-fields .#, (see (2], p. 45 for the definition of
“standard Markov process”). Let 2 be the class of Borel subsets of S. Then,
for each E € Z, there is a function H, on S x 2 with the following properties:

(1) for each x € 8, Hglx, -} is a measure on %,
(i) for each 4 € X, Hy(x, A) is a X-measurable function of x,
and

(i) for any stopping time 7 and 4 £ £,
PX, e A M) == H(X | A P-ae. on {7 < o}, (1.1}

where y == 7 + 0.0, and ¢ = inf{t: X, e E}.

In (iif) 6, is a shift operator. A more intuitive characterization of y is as the
first post-r hitting time of E, that is, y = inf{r: ¢ 22 7 and X, e I}.

Suppose that {X;, t 2= 0} (with associated o-fields {.#}) does not have the
Markov property, but that (iii) still holds. We say that such a process has state-
dependent hitting probabilities.

Let {X,, t 0} and {X,, t == 0} be standard Markov processes with
the same hitting distribution. In [3] (see also [2]) Blumenthal, Getoor, and
McKean, in a significant achievement of the theory of general Markov
processes, showed that there is an additive functional for {X,, ¢ = 0} whose
inverse {r, , ¢ 2> 0} is a time change for which {X, , 7 2> 0} is a standard Markov
process equivalent to {X,,? 3= 0}. (“Equivalent” means having the same
transition probability operator.) A question which naturally arises is whether
analogous results hold for non-Markov processes. It is not true, in general, that
hitting probabilities are preserved under time changes, even if the time changes
are non-anticipating. (A time change {7,,# 2= 0} is called non-anticipating if
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2 CHACON AND JAMISON

{r, <ste.#, for each t = 0, s > 0.) They are preserved under such time
changes, however, if the process in question has state dependent hitting proba-
bilities. The conjecture suggested by the Blumenthal-Getoor-McKean theorem
is that if {X,, ¢ 2> 0} and {X,, t 2= 0} are processes with the same state~-depen-
dent hitting probabilities H; , then there 1s a non-anticipating time change {r.}
for which {X, ,¢ 2> 0} has the same finite-dimensional distributions as X,
t =2 0}. Simple examples, however, show that this conjecture is false. For
instance, il the probability space (2, &, P} on which {X,, f = 0} is defined to a
singleton £ ={w}, with P a unit mass on e, then, for any time change
{r¢, t 2> 0} defined on 2, {X_ , ¢ > 0} has only one possible sample path, so
cannot possibly have the same finite-dimensional distributions as (X, t =0
unless the latter also has only one sample path. In order to salvage the conjecture,
we allow the process {X,,7 >0} to be transferred to a probability space
(9, (7, P) with a richer structure, on which we construct a time change
{r,,1 =0}, non-anticipating relative to new o-fields {#,}, for which
{X, .1 >0t and {X,, t = 0} have the same finite dimensional distributions,
We now outline the approach we use in the proof of the conjecture. Suppose
that (S, Z) is Euclidean n-space, and that the paths of both {X,, ¢ >> 0} and
{X,, t > 0} are rectifiable curves. Suppose that {X,} and {X,} are defined on the
probability spaces (2, (7, P) and (§2, (%, P) respectively. Let {#} be an increasing
family of sub-o-fields of ¥ having the property that X, is measurable with respect
to.#, for each t 2= 0, and let {.#} be a corresponding family of sub-a-fields of 7.
For each w € 2, let {Y {w), 5§ 22 0} be the sample path {X{(w), t = 0} reparame-
trized by arc-length s. It is suggestive to think of {¥ {w)} as a geometrical object,
called a trajectory. We call { X {w)} the path corresponding to w. Different w’s in
general determine different paths, but different paths may correspond to identical
trajectories. If we regard Y (w) as the position at time ¢ of a particle on the
trajectory {¥ {w)}, we may think of particles following distinct paths with the
same trajectory as travelling along that trajectory at different rates of speed.
Now let {¥,, s 2= 0} be the trajectory process determined by {X,, ¢ > 0} If
{X,,t >0} and {X,, t =0} are processes with the same state-dependent
hitting probabilities, {¥, ¢ > 0} and {¥,, ¢ >> 0} have the same finite-dimen-
sional distributions. Suppose that the paths {X{w)} and {X (&)} correspond to
the same trajectory, in other words, that {V ()} = {¥ (@)} Fix 2. As ¢’ goes
from 0 to ¢, the successive positions X, (@) of the particle labelled by & sweep
out an initial portion of the trajectory {¥ (&)}. Let 7, be the time it takes for the
particle on the path { X,{«w)} to sweep out this portion of the trajectory {¥ ((w)} =
{7 (@) Then t— rfw) is continuous and monotone, and X, (w) = X(&).
If, for each possible trajectory, there are at least as many «'s as @’s whose paths
sweep out that trajectory, one might hope to match up the w paths to the &
paths in 2 measurable way, and for each w use the procedure just given to define
7i(ew) in terms of the w-path {X(w)} and a corresponding &-path [X{(&). The
necessity of enlarging the space (2 arises if there are trajectories with fewer



STATE~-DEPENDENT HITTING PROBABILITIES 3

w-paths than @-paths. The measurability problems involved in this approach,
however, are formidable, and the construction we actually use is more like the
following one. First, let @ =~ Q x O, and embed {X, , ¢ > 0} in £ in the obvious
way. Let (7 = (¢ x (Z. We put on (¥ not the product measure I X £, but the

measure P defined for Ae(? and Ae@ by P4 x d) = [, P(1) Pldw),
where P,(A) is the conditional probability of A given that {¥,} - [V (w)}. Let
M, = .#, x (. The time change is now defined as follows. Let (w, @) e Q.

If {¥ ()} is not equal to {¥ (@)}, 7(e, @) is undefined or set equal to oo, The
set of (w, @)’s for which this happens is P-null. If {¥ {w)}! is equal to | T (@)},
7w, &) is defined as above. Then {r,, t = 0} is a time change on £, non-anti-
cipating relative to {.#}, ha»ing the property that for P-almost all {w, &) € 2,
A wafw) — X@) for all ¢ 2 0. Thercfore {(w, w) X, ek .., ,\'",f ek, —
{(cu cu). X, (w)eL‘l ¢ (@)e £} for any 2 1, tl yeony By in [0, :o), and
E .. E, in 2. Tt follows from the definition of P and the fau: that {¥V,,s =0}
and {Yq , 5 22 0! have the same distribution that P({(w,®): Y 51(‘”) € L1 yeers
X, (w) € L ) = P({e: X, (@ekE .., X, (@) € EL). Fheref()rL B etk
and {X,, 2 0} have the same ﬁmte dimensional distributions.

Evenif the state space S 1s finite dimensional Euclidean space, the assumption
that paths of {X, , t 2= 0} be rectifiable excludes the most interesting processes,
like Brownian motton. In section 3 of this paper, we introduce what, in effect, is
our substitute for arc-length. Whereas a particle moving along a curve can keep
track of how far it has travelled only if the curve is rectifiable, we show that a
particle moving along a curve can keep track of the oscillations it has undergone
provided that the curve is everywhere right-continuous with left limits. The
oscillation record does not yield a reparametrization of the curve with parameter
set [0, o0} as does arc-length. The parameter set is instead a collection of finite
sequences of non-negative integers ordered lexicographicaily, and the collection
assoclated with a given function varies from function to function. The main
purpose of this paper is to present this method of recording oscillations, and
to develop its basic properties. We do this in section 3. Section 2 is given over to
notation and other prelimmary material. In section 4 we cnlarge the space
supportmg the {X,, t == 0} process, and show that the resulting enlargement is

“distributional™ in thL sense of [1] and [4]. In section 5, we establish our basic
conjecture in the case that the paths of both {X,, ¢ = 0} and [.X,, ¢ 2: 0} arc
right continuous with left limits, but frec of intervals of constancy, In section 6,
we give some examples,

2. NOTATION AND PRELIMINARIES
Let (S, d) be a o-compact metric space, and 2 its Borel sets. We shall denote

by D the set of all S-valued functions on {0, o) which are right continuous and
have left limits at every ¢ € [0, o0), and by & the o-field on D generated by all
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sets of the form {f: fe D, f(¢) € E}, where ¢t ranges over [0, c0) and E over X,
There is a metric on D relative to which D is a complete, separable metric space
with @ as its class of Borel sets ([8], [5]). For each i €[0, w0}, &, denotes the
o-field generated by sets of the form {f: fe D, f(s) € E} where E ranges over 2
and s ranges over [0, #], and 2,. denotes (Ve Zys -

Let D, = {f: fe D a f(t) = f(s) if ¢ = s}. Clearly D, e 2. Let x, be the map
of D into 13, which sends f = D into the function y,(f) whose value at £ is # A s.
Clearly y, is (% — %) measurable, and is onto D, .

2.1 ProrosiTioR, Let s = 0 and A e 2. Then (1), (iii) and (iii) are equivalent

(in (iii), f and g are assumed io belong to D).

iy 4=2,.

(i) Aexi(@).

(i) If je A, and if p(t) = f(2) for all t [0, 5], then g € A. Also, conditions
(iv) and (v) are equivalent:

(iv) de2,

{vy Iffed, and there is a 8 > 0 such that g{t) = f(t) for all t 0, 5 + 3],
then g € A

Proof. Let Z* be the collection of all A € @ for which (iii) holds. We establish
the equivalence of (i), (ii), and (iii) by showing 2,C2* Cx (2 C@,. It is
casy to see that Z* is a o-field, and that it contains all sets of the form {f: f(¢) € E}
for E¢ X and t < 5. Therefore D, C 2%, Suppose 4 € Z*. Let fe 4. We see
from (ii) that x.(f) € 4, so fe x(A). Conversely, if x{f) € 4, fe A by virtue
of (ii). Thus A = y;(A). Thus @*C x, HD). If A ={f: f()e E}, and { < s,
A =y7(A4) and A e Z,. That x;(2) C @, now follows from the facts that Z,
is a o-field and that ¥;'(%) is generated by the x,' images of any class of sets
generating &,

Suppose that 4 & @, , that fe 4, and that g = fon [0, s + &], where § > 0.
Pick # so that I/n < 8. Then g = fon [0, s 4 (1/n)]. Since A e Py, g4
by (i) — (iii). This shows that (iv) — (v). Let 4 € & have the property described
in (v}. Buppose f€ 4, and that g == f on [0, s + (1/n)]. Then g € A by assump-
tion. It follows from (iii) — (i} that 4 € @, . Since this holds for each
n=1,2.,4¢ Mo Zytym = Z, . This completes the proof of the propo-
sition.

We adjoin oo to the half-line [0, o0) in the usual way, obtaining the extended
real line [0, oo]. The class of Borel subsets of [0, oo is denoted by #. A function
o on D into [0, oo} is called a path-defined stopping time relative to {2} (relative
to {Z,) if, for each ¢ > 0, the set {f: fe D, o(f) < t} belongs to &, (to &,.).
It is convenient for us to assign a value to f(#) when ¢ == oc. T'o do this we adjoin
to S as an isolated point a point 4 not belonging to S. We set $* = § ({4},
and Z* is the corresponding class of Borel subsets of $* We shall at times be
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careless about the distinction between (S*, 2*) and (.S, Z'). The map f — f(a(f))
of I into S* is 2 — Z* measurable. T'o sce this, let o, be equal to & + 1/2% on
(B2 <lo < k4 1/27), k=0, 1,..., and equal to o0 on [¢ == o0]. Tt is easy to
sec that f— f{e,{f)) is @ — Z*-measurable. (As a matter of fact, [a, < 5]
belongs to Z, (to Z,.) if o is a stopping time relative to {Z,} (to {Z,.}).) Because
of the right continuity of £, f{a,(/)) — f(c(f}) as # — co. We shall often use f()
as an abbreviation for f{o(f)). If o is a stopping time relative to {%,} (to {Z,.)),
&, denotes the class of all subsets A of & for which 4 [ {o <{ s} belongs to
P, {(to @) for each s == 0.

Let 7 be a stopping time relative to {@,.}, and E a subset of §, The functions ¢
and o' are defined from D into [0, wo] by

o(f) = inf{t : ¢ = =(f), f(t) € B}

) 2.1)
ot (f) = infit : 1 > ={(f), f(t) € E}.
We use here and elsewhere the convention that the infimum over an empty sct
13 20, Both ¢ and o* will be referred to as posi-r hitting times of E.

2.2 ProrosITION. If F is open, both o and o are stopping times relative to
D1}

Proof. Assume that I is open. For each n, let o,(f) be equal to
nf{t:t =k ln f(YeE) on {kfn <1(f) <k -1/mu}, E-=0,1,.., and to
@ on [r(f) == o0]. Because of the right continuity of f and the assumption that
L is open, {x, < s} is the union of the sets {f(r) € E, kin << +(f) < k-1 1/u} as
¥ ranges over the rational members of [k + 1/n, s) and % over those non-negative
integers for which &--1/n <s. Thus {g, <s}c%,.. Since {o, <<s}==
i [0 < s + (1/m)] it follows that {o, < s}e @, . Thus ¢, is a stopping time
relative to {&,.}. Tt is clear that o, == o+ for each #, and that o, \., Let o, =
lim,, o, . Clearly o, 2= o, Suppose that ¢ *(f} < o0, and that #, > o*+(f). Then
there is a 2 & [oF(f), £,} with ¢ = 7(f) and f(t) € E. Let &, be such that k,/n <
(f) < (kn + 1}/n. Then t > (k, + 1)/n for all sufficiently large n. Since f{2) € E,
¢tz oy(f) for these n. It follows that #, > t == ¢ (f), so if #, > o*(f), then
ty > w.(f). Therefore ¢+ =0, , s0 ot ==, . The non-decteasing limit of
stopping times is a stopping time {[2], page 33), so o~ is a stopping time relative
to {%,1}. We can express ¢ in terms of ot as follows: ¢ = r on {f(+) € E}, and
o -= ot on {f(r) & E}. However, {f()e EYe 2 ([2], page 34), so {f(r)c E} )
it Sted,. Sincer Lot D, CH,. ([2], page ), so{f(r}c E} N {ot «s}e
.. 'This show that o is also a stopping time relative to {Z,,}, which completes
the proof of the proposition.

2.3 ProposITION. Let (2, (7, P) be a probability space and (D, D) a measurable
space. Let € be a sub-o-field of (¥, Let X be a (¥ — Z) measurable map of 2 into D
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and F a D-measurable map of D into [0, ). Let m = P o X7 (that is: n(A) =
PXA), Ae D). Then

E Fo X | XY®) = E(F | )0 X 2.2)

Proof. By E, and E, we mean the expectation operators on (2, &Z, P) and
(D, @, m) respectively. For the definition and basic properties of conditional
expectation, we refer the reader to any of the standard treatises, for example, [6].
T'o prove the proposition, we must show that for any C e ¥, the integral over
X-YC) of the right hand side of (2.2) with respect to P is equal to [y 1(¢) F o XdP.
We require

FonP:J‘Fdw, Ce?. (2.3)
X0 c

To prove (2.3}, it is enough to establish that the equality holds for F =1,
Ae%. ThenFo X == 150 X = 1y 1(z , and the left hand side is P(X-YB) N
XYCY) = P(X~YB [} ). The right hand side is #(B () C) = P(X~Y(B ) C)).
This proves (2.3). Now fix C € %. Using (2.3) twice, the first time with F replaced
by E (F|¥), we obtain

J

E(F|%)o X dP =f E(F| %) dn
x4 c

:th
C

= Fo X dP.

xHen

This completes the proof of the proposition.

Suppose that & is a o-field over a set E which is countably generated, that is,
there is a countable &y C & such that & is the o-field generated by £, We may
assume without loss of generality that &, is a field. For cach x € E, let £, =
N{F:Fe&,,xeF}, Clearly E e &, and it is easy to see that either E, = E,
or E, Y E, = . Let &, be the class of all members F of & for which F =
U {E(x): e F}. Tt is clear that &4 C &, . In particular E e &), and it follows
that &, is closed under complements. It is clearly closed under unions, so it
is a o-field. Hence &, = &, so every member of & is a union of E.'s, The E,’s

are called the fibres of £.

2.4 Tueorem (Disintegration of measures). Let D be a complete separable
metric space, with B its class of Borel sets. Let = be a probability measure on 2, and
let & be a countably generated sub-o-field of @. There is a family {my} s of measures
on @ satisfving the following conditions.
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(1) for each A€ D, n(A) is an &-measurable function of x,
(ii) foreach Ac P and Ec &,

(A N E) = f o A) {dx),
E
and

(itty for m-almost all x € D, m, is a probability measure with = (E) = 1.

Proof. 'The proof of this theorem is adapted from the proof of a more general
disintegration of measures theorem presented in a measure theory course taught
by Professor M. Sion, and included in a set of course notes written up by Mr.
Faulkner, a student in the course. We take this opportunity to thank both
Professor Bion and Mr, Faulkner for making these notes available to use and for
their most helpful discussions.

Assume the hypotheses of the theorem. For each A& &, let =(x, A) be a
function of x which is an &-measurable version of the conditional probability
of 4 given &. Thus (i) and (ii) are satisfied for each A4 € @ if we substitute
w{(x, A) for m,(A). Z is countably generated ([7], page 5). Let 2, be a countable
generating sub-field of 4. 1t is a consequence of the usual properties of condi-
tional probabilities that there is a set Ny € &, with #(N}) == 0, such that, if
x ¢ Ny, then (%, -} is a finitely additive measure on 2, with #{x, 1) = 1,

For each 4 €% and € > 0 there is a compact set CC D with CC A4 and
#(AC) <2 e ([7], page 29). It easily follows that there is a countable family 4,
of compact subsets of /) such that w(4) == sup{#(C): Ce%,, C T 4} for each
Aedy,. Foreachxe Dand 42, let

T A} ~= sup{m(x, C): Ce%,, CC A4}

Since %, is countable, 7,{4) is an €-measurable function of x. Given any £ and F
in &, with E CF, w (E) < m{F) for m-almost all x. Therefore there is a N, e &,
with #{N,) = 0 and for which =(x, C) =X #(x, 4) provided x¢ N, Ce%,,
and AeZjand CCA. If x¢ N,, then 7,{4) < =(x, A) for each A2, . Let
Ae 2, . Suppose € > 0. There is a Ce ¥, with CC A4 and #(A) < o(C) + «.
Then, by property (ii),

() — e < 7{C) = ( (x, €) w(dx) < f #o(A) n(dx).

Since € => 0 is arbitrary, #(4) < [ 7 (A) 7(dx). But 7(A) = [ 7(x, A) 7(dx) by
virture of (ii). Since 7,(A4) < #(x, A) m-almost everywhere, this is possible only
if 7(A) = m{x, A) for m-almost all x. Therefore there is an N, P having
mw-measure zero with m (A} — #(x, A) for all 4 € @, and x ¢ N;. It follows that,
ifxé N == N, UN,, then =(x, ) is 2 finitely additive measure on &, for which

w(x, A) = sup{m(x, C): Ce¥,, CC 4}, Aeced,.
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We claim that ={x, -} is countably additive on 2, if x ¢ N. Suppose = ¢ N.
Denote n(x, -) by A. To show that A is countably additive, it suffices to show
that if if {4,} is a descending sequence in @, with lim,, A(4,,) > 0, then ), 4, #
@. So assume {A,} is such a sequence, and that A(4,) = & > 0 for all #. Let
e >0, n-=1,2,..,%, ¢ <8 For each n there is a C, € €, with C, C 4,
and MA,\C,) <e,. Note that (V;_, C,C A4, , and that 4,\C,C4,\C,,
k=1,.., n We have

Qe = -2 (a/f) )
= N4, — A ( p: (An\ck))

= MAn) — 2, MACy)

k=1

3

23—2€n>0.

k=1

Therefore (\;_; C;, @ . Since this is true for each », and each C, is compact,
o1 Cn # . Thus (Vo4 A, + @, as was to be shown, so A = «(x, ) is
countably additive on Z,, .

For each ¢ N, =(x, -) extends to a countably additive measure =, on 2.
Define m(4) = 0 for all 4 €2, x € N. The family {m,},.p of measures satisfies
(i) and (ii). Let &, be a countable subclass of & which generates & If E€ &,
then

f 7o E) n(dx) = (E N E¢) = 0

Fod

by (iii). Since (D) = 1 for w-almost all x, this implies that w(Dg) = 1, where
Dg = {x: m(E) = 1e(x)}. Let Dy = (\pes, D - Then =(Dy) =1. If xe Dy,
then m(E) = 1 for all E e &, with xE, so w(E,) = 1. The family {m}.p there-
fore also satisfies (iii). This completes the proof of the theorem.

Suppose (£, (%, P} is a probability space, that {#},,, is a nondecreasing
family of sub-o-fields of ¢%, and that, for each ¢ 2= 0, X, is a (.#, — 2') measurable
map of 2 into 8. Then X = (2, O, A, , X, , P} is called a stechastic process. We
shall assume that (2, 7, P) is a complete measure space, and that {.#,} is right
continuous, that is, A, = ¥, , where s = (Nsor # . We shall also assume
that the sample paths of X, are right-continuous and have left limits: in other
words, for each w & £, the map ¢ —> X,(w) of [0, <o) into S belongs to D. It will
cause no confusion if we use the letter “X” to denote not only the stochastic
process but the associated map of £ into D. Thus, X is defined to be the function
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on £ whose value X{w) is that member of 1) whose value at ¢ is given by X (w).
It is clear that X is ((7 — &) measurable. We will use 7 ta denote the image of P
under the map X, that is, # = P o X~ In terms of finite dimensional cylinder
sets, w({f: fe D, f(t)) € E| ..., f(t,) € £y} = P(X; e By, Xy € E.). A func-
tion r on £2 into [0, oc] is called a stopping time for the process X -= (2, (2, 4, ,
Xy, PYyif {z =5t} e &, for each 1 £[0, c0). We use the symbol ., to denote the
sub-o-field of (7 consisting of all subsets A of £2 for which A N {r <{ e . #, for
each # ;> 0. Then X is .#-measurable (see [2], theorem 6.11 and the remark
preceding it). It is clear that if ¢ is a path-defined stopping time on D relative to
{%,}, then the function r == o 5 X is a stopping time for the process (@, (¥, .77,
Ay, P). and that X-Y(2 ) C.4, . Because of the right continuity of {.#,}, the
same is true if o is a stopping time relative to {&,,}. If 7 is a stopping time for the
process X and I a subsct of 5, the post-r hutting time of I is defined in the same
way it was for 7 a stopping time defined on 1), and is a stopping time for the
process X,

2.5 DeFivitioN. Let X = (Q, 67, .4, X, , I} be a stochastic process. We
say that X has state-dependent hitting probabilities if the following is true. Let B
be open in S, and A € Z. Then there is a non-negative Z-measurable function g
on 5 having the property that for any stopping time r,

P(X,ed . #)=gX,) Pas, (24)

where y is the post-r hitting time of F.

We emphasize that our assumptions that {4} is right continuous and that the
sample paths of X are everywhere right continuous with left limits are implicit
in the statements of all definitions, propositions, lemmas, and theorems. If +
is a path-defined stopping time, and o the post-r hitting time of E, then (2.4)
together with propesition 2.2 imply that

w(fle)e d|Z) —-glflo)) wae. (2.5)

2.6 Derivrrion. Let X -« (2, O, .4, X,, P) and X =(Qa, A, X, P")
be stochastic processes. We say that X and X have the same state-dependent
hitting probabilities if, for any open L in S and 4 € X, there is a non-negative
Z-measurable function g for which the following is truc. For any stopping
times 7 and r relative to {4} and {.# )},

P(X,ed|.4) =g(X,) Pas.

. - o N (2.6)
P(X e d |4 =gX,) P-as.,

where ¢ and & are, respectively, the post-r and post-f hitting times of E,
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It follows from (2.6} and proposition 2.2 that if = is a path defined stopping
time on D (relative to {€,.}), and & is the post-7 hitting time of Z, then

r(fe)ed| D) = g(f(x)  mae,

2.7)
w(flo)e A1 2.) = g(f(7)) Fae..
Here and elsewhere # = o X-1,

Let X = (2, &7, .#,, X, , P) be a stochastic process. We say that {r, , ¢ = 0}
is a time change relative to {#} if, for each t [0, o0}, 7, is a stopping time
relative to {#}, and for each w € 2, 7(w) is a non-decreasing and right conti-
nuous function of £.

2.7 Tueorem. Let X = (2, %, .#,, X;, P) be a stochastic process with state
dependent hitting probabilities. Let {0, , t == O} be a time change relative to { M}
such that, for each w € 83, afw)} is a strictly increasing, continuous, finite-valued
function of t with ofw) | o0 as t — oo. Assume also that oy{ew) = 0 for all we Q.
For cach t, let Yo =X, and N, = M#, . Then ¥ =(Q, A N, Y, ,P)is a
process with the same state-dependent hitting probabilities as X.

Proof. We note that X is measurable with respect to .4, , so Y is a sto-
chastic process. Let £ be an open subset of S. Let ~ be a stopping time relative
to {47}, Let o, be defined by ¢, {w) = a,(,)(w), v € L.

{a) o, is a stopping time relative to (A ,}.

Proof of (a). Suppose = assumes only the values 1, , ¢, ,... . Then {&, <5} =
Urs {o, <s,7=1}. Bt {r=if}ed] CJ{"‘& s0 {0y, s, 7 =1} =
{r =t} " {o, <sheH,. It follows that {o, < s}e.#, for each s, s0 0, is 2
stopping time relative to {.#}. If = is a stopping time relative to {4}, let +'* =
(B -+ 1)/2" on {k/2" < v < (k -+ 1)/2"}. By virtue of the right continuity of
{a}, 0.0 N @, as #—> 0. It follows that o, is a stopping time relative to {.#,}
(121, page 32).

Let y be the post-r hitting time of E: «, is also a stopping time relative to {.#}.

(b) o, is the post-o, hitting time of E.

Proof of (b). First, we claim that for any S C [0, w], oy¢s = inf{o, : £ S}
This is an easy consequence of the continuity of 6, . By definition, y = inf{t: ¢ >
v Y,eE}=infit:t =7, X, € E}. Note that o, =inflo,:t 2+, X, e} =
inflo, 10, 2 0,, Xo € E} =inf{s: s = 0., X, c E}. (We have used the fact that
t — o, {w) is a strictly increasing one-one map of [0, o] onto itself). Thus o, is
the post o, hitting tite of E, which proves (b).

© H.C.H,,.
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Proof of (¢). Again we begin by assuming that r has only a countable number
of values, namely ¢, , t, ... . Suppose Ae A, . Then A N {o, <} =, 40
fr=t;, 0 <sp. Bt B=AN{r=t}eH; = L/,s%’ufk, sod N {r=t, 0 <s}=
Bn{o, <ste.# . 1f 7 is an arbitrary stopping time relative to { A3}, let 7%
be defined as in the proof of (a). By what we have just shown, A, C A7, C. 4,
for each n = 1,2,.... so A, C (Vo_y M, o - Since {7} is right continuous, and
since o0 % 0, it follows from (6.7) on page 33 of [2] that (Y, _; .#, o = My
This completes the proof of {c). (The reference cited alse establishes the rlght
continuity of {45} = {.#, }.)

Now suppose that A € 2. Then

P(Y,ed|N,) = P(X, e A|A")
= B(P(X, e A | AM,) | N)

= Bg(X,) | A7)
- E(g(Y-r) ‘ “/V.‘r)

= g(Y‘r):

where g is as in the statement of Definition 2.5. This completes the proof of the
theorem.

Let (X, .#,, P,) be a strong Markov process (see page 37 of [2]) (We assume
that § == 0, where £ is the killing time, and that the sample paths all belong to
D.) Let{X,, t Z 0} be the process determined by selecting a distribution for X, .
Then X = (2,0, #,,X;, P) is a stochastic process with state-dependent
hitting probabilities. The last theorem thus implies that, with some restrictions,
non-anticipating time changes of a strong Markov process yield processes with
state-dependent hitting probabilities. Since non-anticipation alone does not
guarantee that the resulting process is Markov, this shows that the class of
process with state-dependent hitting probabilities which are not Markov is quite
extensive.

3. KerrinG TracK OF OSCILLATIONS

Given an fe D, we associate with it certain finite sequences as records of
oscillations undergone by f(¢) as £ varies over [0, c0). Fix f, and consider, for
example, the sequence 4 = (2, 7, 3, 1), We associate ¢ with f if the following four
conditions are met. (1) f(#) executes at least two oscillations of size 1. (2} After
its second oscillation of size I, it executes at least seven oscillations of size 1/2
before executing a third oscillation of size 1. (It may or may not execute a third
oscillation of size 1. The association of (2, 7, 3, 1} with f does not provide that
information.) {3) After this seventh oscillation of size 1/2, and before either its
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third oscillation of size 1 or a possible eighth osillation of size 1/2 following the
seven mentioned in (2), it executes at least 3 oscillations of size 1/4. (4) After
this third oscillation of size 1/4, and before either its third oscillation of size 1,
the possible eighth oscillation of size 1/2 mentioned in (3), or a possible fourth
oscillation of size 1/4 following the three mentioned in (3), it executes at least
one oscillation of size 1/8. If (1) doesn’t hold, or (1) holds but (2) doesn’t, or (1)
and {2} hold but (3} doesn’t, or (1}, (2}, and (3) hold but (4) doesn’t, we do not
associate (2,7, 3, 1) with f. Assuming that (2, 7, 3, [) is associated with f,
p(2,7, 3, 1) is the time f undergoes that first oscillation of size 1§ figuring in
condition (4), and f(p(2, 7, 3, 1)) is denoted by x(2, 7, 3, 1). The general difini-
tions proceed by induction, as do the proofs of certain basic properties of p
and .7 (f), the set of finite sequences associated with f.

We introduce some notation, For each n = 1, 2,..., A,, is the set of all ordered
n-tuples of non-negative integers. We denote by the lexicographical ordering on
A‘n : (ll [AMAS] iﬂ) '< (jl a"':jn) if z.1 <]1 or il =j1 and i2 <j2 or - Z.l :jl LA l.n—l =
Juoy and i, <j,. Let ¥ =), 7, . We extend < to .7 by identifying
(71 y--s 1y) With the n-tuple (4 ..., 4, , 0,..., 0) when comparing (4 ,..., 7,) with
(71 5+ Ju)» M << n. The symbols >~ and < have their obvious meaning, as do
phrases like “<C-precedes”, “‘<(-next”, “<(-predecessor”, etc, The letters,
4, ..., with or without affices will designate members of 7.

We will denote the set of /.7, associated with f as indicated above by
FF). We proceed with the formal definition of F,{f) and the function p.(f, -)
defined on F,(f). It will turn out that, if m < n, then the #-tuple £ = (7, ,..., 4, ,
0,..., 0) belongs to F(f) if and only if v = (4, ,..., 4,,) € F,.(f), in which case
Pkt ) = pumlo. ). Thus F(f) and p,(f, -) are, in a natural way, extensions of
A () and p,(f, ) respectively. We drop the subscript # from p,{ f, *), denoting
it by p(f, -), and regard it as a function on 7 () = (J,,_; Fw(f). We occasionally
denote f (p(f, #)) by x( f, £). If f is fixed or specified unambiguously by the context,
we often write p(¢} and x{¢) for p(f, £) and x(f, £) respectively. We define Z(f)
and p(f, £) on Z3(f, ) as follows. First, 0 € %(f) and p(0) = 0. Suppose that
i € F1(f), that p(f,{) has been defined, and that p(f, {} € [0, o). Let

7 == inf{t: ¢ = p(7) and d(F(¥), x(1)) > 1} 3.1

Ifr < oo, theni + leF(f)andp(i + 1) = 7. If 7 = 00,7 + 1 ¢ F(F), and no
integer larger than i belongs to 7 (f). Note that, as we have defined it, Z(f)
is either the set of all non-negative integers or else is {0, 1,..., {} for some non-
negative integer ¢. That p is strictly monotone on Z;(f) is a consequence of (3.1)
and the right continuity of f.

In defining and describing 7,(f) and p on F.(f) for values of » larger than 1
we need certain basic properties.

3.1 TuroreM (Basic properties of 7 (f) and p).
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{a) Suppose j <<k Let v =(iy,., 1) Let £ =2(8,,%,0..,00eF,.
Then s € T(f) - { € Ti(f), in which case p(s) = p{{).

{(b) (strict monotonicity) Suppose s and / belong to Ui_l FAf). Thens <t —
p) < p(£).

(c) (reduction of last component). Suppose (i, ..., i;_y , 1) € Ti(f). Then, if
0 <2<, (iy oo Bt » 1) € Talf).

(d) (truncation). Supposej < k. If (1, ..., &) € T(f), then (iy ,..., ;) € T(Ff).

(e) Under the hypothesis of (d), d(f(t), x(fy ..., 1)) << /2 for all t e
(ol e 5}, Pl s )

{(£) (order) Let ¢ — (iy ,..., 1) € T {f). Suppose that ¢ is not the < -last
member of T (f). Then the < -next member of TA{f) (that is, the ~{-smallest
member of F(f) which < -follows F,(f)) isone of £; =4, + 1, &y = (f; , 1, + 1),
reey '[I: =T (il 34ty l!'-.7;—1 ¥ ifc *_ I)’ ‘LEf

7, = inf{t: ¢ == p(¢), d(f(1), *{iy ..., &) = 1/2113, (3.2)
== 1,..., k. Then £is the <(-last member of T(fYif and only if 1, =~ = 7, = o0.
Suppose vy A - AT << 00 for each [ = 1,..., k the followimg are equivalent.
(1)  the < -next member of A,(f)is ¥,
(ify 7g=my A ATy, and I=inf{m:r, =7 A - AT}
If £, is the <-next member of Fy(f), then p(£)) = 7, .

(g) (structure)., Let k > 1. Assume that s = (i) yo, iy )€ Tpy(f). If o
is not the <-last member of F,_\(f), let £ be the <-next member of T;_,(f), and
let T(s, ) be the set of members of Ti{f) which are < -between s and ¢ and which
are not of the form (f, ,...,j;, 0,..., Q) for some [ <2 k. Then either T(s, £) is empty,
or else there is an m for which

T(o, &) ={(fy yorr fpg, 1) 1 <4 < 1)
If 5 is the <C-last member of F;._((f), let T(a) be the set of members of T, (f) which
are - -greater than 5. Then either T(o) is empty, or there is an m for which

T ={(F) seees Ty, 210 1 2 <),
or else
TE) ={( o fo, )i =1,2,..0

(i) In the notation of (g)
T(o,6) = o —d(f(), 2(9)) < 1251 for all t€[p(s), p(1)), (3.3)
T(s) = o —d(f(), %(2)) < /251 for all te[p(s), ©).  (3.4)

In our inductive definitions and proofs, we will be making repeated use of
the foilowing immediate consequence of basic property (e).
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3.2 ProposiTION. Suppose (i ,...8,) € Fi{f) and that j <<k Then
inf{t: t = p(#; oy 1), A(F (), (8 ., ) = 1/251} 15 the same for each I in
U7+ 1., &L

Let P(n) be the assertion that the statements of 3.1 alt hold provided % < n.
P(1) follows from the definitions of Z1(f) and p(¢) for £ € F,(f). Assume, then,
that .Z,(f) has been defined and that p(£) has been defined for £ e Z,(f). Also
assume P(n). We now define 9, ,(f), p(¢) for £ € Z,,,.(f), and prove P(n + 1).
First, if (4 ,..., i) € T{f), then (.., 2, , 0y € T y(f) and plz) ...y 7, , 0) =
piy yoey Tn)e Fix (3,0, 8) = 0. Suppose bath that (7 ..., 4, , ) e Fpi(f) and
that p{¢ ..., 4, ,I) has been defined for / =0,...,7, and that either I == 0 or
Iy yones B O) < < pl(dy 5oy By, 7). Liet

. . .. . . 1
ty = inf {1t 2= p(dy ey 1y 1) AUF(E), %8y .00 ) > =t (3.5)

I=1.,n+ 1 (with (f ..., i) = (i, o, 0, ) il =n | 1) If £, << 2, for
each I =1,2,..,n, then (i ,..,4,,7+ 1) e Ty (f), and we set p(i,..., 4,
i+ 1) =t 44y s clearly p(éy ..., 2n, £) << p(f) yueny By, £ + 1), Otherwise (4, ,..., 7, ,
{4+ 1) ¢ T, 1(f); indeed (4 ..., 7y, f) & Tnaa(f) for all §f > i, Assume that this
procedure has been carried out for all g = (¢ ..., 3,,) € F(f), producing for
each such o either a finite sequence (4, ,..., i, , 0),..., () ,.ery 2, 7) Or the infinite
sequence {(f ,..., iy, )}y In Fuu(F), with p defined and strictly increasing
thereon. We next show that 3.1(e) holds for all 2 <C n -+ 1. Since we are assuming
P(n), this amounts to showing that it holds for £ = # - 1. Suppose j <<n + I.
We must show that if (7 ,..., £, ,7) € F5 (f), then

AW, 3Gy 8)) < (36)

for each te[pld ..., i), plfy ,eey B, £)). We do this by induction on i. First,
suppose that § <2 n, Then this holds for £ = 0 by virtue of P(x). Suppose it holds
for { = 0,..., I and that (i, ,..., 7, , I + 1) € F,4(f). Then (3.6) holds for each
t & [p(Ey youes 1)y Pliy yoves 1 5 1). If there is a £ €[plf) 1oy 25, 1), p{Ey ey B, £+ 1))
for which (3.6) does not hold, then t; ,,, << p{f ..., 1o, I + 1) by virtue of (3.5).
This contradicts the definition of p(4 ,..., %, , { + 1). This takes care of the case
j << n. Again proceed by induction on i, For ¢ = 0, what we want to prove is
vacuously true. Assume it holds for 1 =0,..., ], and that (4 ,...,4, , I+ D&
Fanal(f). Then (3.6) holds for all ¢ € [p(3y yu., fu)y p{1 yors B » £)) by hypothesis,
and the existence of a t in [p(f; ,..., iy, &), p(#y e, i o I - 1)) for which 3.6
doesn’t hold contradicts the definition of p(7; ,..., £, , I + 1). This takes care of
the case j = #, and completes the proof of 3.1(e) for &2 < n + 1.

We now complete the proof of P(rn + 1). Suppose that s = (4, ,..., £} € T (),
and that » is not the <-largest member of F,(f). By P(n), more precisely 3.1(f)
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with & = n, the <(-smallest member of F(f) strictly <(-greater than s is
{=(f ooy iy, 5, + 1) forsome ! = 1,..., n. We claim that for each /' € 7, ,(f)
for which PR /’ < £, we have p(s) <7 p(£"} < p(¢). We have already shown that
plo) << p(¢Y) for such #'. We have p(a) < p(t), for p is strictly monotone on ﬂ(f)
by P(n). Therefore p(# ,..., 'n , 0) = pley,... , 1) < p(4). Suppose Iy yeer Iy 1 1) <<
p(£), and that (7, ,....¢,,7 -+ [Ye T (f). Then p(f i, i+ 1) =12, <
t; ;. But

. . 1
tig = inf {828 = p(t) 5eeny 1,5 2), A(F(8), x(2y ..., 2)) = 5T

= inf gr 2tz pldy e 1) A(F @), %y 00 1)) > —237%

(proposition 3.2)
wam p(ll Jeeny 1.1,_1 ] il '}' 1)

Thus p(#y oy iy, & -+ 1) < p(£), establishing our claim by induction. Since
A Flp(ty s i, T+ 1)), flpEy 5o, 1, 1)) 2 1/271 by the right continuity of f,
the set {¢: /'« F, (f), » << #" < ¢} is finite by virtue of f having a left limit
everywhere. Suppose (7, ..., 7,) 1s the -< largest member of F,(f). We have
already shown that p(4, ,..., £} << p(fy ,--., 4, , 1) <C -+~ . Since the only rembers
of 7,.,(f) which are <{- larger than (zl ye-y iy) {@ssuming there are any) are of
the form (4, ,..., ¢, , 1), we have established the monotonicity property 3.1(b). We
have established the structure property 3.1(h) for 2 = 2 - 1. Property (1) of 3.1,
for A =n 4 1, is an immediate consequence of our definition. So is property
{c), and property (d) is obtaincd by iterating property {c). We now establish
the order property 3.1{f). Suppose first that (7, ,..., {;) € . 7;{f), and that 7, -~
v =1, = 0. Suppose (f,,... k)€ FLSf), and that (¢ ..., 7)< (Ji s Ji)-
It is an easy consequence of the definition of < together With the truncation and
reduction-of-last component properties that (¢ ..., 7,_; =- 1} € F.(f) for some
m == l,..., k, whence p(t; ..., 7,1, &, + 1} < co. But

1

p(ll ey 2'mw-l s im - l) = inf {t il P(I.l 3y im)a d(f(t)! x(il aney i!"m)) e T)T:l—

— inf 3z 2 pliy e B AU, Ky ) > f

the last equality being a consequence of proposition 3.2. But this last expression
is equal to 7, , which we have assumed is equal to o0. Contradiction. This shows
that if 7y = - =7, = o0, then (i, ,...,7,) is the <(-last element of F(f).
Suppose, then, that one of 7 ,..., 7, is ﬁmte Assume that 7, == 7, A -- A T and
that j < l—r; <7,. We must show that (i, ,.,7_,, 5 + 1) ef(f) that
7 == p(fy ory 41, 7, - 1), and that no member of .7;(]") is <~ between (21 veeey Tg)

6o7[32f1-2
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and (% ,..., {1, £, -+ 1). This is obvious from what we have already shown in
{ =k, so assume I << k. We have

7 = inf gt 13 Py s 32) Ay 3y oo i) 7‘;% 3.7)

by virtue of proposition 3.2. Suppose thereisaj = 1,..., I — [ with

inf {t

{2 ol e 6, AU, S 8) > ] <710
Using proposition 3.2 again, we obtain

T, = inf {¢

> Bl s ), AU, K ) > | S,

which contradiets j <C {— 7, <C 7; . Therefore (¢; ,.... iy , &4 + ) e F{S), with
7y = p(fy ooy 1y , 4, + 1) by virtue of (3.7) and the definition of p(7, ,..., %, 4,
; + 1). Suppose there is a member £ of F(f) <-between (7 ,..., %) and
(Frsees froa s B F D Thend = (8 o, £, Jiaq seenn Ji)s With Fri 22 G04q ey Ji 2 40
The inequality must be strict in at least one of these last inequalities, or
£ = (iy ..., 7). Let m be the smallest of [+ 1,..., & for which j,, > 7, . Then
(1 soves Emey » Juw) €F(f) by truncation, so (f,.,lipnq, i - 1)eZ(f) by
reduction of last component. Let

7';5 =inf {t:¢ t = (2'1: ) m)’ d(f(t) x(ll N J) > mio 23 4

j=L..,m Since (7.... zml,' ])E.ﬁ"(f), T <7y, j=1l,..,m But
proposition 3.2 implies that 7} = =;, j=1,.,/, so 7, < 7;, f = l ., . But
7, =7 A AT, and so 7, < 7, . Contradiction. No member of l%c(f) i3
between (4 ,..., i) and (7 ,..., &y, 4, + 1). This completes the proof of 3.1(f).
Thus P(n + 1) holds. This completes the proof of the induction step, and
therefore the proof of theorem 3.1.

3.3 CoroLLARY. Suppose that o € T,(f). If 4 is the <C-last member of Z,(f),
then

d(f (), f(p(a))) < 1j27 (3.8)
Jor all t = p(o). If £ is the < -next member of T, (f), then (3.8) holds for
all t € [p(a}, p{£)}-

Proof. T s is the <-last member of F.(f), then inf{t: ¢ = p(s), d(f(2),
Fle(a))) > 1271} = oo by 3.1(f) (with 2 =z and [/ =# in 3.2.) Thus (3.8)
holds for all £ = p(s). If / is the <-next member of F,(f), then p(¢) <3
infi{t: t = p(s), d(f(2), f(p(a)) = 1/271}, again by 3.1(f).
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3.4 CoroLrary. Let ¢ =={i ... 0,,)€T(f). For each j = 1,...,m, let 5; be
the closed sphere of radius 1/27-! and center x4, ..., ;). Thenx(£)e S;,j = L., m
in fact, there is a §; > 0 such that f(t) € 5, for all 1 € [x(t), x(t) + 8,).

Proef. The proof is by induction on m. Thc corollary is trivial for m -~ 1.
Suppose it holds for I,...,m — 1. Then a{e; ... 4, ) e 5,7+ ,m— 1. We
continue by induction on the valuc & of m -~ l. Since ¥(87 yoery Lot 0) is clearly
an interior point of the sphere of radius /2 7 centered at it5clf, iy ey by 1 D)E
Sy oand Xy 7,0, 0) = x4 ., 2,) €55, = 1., m -~ | by the original
induction hypothesis. Suppose (i senes z'm DET(N) and x(7) e, fnly , R ES,
for each j ey (0 e By, B D e F (), it follows from 3.1(f) that

plI) yey Ty B+ 1) 1s strictly  less thdn mi{e: £ = plfy e b, B, d(F(1),
1:{.:1 yeoy 1) = 12071} for each § = 1,...,m — |. The conc]us:on thus follows
for these values of 7, and it follows for § == m fram the right continuity of /.

3.5 CoROLLARY. Suppose 0 < 5 <1, and that [(5) 4 f(2). Then there is an
JET(f) with s < p(s) < 1.

Proof. Let 4 =d(f(s), f(1)). Assume A > 0. Choose n with /222 <7 4,
Let , € 7)) be such that p(s} =75, and p(/) = s if /€ F,{f) with / > .. Let
r = p(s). By the triangle inequality 4 < d(f(s), f(r)) -+ a’(f(t) Fir)), su cither
d(f{s), f(r)) = 17277 or d(f(t), ()} = 1)27 % I d{f(s), f(r)) 2= 1)2% %, then,
by the preceding corollary, » is not the <-last member of F,(f), and, further-
more, if / Is the <{-next member of F,(f), then p(r) = p(4). This contradicts
the definition of o, so d(f(f), f(#)) > 1/2%-1. We again invoke the preceding
corollary, this time to conclude that there is a -<-next member / in F(f) and
that r < p(#) = £, Since / > «, p(/) > 5, 50 p{/) € (s, t].

3.6 CoroLLARY. If fis discontinuous at t,t = p(.) for some € .7 (f).

Proof.  Buppose d(f(1), f(t — 0)) — & = (. Choose n s0 that § ©= 1/2%2, Let
» be the =-largest member of Z,(f) with p{u) = ¢. If p(s) = ¢, we are done.
Otherwise, either 4 is the <(-last member of 7, (/) or ¢lse the <{-next member /
of Z,(f) satisfies p(/} > #: in either case it follows from corollary 3.3 that
d(f (), f(pla))) = 1271 for se[plu), ). Thus d(f(p(s), f(2 — O)) = 17271
Therefore

PO = AL T = 0) -~ AN T — O 25— 51,

But 8 = 1/2%% so d(f(2), f(p(s))) = 12771, Contradiction: p(s) must equal £.
This finishes the proof.

3.7 Cororrary. The set {p(f, 5): 5 € F,(f)} has no finite limit points.
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Proof. We prove this by induction on n. Z(f) is either the set of all non-
negative integers, or else a set {0, 1,..., &}. It is clear from the definition of p(s)
for 4 = F4(f) that d(f(p(#)), d(f(p(k + 1)) = 1, so {p(k)} must be unbounded or
finite (since f has left limits everywhere). Suppose that the corollary is true for
F1(f). From this assumption together with 3.1(g) we see that <-between no
two successive members of 7, ;(f) is there an infinite number of members of
TF). Therefore if Z,(f) is to have a finite limit point, F,_,(f) must have a
<-last member (4 ,..., i, 4). It then follows from 3.1{g) that the members of
TAF) <-following (7, ,..., 7,,_,) consist either of the entire sequence (7 ,..., 7, 1,
1), (7 5o fn_y » 2)seo OF an initial segment of it. But if s and ¢ are consecutive
members of this sequence, d(f(p(a)), f(p(£) == 1/27 by virtue of 3.1{f) [use
(3.2) with k = I = #] and the right continuity of £, so even if (3, ,..., £, , 1} €7,(f)
for all £, the fact that f has left limits everywhere ensures that the corresponding
p-values do not converge to a finite-limit. Thus the statement of the corollary
holds for z, and the proof by induction is complete.

3.8 CoroLL ARY. Let £ =iy, ) €T (f). For each n>>m, let o, be the
n-tuple (&) yuey ty 5 0,00y 0, 1). Suppose p(£) is not the left hand endpoint of an
interval of constancy for f. Then

(a) there is a sequence m; 1 oo with 9, € T (f),
(b) if o, € TF) for me—> oo, then p(sn) —> p(t)

Proof. To prove (a), we need only establish that there is an # > m for which
the n-tuple (7, ,..., iy , 0,-.., 0, 1) € F(f), apply this result to the n-tuple (7, ,...,
i, ,0,..,0) in place of (7 ,..., i,,), and repeat this process again and again. By
virtue of corollary 3.3, there is a § > 0 such that d(f(¢), #(s; ,..., %)) < 1/2772
for all ze[p{r), p(¢)+ 8]. Let 4 = sup{d(f(t), x(£)) : t € p( 1‘) p(() + &/2]}.
Since p(¢) is not the left-hand endpoint of an interval of constancy, 4 > 0.
Suppose k satisfies 1/261 << 4 and k& > m. Then inf{t: t = p(¢), d(f(#), x()) >
1/271} = p(£) + 82,  while inf{#: ¢ = p(£), d{f(£), %(zy ..., 1)) = 1/2-"""’} =
pld) 4 8, j = 1,..., m. It follows from 3.1(f) that one of (i) ..., fn, L)yeor, (1
Zo > O,..., 0, 1) (the last one listed being an -tuple) is the <(-next member of F(f)
following the I-tuple (4 ,..., Zm , 0,..., 0). This <(-next member is the sought
after n-tuple.

To prove (b), since p(v, ) 15 non-increasing, it converges to a limit as & — oo.
"T'his limit is clearly no smaller than p{¢}. Suppose it is equal to p(¢) +- 3, where
§ = 0. We apply corollary 3.3 to obtain d(f(#), x(¢)) < 1/2™7 for each te
[o{d), pld) + (8/2)] and k =1, 2,.... This is possible only if f(r} = x{#) for
te[p(/), p(£) + 8/2], violating the assumption that p(¢) is not the left-hand
endpoint of an interval of constancy. Therefore p(s, ) — p(¢). This completes
the proof of (b).

So far, we have, for a fixed fe D, defined Z(f) and p(f, 9) for s F, in-
vestigated the structure of F(f), and listed some of the properties of p(f, s) as a
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function of 4 € 7. We cannot, however, use these notions in a theoty of stochastic
processes (with sample paths in D) without certain facts about the measurability
of p(f, ¢} as a function of f & D). We have not even established that {f: o €.77( )}
belongs to &, much less what we require, namely that {f: s e 7 (f} and p(/, o) =
she @, . To verify this fact requires some preliminary definitions, notation,
and results which we now present.

Lct & f. Suppose v = (4 ..., 7). For each j = 1,..., a, let o, be the n-tuple
(it vor 4, 0,0, 0), We call oy .., v, the natural predecessors of o, Fix f € 5(0).
Let x; = x(s;) == f(p(9;)), and Ry{o, f) = {1 d(x;, ¥) > 1/2777, j == 1., n Let
R(, 1) = 'y Ry, f). Define

o(s, f) = inf{t: 1 = p(f, ) fO € R ve T(f)
— s T(F)

Denotmg Ria, fy by R;, let Oy0, f) = Ry, and Qyfs, f) = R*y - N R}, "
R;, j=2,.,n Consider the n-tuples £, = (1, + 1,0,..,0), 4 == (4,4 + I,
0., 0, 7 = (8, Ly ey By, 1y + 1), We call £ .., /_n the natural successors
of s.

3.9 ProposiTionN.  Suppose s F,(f). Then o is the <-last member af AF)
if and only if (s, f) = wo. Suppose o(v, f) < 00. Then, for each j = 1,..., n, the
~-next member of T (f) s ¢; if and only if flo(s, £) € Q4o ).

Proof. 'The proposition is an immediate consequence of the definitions of o,
(@, and the order property 3.1(f).

For each m = 1, 2,..., there is a partition ™ = {E, . :j =1, 2.} of S into
Z-measurable sets of d1ameter no greater than 1/m. We shall assume, without
loss of generality, that £ is a refinement of £, (In what follows we shall
use n-tuples (f; ,..., f,) of positive integers as indices, with the /th component j,
referring to a partition element E,, ; . We apologize for and warn against the
possible confusion of the indices (£, ,..., /) with the fixed member 5 = (7, ,..., 7,)
of 7). For each n-tuple (1, ,...,7,) of positive integers, and each / = 1,..., »n let
Ro(jr s ) =y d(3, Ep ) > 1271, 1= 1,2, 0 and R,(j, ..., ju) =
UJ’;] R(]I ' fn s i)' Set

YO Gr s o f) = il ot 2o p(f, 3, f(Y € Ry oo )y 9T (f)
(3.9)
= o s ¢7 ()

Let Cm(jl x]n) nz -1 lf 4 Ef(f) f(P(J?)) € Em W9y } The definition of
Culf1 1-r Ju) requires the observation that if s F (f), cach of the natural
predecessors of J is also in .F(f). This follows from 3.1(a} and the truncation

property 3.1(d). Let o,(f) = ¥ {j1 .. fu , f) for f& Culfy e )

3.10 ProrosiTiON. If e T (), then 0,,(f) ™~ o(f) as m — co.
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Proof. Tix f with s € F{f). For each m = 1, 2,..., let ofm) be that {§, ,..., f..)
for which fe C(j;,..., ju), that is, for which f(p(s)) € E,,; ,1=1,.,n Let
R, (D, R, denote R, (x(m),]) and R, (a{m)) respectively. It is clear that o, (f) =
o(f). Since R, ({} 1 in m for each I = 1,..., 7, it is also clear that ¢,,(f) ~ in m.
Assume that o(f) < co. Let ¢* == lim o,,(f). Suppose t* > ¢ = o,(f). Then
there is a ¢’ € [, £*) with f(2") € R{s, f). Suppose f(t') € Rys, /). Then d(f (),
xy) = 1J20°1 + 8, where 8 > 0. Let 7, be the ith component of afm), and E =
E,; . Since p(f, o) <1 <t* < ouf), d{f(¢'), E) < 12", Suppose x¢ L.
Then d(x, x;) <. 1/m, so

d(f{t'), x) = d(f(t'), %)) — d(x,, x)
| 1
= 8=
Since this is true for all x e E, d(f(t'), E) = 1;2i71 + § — (Ijm). But 4(f(t"),
E) < 1/2'71, and 8 does not depend on m, so by choosing m > 1/8, we arrive at a
contradiction. Therefore t* = ¢,,(f}, and (b) is proved.

3.11 Lemma, For each s 5 ands =0,
(fr o T(F) and plf, ) <5} € P

Proof. =, 1T, ,and the proof is by induction on n. We consider first
the case # = 1. 7 is the sequence of non-negative integers, and our proof is by
induction. If ¢ =0, {fiae Z(f) and p(f, 4} < 5} = De P,; . The induction
step, in which we assume the validity of the statement of the lemma for o = &
and show that it is valid for # = & 4 1, is no easier for # — 1 than it 1s for
general z. Assume, then, that the statement of the lemma holds for eachse %, _, .
Suppose that ¢ = (i ,..., #,) € &, . By 3.1(a) and the induction hypothesis,
the lemma holds for (Z; ,..., 7,_, , 0). We now show that, for any value of £ =0,
1,..., it holds for (7, ,..., 7,_; , k). Then, in particular, it holds for £ The proof is
by induction on k. The value k = 0 is already taken care of, so assume that
the lemma holds for ¢ = ({4, ,..., 7, , , k). We want to show that it holds if 4 is
taken to be (i ..., 7y_y , & + 1). Extend p(-, o) to f & D for which s ¢ 7(f) by
setting p(f, 4} = oo for such f. Then {f: p(f, o) < s} ={fi s T() A p(f, 9) <
st e D, 80 p(, 9) as so extended is a stopping time refative to {2,,}. Now fix m,
and consider the partition £ of S considered earlier. Set 7, — &: we now use
notation defined earlier in terms of a fixed (7, ,...,7,} €7 . For each n-tuple
{f1 - Ju) Of positive integers, the function y"™(j ,...,7,, ") on D is the first
p(+, ¢)-hitting time of the open set R{j, ,..., j). Therefore )7 ,..,7,, ) isa
stopping time relative to {&,,} by virtue of proposition 2.2, We claim that, for
eachI= 1,0 Ay ={fiaeT(f) A flpls) € Ep,j} € Doy (here p(s) is not an
abbreviation for the number p(f, 4) but stands for the function p(, 4)). To prove
this, we argue as follows. First {f: s ()} = Ui {F: s € T(F) A plf, ) < i},
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and since the statement of the lemma holds for s, {f: 4 € 7(f}} € &. Second, for
cach! = 1,..., » — 1, the statement of the lemma holds by virtue of the induction
hypothesis and 3.1(a) if s is replaced by s,. Consequently the extension of
pl-, 9;) to all of D obtained by setting p(-, ¢,) = @0 if s, ¢ F(f) is a {&,.}-stopping
time. Therefore {f: f(pla,)) € E,, ; } € D) C . We usc the statement of the
lemma again to obtain this last for ! =z (recall o, — -;J). Since A4, = {f:a¢e
JJ—(f) NS flp(a)) € By ) it follows that 4,69, 1= 1,..., n. To show that
A, e Dy requires that we show that 4, W {f: p(f, s)} € Z,, for each 5. We
apply proposition 2.1. Suppose that fe 4, N {f:p(f, o) <5}, and let g D,
g —fon [0,s = 3] for some 8 > 0. Since {p(", v) < s} € For, plg, J) <5, so
s € F{g). Since 4, 6.7'(3) if 4 £ F(g), we have from 3.1(bY p(g, ) < p(g, ») <5,
and since {p(", o) < 5} € Zr, plg, 90) = plfy ) 50 g((ploo) — Flolf, o)) €
E, ;, - Therefore g€ A, 0 {f: p(f, 5) << s}. It follows from proposition 2.1 that
A, A {frplf,s) < s}, . Since s is arbitrary, 4,6 % ¢, . It follows that
Colfy oo Ju) = - Mi_1 A, belongs to 7,1, - Recall that &' is defined to be equal
0 Y™ (G ey Jr» ) 0N C(j, soens Jn)- 1t follows easily that { f: e'™/(f) < s} e % . for
cach s, Therefore o' is a {&,,} stopping time. This implies that ¢ is a {@,.}
stopping time. By 3.(c) {f:/eF{(f)rp(f.f)<st={fioc "_(f) ALE
T(f) nplf, £) sS st By proposxtion 3.9, this last st is equal to {f: o(f) << 5 A

n—1

(o)) € Qulos 1) = {f: o(f) < s} 0 o B{I), where B() = {f: d(f(o),
f( (a7)) = 1/2*-1}. Since both flp(-, 9p)) and f(cr) are 2, mt.asu:abln thc same

is true of B{{), hence of i B(l) But then (Y, B(l) S o(f) L ste 2. by
definition of &, . Therefore the statement of the lemma holds if o = (7, ,...,7,., ,
R} 1s replaced by (7 ,..., 4,_; , & 4 1). It follows by induction that it holds for all
J €7, . It now follows by induction that it holds for alls € 7 = U:::l ., . This
completes the proof of the lemma,

3.12 DrriniTioN. For each s €7 we denote by 2, the o-field generated by
sets of the form A ={f: Fe T(F) A p{f, /) <tAf(u A pld)ye B A f{pll)) e F}
as t and u range over [(), 20), E on F over Z, and £ over those members of 7 for
which 7 < s.

1t is clear that if / < ., then 2, C %, .

3.13 ProposiTiON. &, C 2 4,

Proof. We must show that if A %,, then An{f:p(f, ) =sleZ,. for
each s == 0, Tt is enough to show this for the class of sets A specified in the
definition of &, . Let 4 be such a sct. Then 4 € &% by virtue of 3.11 and the
general theory of stopping times, so A N {f: p(f, 2) < s} € &, To show that
this last set belongs to Z,. it suffices by virtue of proposition 2.1 to show that
if f belongs to it, and if g & I} with g —= f on [0, s - 3] for some § > 0, then g
belongs to it. But this 13 an almost immediate consequence of the monotonicity
property 3.1(b).
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The reader may be wondering why we have introduced the fields 2, when we
have available the fields @, . First, we note that it is not true that if £ < 4,
then &,¢ C 2, . Second, and more important, it is easy to see that 2, is
countably generated, so the disintegration of measures theorem applies when &,
is used as a conditioning sub-o-field of 2. We do not know whether or not
2, 1s countably generated.

3.14 DerinttioN.  Let v e 7. @, is the sub-o-field of & generated by sets of
the form {f: £ € F(f) a f{p({) € E} as £ ranges over all /€7 with £ < s, and
E over 2. 2, is the sub-o-field of & generated by sets of the same form, but
with ¢ ranging instead over all £ €9 with £ > o. € is the o-field generated by
sets of the same form, but with ¢ ranging over all members of 7 : thus & =
O, AP, .

It is clear that @, and £, , hence of course (7, are countably generated,

3.15 ‘T'uEorem. If X and X are stockastic processes with the same state-
dependent hitting probabilities, then the restrictions of m and 7 to @ are identical.

Proof. Let 0 be the collection of all sets of the form

{f: 9% e.fr(f) A P(f! ﬂi) € Er' i= Ly, in é}¢‘7-(f)!] = I’“': m}, (3“))

where m and n are arbitrary non-negative integers, ¢, ,..., 4, , 4 ,..., 4,, arbitrary
members of & and | ,..., E, arbitrary members of . &, is closed under finite
intersections. Note that {fise T (f)ap(fio)eEYf ={fis¢FT(NiN{fise
T(F) A flol) € B}, and {f: a¢ T(PY = {f: 5 T(f) A f(ple)) € S} Tt fol-
lows that the complement of a member of ¢y is a finite disjoint union of members
of ¢, and that any finite union of members of @, can be expressed as a finite
disjoint union of such members. We conclude that the class of finite disjoint
unions of members of ¢, is a field which generates ¢, Therefore to prove the
theorem it suffices to show that the restrictions of # and 7 to &, are identical.
We call a sequence C = (# ..., #,,) of members of 7, an n-chain if

ey = (0,..., 0),
20 o <<y << <Lty
3. ifveC and ¢ 5= #, , then each of the natural predecessors of » belongs
to C,
for each 7 = 1,...,m — 1, #,, is one of the natural successors of «, ,

if (i) ooy 1) € C, and 4, > 0, then () ..., insy , 1 — 1) € C.

Note that if (# ,..., #,) is an n-chain, so are wy(wy , @a)yeee, (4g yoriy #py). 1t s
clear from Theorem 3.1 that if we list, in <-order, the first m members of 7,.(f),
the result is an #-chain, An immediate consequence of this is that the members
9y yeeey 9y OF F 0f (3.10) can be embedded in at least one n-chain where we identify



STATE-DEPENDENT HITTING PROBABILITIES 23

(£ - #) With the z-tuple (4, ,..., 0z, 0,..., 0) if & <~ m and # 1s the least integer
for which each of 9, ..., 9,, 4 ,..., £, 18 a k-tuple with & <{ n). We say that an
n-chain ' = (v ..., &) 1s maximally determining for (s ,..., 9;) and (4, ,..., /},)
if (i) each of 4, ,..., s; belongs to C, (ii) none of 4, ,..., 7,, belongs to C, (iii) there
is no n-chain with «, ,..., #; as its first & elements containing any of 7, ..., 7, ,
and (iv) if § <C & then at least one of (i), (i1), and (iii) does not hold if (# ,..., a,) is
replaced by (#q ,..., #;). It is not hard to see that the set (3.10) is a countable
disjoint union of sets of the form

(Froe ALF) A Flple) €Fs i = 1, k), (3.11)

where (#, ,..., #,,) ranges over the #-chains which are max;mally determining for
Iy yeer oy and Ay ., 4, and where Fy; = 5 unless #, = u; for some j = 1,..., m,
in which case F; = E; . From this it follows that we need only prove that sets of
the form (3.11) are assigned the same measure by both 7 and #. We now pro-
ceed to do this. The proof will be by induction on the length m of the n-chain
(((] . am).

Form = 1,(3.11) reduces to { f: f(0) e F}, and w{{ f: f(0) e F}) = 7({ /: F(O) e F})
by virtue of the assumption that X, and X, have the same distribution. Assume,
then, that 7 and # assign the same measure to all sets of the form (3.11) for any
#-chain (#y ,..., #,) and any choice of F, ,..., F,, in 2, and suppose that (« ,...,
#m+1) 18 an n-chain and that F,,,, is in Z. Let s = «,, . Since {f: v e F(f) and
p(f, ) s<ste @, for eachss, p(s), extended to all of D by defining it to be -+oo on
{f: 2€7(f)}, is a stopping time relative to {&,,}. We shall use the symbolism
introduced just before the statement of lemma 3.11, using ‘2" instead of the “m”
referred to here. For each n-tuple (j; ..., f,) of positive integers, the functmn
YE(Jy seesJu» 7} on D is the post-p(s) hitting time ot the open set R(j, ..., j,)-
Also, as we showed in the proof of lemma 3.11, Cy(j; ..., jo) € Do, Letting
& = {fy yoors Ju)s it follows from definition 2.6 that for each A e X there is a
(£ — #) measurable function g, on S into R for which

W[y e d | Zow) = galf(pl)  mae

(3.12)
HE ) e 4| Do) = af(Ple)  Fae.
It follows from (3.12} that
B O (f: f () e 4)) = f galf (o) ()
(3.13)

for each Be %, . Let % be the o-ficld generated by all sets of the form
e e T(f) flplw )y e Fy i == |,.., m}, where F, ,..., F,, range over members
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of Z. Clearly ¥ C @, . Furthermore, by the induction hypothesis, =(C) = #(C)
for all C e ¥. Since the map f— g,(f(p{s))} is ¥-measurable, the integrals on
the right hand side of each equation of (3.13) are equal. Hence

MC S [y P() e 4}) = #(C{f - f(y'Ho) e 4}) (3.14)

for each A e and Ce%. Clearly, for each #-tuple o of positive integers,
Cile) € €. If we substitute C N Cy{o) for € in each side of (3.14} and sum the
result over all such o, we obtain, for each Ce® and 4 ¢ £,

2C O {f f(o®)e A)) = #HC O {f: fo™(a) € A}). (3.15)

By the usual sort of argument we go from (3.15) to

J_GeoDe®) m(df) = | (g7 )™) ), (3.16)

for each non-negative Z-measurable g on § and C e %. Take g to be continuous
with compact support on S. If we let & - o in (3.16) and apply proposition 3.10
and the continuity of g « f, we obtain

fC (g 2 f)o) ndf) = fC (goNoyldf), Ce%. (3.17)

Using the usual sort of argument, one obtains (3.17) for non-negative Z-mea-
surable g on .S. (3.17) also implies that, if Z is any non-negative ¥-measurable
function on D, then

20 oo otdf) = [ 2 (gD #df),  Cew. (318)

Let % be any non-negative function on the (# + 1}-fold product of I with itself,
measurable with respect to the corresponding product o-field 271, Since each
of the natural predecessors 4, ,..., 5, _; of s is in the #-chain «_ ,..., #,, by virute of
property (3) of n-chains, each of f(p(x)),..., f(p(4,)) 1s ¥-measurable, where
4, = o, From the fact that (3.18) holds for all Z and g as specified above we
abtain

J_ o) (plo), £(@) )
= [ WG F(ploul)s £ (o)) #dF) (3.19)

for each C € ¥. Because of property (4) of n-chains, «,,,, 15 one of the natural
SUCCESSOIS £) ..., £, Of 0. Suppose w1 = 4 . In(3.17), take C = {f: ;e T(f) A
flp(w) eF; i =1,...,m}. By proposition 3.9, /; 7(f) if and only if f(c)e
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(. , f). But the indicator of the set of fe D for which this holds can be
written as a Borel function of f{p(«)),..., f(p(4,)), and f( ), and so the same is
true of the indicator of the set {f: /; e F(f) and f(p(/;)) € F,.1}. Let the & in
(3.19) be such a Borel function. L>1nc:e 5= Wiy > (30 I7) then vields

a({f e, €T (f) flp(w)) €F; i =— Loy, m 5+ 1})
=a({frm e (f)LflpleNeF,, i = 1,...,m - |1}). (3.20)

This completes the induction step, hence the proof of the theorem.

3.16 LemmMa. Let X be a stachastic process with state-dependent hitting proba-
bilities. Let v T, and AP, . Then

WA | D) = nl(d| ). (3.21)

Proof. 1t sutfices to prove (3.21) for 4 of the form {f: £, e F(f) A flp{/ N e
E; i =1,.,m}, where /;€.7 4 == 1,..,m, and s </ < </, . It is not
hard to see that no loss of generality is involved if we assume that 4 is a natural
successor of v and that 7, is a natural successor of 4, for ¢ — 1,...,m — |. The
proof Is by induction on m. For m == 1, what we are to prove reduces to

AT () fp)eE|Z) =/ e T () fp(D) e E|C),  (322)

where # is a natural successor of 4, and E & X. The complete proof of (3.22) is not
short. The basic ideas and techniques, however, are so similar to the proof of the
preceding theorem that a great deal of repetition would be involved were we to
present the proof in detail. Therefore, we leave these details to the reader, and
proceed to the induction step. We assume that (3.21) holds for sets 4 as specified
above, and try to prove

W({i E’g—(f) Af(P(/z)) € Ei ’ l T la"'! m—+1 ‘ gu)
=l €T (YA flold ) €Ly, i = byym |- 11 E),  (3.23)

where £, e 7, i=1,...,m- |, /) < </, and F el i = ly,m+ |
Let G be the indicator of {f: /, e T(fY A flp(4 ) E; , 7 - 2,“., m - 13 Let &
be the o-field generated by {f: 4, € T(f) A f(p{/)) € £} as F ranges over all
Ee X Now (3.23) becomes
E(GH | %) — E(GII | (). (3.24)
But
EAGH | 2) = E(E(GH | 9,)| 9.)

— E(GE(H| ¢, )|.fz:;), (3.25)
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the last equality being a consequence of our induction hypothesis. Note that
GE, (H | @ﬂ) is measurable with respect to Op =0, A %. From 3.22 it follows
that

K| Z) =K |0) (3.26)

for all non-negative %-measurable functions K on D, from which in turn follows
(KL | 2,) = =KL | ) (3.27)

for ¥-measurable K and @ ,-measurable L (here we use @, C 2,). But (3.27) yields
(M| 2,)==(M|0,) (3.28)

for 0, A %-measurable M. Taking M = GE (H | ¢ ), we continue the chain of
equalities in (3.25) to obtain
E(GH|2,) = E(GE(H | 04} | C,)
= E(E,(GH | 0s,) | C)
= F(GH | ¢,). (3.29)
This establishes (3.24), hence (3.23), and completes the proof of the induction

step. The lemma Is now proved,
We refer the reader to [6] for the notion of conditional independence.

3.17 CororrLary. Let X be a stochastic process with state-dependent hitting
probabilities. Then, for each € T, O and D, are conditionally independent given
@, (relative to the measure = on F).

Proof. Suppose Ec P, , Then (3.21) holds. If O e O,, then O is also in %,
(clearly @, C 2.,), so from (3.21) follows
#(OE | @,) = ={(OF | 0,). (3.30)
The fact that (3.30) holds for each O € @, and £ € 2, implies that
o(F|2) ==(F|0) (3.31)

holds for each Fed,v #,. Bt 0, v #, =0, and 2, = €, v 2, (again because
@, C 2). Therefore

w(F|0,v D) = n(F|0) (3.32)

holds for each F e@. But this is equivalent to ¢ being independent of &, given
&, (relative to the measure = on &), which proves the corollary.

Suppose fe Z and g € 2. We write f = g(mod &) if, for ecach s € &, s e T(f)
if and only if v € F(g), and then f(p( f, 4)) = f(p(g, )). It is clear that ==(mod &)
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is an equivalence relation, and that the corresponding equivalence classes are

f = glmod &)}, then B,c € x C.

4, Tur ENLARGEMENT

Let X -=(2,00, #,,X,,P) and X = (O,d,.#,,X,, ) be stochastic
processes with the same state-dependent hitting probabilities. The o-field & is
countably generated. This permits the application of the disintegration of
measures theorem 2.4 to the measure # = P o X7 on (D, %) to obtain a family
(7))rep of non-negative measures on (D, &) satisfying the conditions of the
theorem (with  taken equal to &). Let Q=0 xDand f -~ % x % Wenow
define a probability measure P on ¢F, Suppose B = A x €, where 4 (7 and
C e &. The equation

P(B) = | #x(C) Pldw) (.0

extends first to a measure on the field consisting of finite disjoint unions of such
sets B, and then to a measure on the o-field generated by this field, namely (7, We
denote this measure on (7 by P, and note that P satisfies

P(B) = J FrwpB.) Pldw), Bcdh, 4.2)

where B, == {f: (w, f) € B}, (This last equation could also have been used ta
define P},

Let Y be the map of Qinto D x D defined by V{w, g) = (X{w), &), (w, g) € 2.
Let # = Po Y1 Then, for each C, " in &, # satisfies

A(C x C) = fc #C) n(df). (4.3)

Since 7, (D) is ¢-measurable in £, and since 7 =7 on ¢, 7{D) == 1 for
w-almost all fe D. Tt follows that 7;y(7) = | for P-almost all we Q. Let
B, ={(f.g):feD,ge D, f=g(mod ®)}. We have obscrved that By & »x Z.
For 7-almost all f, 7, assigns measure zero to the complement of {g: g =
f(mod &)}. Thus =, ((B,);) = 1 for 7-almost all /. From the fact that 7 {A) s
ti-measurable in f for all 4 € & it follows that 7{B;) is ("-measurable in f for
all Be@® x @, in particular for B = B, . It follows that #,{(B,),) = 1 for
m-almost all £, hence that #(8y) = 1.

For each 220, let XJw,f) == X(w), and A, =.#, x D = {M x D:
M e ). It is clear that X, is 4,-measurable. We regard X, as an extension of X,
to £2, and often denote it by X, . Let # == V. #,, and #F = .# x D. A non-
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decreasing family {.#,} of sub a-fields of (¥ is called an enlargement of {.#,) if
M, D A, for each t 2 0, in which case X = (Q, (F, .#,, X,, P) is a stochastic
process. An enlargement {.#,} is said to be a distributional enlargement if it is
right continuous, and if, for cach ¢ = Q,

P(B|\F)=PB|F) Bed,. (4.4)

The concept of distributional enlargement is introduced in [1]. For the rationale
behind the concept, we refer the reader to [1] and [4]. Suppose {.# ) is an
increasing family of sub o-fields of ¢ with .# % D % such that (4.3} is satisfied
for each B €47, . Thus if we set .4, — 4P, for each ¢t, {.i#,} is a distributional
enlargement of {.#}.

Let .#* be the o-field generated by all sets of the form

{{w, 1): 7w) < 8, (@) € B, p(/, 9) € C} (4.5)

with s an arbitrary member of %, and B, C arbitrary Borel subsets of [0, oo]. Let
MO =F, v HF and M, = J{A,}L . Finally we complete #, with respect to P,
still denoting it by .#, .

4.1 THEQREM. {/ff i} 15 @ distributional enlargement of {.# ).

Proof. It is clear that {#,} is an enlargement of {#,}, To prove the theorem,
it suffices to show that (4.4} holds for all B A 9. Let m and # be non-negative
integers, ¢; and /; in ¥ fori==1,...,mandj = 1,..., n, and B, , C; Borel subsets
of [0, o0) for i = 1,..., m. We assume that 5, < -+ < 4, . Let

U={{w,f):7[0) <ti=1..,m
V={(wf):re)eB;, p(fs)eC; 1t = L., mj (4.6)
W= {{w, f):7efw) = t,j = L., n}

Let 5 be the class of all sets U N V' N W which arse from any such choice of
m, n, {s;}, {£;}, {By}, and {C;}. It is clear that 2# is closed under finite inter-
sections. The complement (I F'n W) of a member of # is the disjoint
unijon of U, U N 17, and U 7y ¢, It is not hard to see that each of these
sets can in turn be expressed as a finite disjoint union of sets of the same form
Un 7 W Tt follows that the class #7 of all finite disjoint unions of members
of # is a field. It is clear that 5 contains all sets of the form (4.6), so 4" is a
field generating .#F. To show that (4.4) holds for all B ¢ .4, it suffices to show
thatit holds forall Be # Let Be #. Then B =UN VW, where U, V., W
are as in (4.6} We see that B == F x F, where

E={w: Wyt w)eB;i=1.,m, 'r_gj(w) >ti=1,.,n},

(4.7
F={f:p(fs)eC;i,i=1,.,m.
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Let
O={fip(f,o) <tplfiodeB;,i=1,,mpf, /) >6F==1,.L

Clearly & -—— X-10].
1. Let X be a bounded (% — 98 measurable function of D into R, Then

[ xhaatre - | X Eea
EXD E

Proof of 1. This is an almost immediate consequence of (4.3), the only
subtle point being that 7,(73) == | for m-almost all f as well as for #-almost all 1.
Let% =2 < D={C x«D:Ce2)}), and ¥ =& = D.

2. The function

(f o= L{f)7{F) (figeD =D
1s a version of #{0 < F|®).

Proof of 2. l.et E€%. Then
[ Tocpdi —#(0 N E) % F)
[ wAFy ()
CONE
= [ 1ol7) ) w(df ),

where the last equality results from (1) with X{f) = I,{f) #/¥).

o) o F) )

CYESD

the Jast equality following from (1) with X(f) = I, () #AF).
3. g—afF)isw-as. O, -measurable.

Proof of 3. We have shown (corollary 3.17) that, given, , @ and are
conditionally independent (relative to the measure 7). Clcarly F el Thls,
together with the fact that #,(F) is a version of the conditional #-measure of !
given ¢, implies that 7,/ F) is 77-cssentially constant on #-almost all fibres of @, .
hence w-essentially constant on w-almost all fibres of ¢, . Thus @(F) is 7-a. e,
(", -measurable in f.

4. Supposet’ = t. If L E(C'gn thenl. M Oe G, .
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Proof of 4. The class of L’s in €, for which L N O €%y is closed under
countable intersections and monotone limits. It therefore suffices to prove
L Oe 2, for asubclass of L's in 0, which generates a,, and is closed under
complements. Such a subclass consists of L’s of the form

L={fp(fion) € B At A plan)) € C},

with Be# and C 2. But then

EnO={fp(fa)eB, plf,o)eBN[0,1],{=1,..,m, plf, 4) > ¢,
§ = L m f(E A plf, ))& €Y,

which clearly belongs to 2, 1f ¢ == £,
50 Ift >t then 7(0 X F| %) =7(0 X F|9).
Proof of 5. By virtue of (2), it suffices to show that I(f)7AF) is m-as.
%-measurable in f. By virtue of (4), a set L. which is ¢, -measurable has the

property that L m O € £+ . This is also true for functions. Since 7AF) is m-a.s,
0, -measurable in f by (3), it follows that I5( f) #/(F) is 7-a.s. & -measurable.

6. #HO x F|%,)=#0 x F| %)

This is an immediate consequence of {5).
7. P(E X F|Y[%,]) = P(E x F| Y[¥])

Since E = X 1[0] and # = P Y, this is an immediate consequence of (6).
8. (w,g) > Ig{w)Fy)(F) is a version of P(E X F | F).

This follows from (4.1) in the same way that (2) followed from (4.3).
9. P(ExXF|#F)=P(E < F| Y ¥).

This follows from (8) and the fact that F(w) 7y, (F) is X[Z]-measurable in w.
10. P(E x F{#F)=PE XF|Y(%.])

This follows from 7 and 9.
1. P(EXF|#F)=PE XFiF)

Proof of 11. Since X&) T 4, for each s, it follows from the right
continuity of {.#,} that X1[2,,1C.#,, from which it follows in turn that
Y[%,.] C 4, . Now (11) follows from (10).

With (11), we have (4.4) holding for each B € 5, hence for all B € .4 *. It then
follows that (4.4) holds for all B = G n B, with G € &, and B, e.#¥. This
yields (4.4) for all B e .#,%, completing the proof of the theorem.
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5. THe Tmve CHANGE {7}

In this section X and X are assumed to be stochastic processes with the same
state-dependent hitting probabilities. We continue to assume that the sample
paths of both processes are in D. In addition, we assume that the sample paths
of both processes have no intervals of constancy. The process {X} can he defined
on the cnlarged space (£2, F, P) defined in the preceding section, and adapted
to the family {#,} of enlarged o-fields also defined in the last section. In this
section we construct a time change {7, , ¢ = 0} relative to {.#,} for which the
process {X, } has the same finite-dimensional distributions as (X,). We show also
that o(ew, *) is continuous and strictly increasing for P-almost all w € 0.

For each pair (f, g) in D x D for which f = ¢ (mod @), let A(f, g) = {p(g, 4):
a€.7(f)}. Since g has no intervals of constancy, it follows from corollary 3.5
that A(f, g) is dense in [0, o). We define o, as follows. Tf f and g are in D, but
/5= g (mod &), then o,(f, g, 1) is defined for t € A(, g) by

Un(f.g. p(g.' j)) - P(f’ 4). (51)

5.1 Lemma. If f = g (mod O), then o (f, g, ') is a strictly increasing and right
continuous function on A(f, g).

Proaf. 1f plg, s} = p(g, £), then o = ¢ since p(g, ') is strictly increasing
(relative to the order - on J (g)). This shows that ¢, is a well-defined function.
Since p( f, ) is also strictly increasing on F(g) = F(f), o, is strictly increasing
on A(f, £).

Let £ = (& o £n) €T (g), and suppose that p(g, £} "« p(g, #), where £, =
F(g), n==1,2,.... For each » > m, let s, be the ordered n-tuple (7, ,..., 7, ,
0,..,0,1). Let N = {n: 9, €T (g)}. Suppose ne N, Since 4, > ¢, p(g, ;) >
plg, £). Therefore for all sufficiently large values of &, p(g, £) < p(g, /) << p(g, 9,)
from which it follows that

bt dy < g, (5.2)

for all sufliciently large values of k. By virtue of part (a) of corollary 3.8, N is an
infinite set. Let {n;}; be an enumeration of N in increasing order. Then, since

T(f) = T (&) p(f, 4n) “ p(f, 4) as j — a0 by virtue of part (b) of corollary 3.8.
But from (5.2) we obtain

P £) <ol i) < plfs94) (5.3)

for eachjand all & == &; . Thus p(f, 4,) T p(f, £} as & — <o, completing the proof.

Suppose f = g (mod &). We extend 6,(f, g, -) on A(f, ¢) to a function (£, g, )
on [0, o) by right continuity. That is, we define o(f, g, ) to be equal to lim,
ol f, £, p(g, 1)), where p(g, 9;) | ¢. It follows from the lemma just proved not
only that this definition is valid, but that o(f, g, -) is strictly increasing and right
continuous on [0, o).

6o7/32/1-3
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5.2 Lemma, If f = g (mod O), then o(f, g, -) is continuous and strictly increa-
sing on [0, o0), and foo{f, g, ) = &.

Proof. Suppose f = g (mod @), We have already observed that o is strictly
increasing. Since off, g, p(g, 9)) = p(f, 4), and since f(p(f, 4)} = g(p(g, ¢)) for
seF(f) =T (g), it is clear that foo(f, g, ") =g on A(f, g). Since f, g, and
o{f, £ -} are right continuous, and since A(f, g) is dense in [0, o), we have
fea(f, g, -) =g on [0, oo). Now interchange f and g: o(g, f, *} is strictly incre-
asing and right continuous on [0, o). Let y = o{g, f, -) o o(f, g, *). Clearly y is
right continuous. On A(f, g), y is the identity function, and it follows from right
continuity and the density of 4(f, g) that y is the identity function on {0, ).
The continuity of o(f, g, -) is now a consequence of the following proposition,

5.3 ProPOSITION.  Suppose that « and B are strictly increasing, right continuous
Jfunctions on and into [0, 0), and that o o B is the identity function on [0, o0). Then
« and B are continuous.

Proof. Assume the hypotheses, and suppose that « is discontinuous at some
te[0, o). Then aft — 0) = 55 < 5 == aft). The range of xo B omits (s,, ).
If B is discontinuous at some point, the range of 8 omits an interval I, so the
range of « o § omits the interval o[]. In either case, the assumption that a < 3
is the identity is contradicted. This completes the proof of the proposition.

Let Dy be the set of all members of D without intervals of constancy. Tt is
easy to see that Dy e 2. Recall that By = {(f, g}: f = ¢ (mmod O)}.

5.5 ProPoSITION. Let Cy = By ™ (Dy x D), and let

A=NU (f,g):p(f,o)gt+—:;Ap(g,o)e[s,s+%)g.

n =T
Then AN Cy ={(f,2):(fe)e Cy,o{f g 5) <1}

Proof. This is an immediate consequence of the definition and right con-
tinuity of o(f, g, ) for {f, g} Cy .
Now consider the stochastic process X = (2, &7, .#,, X,, P). Define = on
Q% [0, o) by
((,8). 1) = a(X() £, 1), (w,g)el (54)

We use 7, to denote =(- , t).

5.6 THEOREM. {7, = 0} is @ P-almost surely continuous time change relative
to {M ). {X,} and {X} have the same finite-dimensional distributions.

Proof. That +{{w #) is strictly monotone and continuous in ¢ for P-almost
3 g y y
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all (w, g} €2 follows from the corresponding properties of ¢ — o{(}, g) t) for
{f,2)e B,, stated in Lemma 5.3, together with the fact that #(8,) = 1. The
process {X,} which 1s time changed into {.X, } is actually the process {X f} recall
that X{w, g) = Xy(w). Thus X, (0, g) = X, (,...0(w, £). We shall show that,
for cach Ce &, P(X e(C) = 77(() Wthh of course, shows that { X, Jand (X3
have the same finite-dimensional distributions. Let (w,g) e Then
Xowonlw 8 = Xy gnlw) = the value of X{w) at {w, g, ), which is the
value of X{ew) at o{ X{w), g, £). But # assigns all its mass to pairs (£, £) for which
fand g have no intervals of constancy and for which f o 6(f, g) —= g (lemma 5.2).
It follows that P assigns all its mass to pairs (w, g) for which X{w)  o(X{w), g) =
g, In other words, for which the value of X(w) at o{X(w), g, #} 1s simply g().
Thus P({w, 8): Koty o, 8) € C} = Pllaw, g): glt) € C}) = #(D  €) - #(C)by
virtue of (4.3).
To complete the proof of the theorem we must show that {{w, g (e, g, §) =
1} €., for each s 2 0, t 2> 0. Let &, be the sub-a-field of @ x & generated by
all sets of the form {(f &) plf. o) = t, p(f, ») € B, p(g, 4) € C} as s ranges over .7,
and B, (' over the Borel subsets of [0, oc]. We see from 4.5 that Y—I(%,) —
MEC AP (recall that V(w, g) = (X{w), £)). It follows that Y=Y, ) = .#7, .
From proposition 5.5 it follows that {(f, g): (f, g€ Cy, o(f, 2, 5) << 1} belongs
t0 P41 m for each n, hence to &, . Thercefore {{w, 2): (X(w), g) € Cy, 7, g, 5) <<
o VS, 2): (£, )€ Cor olfogy 5) < )Y — A, But {(,2): r(w, 25
5) =7 1} differs from {(w, 2): 7{w, g, s} < f} by a subset of the P-null set Q| Y-1(C,).
Since sz is P-complete, this shows that {(w, £): r(w, g, 5) < 1} €.4,, which
completes the proof of the theorem.

6. EXaMPLES

Let S == [0, ), and let X' be the Borel subsets of {0, 00). Let {X,,7 ;> 0} bea
stochastic process on a probability space (£2, &, P) with values in .5, and suppose
that for eachw € {2, X(w, 1} = X(w) is a continuous strictly increasing function
of ¢ with X{w, 0) == 0 and lim, ., X(w, #} = oo. For each 7, let .#, be the »-field
generated by X, as s ranges over [0, ¢/]. Then X = (@, . #,, X,,P) is a
stochastic process with state dependent hitting probabilities, Suppose that
X Qa7 X, P) is another such process, that is, one with (S, Xy as
state space, and whose sample paths are also strictly increasing continuous
functions cqual to 0 when ¢ = 0 and increasing to co. Then X and X have the
same state-dependent hitting probabilities. Since we have excluded the possi-
bility of intervals of constancy, the theorem of the last section applies, and it is
possible to define {X;} on an enlarged probability space (2, ¢7, P) in such a way
that there is 2 time change {r,} {relative to enlarged o-fields {#,}) for which
1A} and {X}} have the same finite-dimensional distribution, In this special case,
moreover, we can actually exhibit the time change, and we now proceed to do so.
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LetQ =0 % O (=0 %, and P == P x P. For (w, ®) € 2, let X{w, &) =
X,(w), t€ [0, oo). For each 1 &[0, c0) and (w, ) € £, let 7,(w, @) be that value
of s for which X (w) = X(@). Clearly r{w, &) is a strictly increasing, continuous
function of . Let ,/ﬁ' — M, % (U, 1 = 0. It is easy to see that {r; < s} e A, for
each t and s in [0, o0), so {7;} 15 a time change relative to {.#,}. Since X, [, ®) =
X (@), and since P = P » B, (X, and {X,} have the same finite- dxmensxonal
distribution. We now show that the enlargement is a distributional enlargement.
For each t = 0, let A, == {M x foF Me..#). Fix s and ¢, with O <{s <{ ¢. Let
Me #, and Aed. It is trivial to verify that the function{w, @) — 1{w) P(A)
is a version of P(M x A|F). Thus PM < A|F)=PM x A1 F) for
each ¢ = 5, and it follows that {#,} is a distributional enlargement of {.#,}.
{This is hardly surprising, for P % P is the product measure, and the notion of
distributional enlargment represents an effort to isolate the salient feature of the
product-space enlargements with product measures used in defining so-called
“random” stopping times and time changes. We again refer the reader to {1} and
[4] for more extensive discussions of this point.)

Special cases of this example make it clear that some sort of randomization is,
in general, necessary. Suppose, for example, at £2 has just one member w,, and
that X (w,) = ¢. Unless {X,, ¢ > 0} is also deterministic, (that is, unless the
distribution of X, degenerates for each #), there is no time change , defined on £
for which {X } has the same finite-dimensional distributions as {X,}. Suppose
for example, X moves uniformly to the right at the rate of 2 units per second
with probability 1/2, and at the rate of 3 units per second with probability 12,
Then the time change with we apply to {X,} amounts to flipping a coin, and
speeding X, up by a factor of 2 if the coin comes up heads, and by a factor of 3 if
it comes up tales. We do not claim, however, that our method does not sometimes
involve more randomization than necessary. Suppose, for example, that X is the
process just described, and that X is a process in which X, moves to the right
with unit velocity with probability 1/2, and at the rate of 6 units per second with
probability 1/2. If we doubled the speed of the unit velocity path, and halved the
speed of the other path, we would have a time change on the original space
(2, (7, P) which takes X, into a process equivalent to X, . The time change we
construct, however, depends not only on w, but, alsc on what amounts to the toss
of a fair coin. Given that the X, process is moving to the right with unit velocity,
the time change speeds it up by a factor of 2 with probability 1/2 and by a factor
of 3 with probability 1{2. Given that X is moving to the right with a velocity of
6 units per second, the time change slows it down by a factor of 1/6 with proba-
bility 1/2, and by a factor of 1/2 with probability 1/2. One of the open problems
in the general case is, in constructing the time change, to not over-enlarge, but
to introduce randomness only when it is required. In work now under prepara-
tion, we show how to do this when the X process is Markov.

We next consider an example with a more complicated state space, Consider
the set of all lattice points (7, §) in the right half plane: that is, for which
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i=0,1,2..and j =0, +1, +2,.... For each such 7 and j, connect {i,j) to
(- 1,7 -+ 1) by one line segment and (7,7} to (£ { 1,7 — [} by anather. Let S
be the resulting chicken-wire-fence-like structure. Endow S with the obvious
topology—the one whose restriction to each of the connecting line segments is
LEuclidean-—and let 2 he the corresponding Borel field, For each (7, ), let p(7, f)
and ¢(, §) be a pair of non-negative numbers adding up to one. Now consider a
particle moving as follows. At time ¢ == 0, it is at once of the lattice points (0, f),
and immediately starts moving along either the segment connecting (0,7) to
(1,7 + 1) or the segment connecting (0, j) to (1,7 — 1), the first scgment being
chosen with probability p{0, ), the second with probability ¢(0, ). Tts journey
along the chosen segment may be either deterministic or non-deterministic,
subject only to the proviso that it move always to the right, and never stands still.
When it reaches, say {1, § + 1), it switches to the segment connecting (1,7 + 1)
to (2,7 -~ 2) with probability p(1, f + 1) and to the one connecting (1,7 + 1} to
{2,7) with probability g{I, 7+ 1). The particle continues to proceed in this
zig-zag fashion. It is clear that the resulting process has state-dependent hitting
probabilities. If we consider any other such process, it has the same state-
dependent hitting probabilities as the first, provided that the choice of segments
upon reaching (7, §) is made in accordance with the same probabilities p{7, /) and
(7, 7} as for the first process. T'wo paths are equivalent mod ¢ if and only f they
traverse the same vertices {7, f). In this respect the vertices (7, 7} play the role of
the positions x(s) = f{p(s)) for o € F(f). I the motion along the segments is
deterministic, the process is a Markov process, Note that then there is only one
path with given vertices, 1.¢., each equivalence class mod ¢ has only one member.
In work under preparation we show that this is characteristic of strong Markov
processes whose paths have no intervals of constancy.
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