
Processes with State-Dependent Hitting Probabilities 

and Their Equivalence under Time Changes 

I _ IK;T~~ODUCTIOX 

Suppose that {X, , f 2 01 is a standard Markov process with o-compact 
metrizable state space S and u-fields &‘t (see [2], p. 45 for the definition of 
“standard ;LIarkov process”). Let 2 be the class of Bore1 subsets of S. Then, 
for each E t .Z, there is a function HE on S x L’ with the following properties: 

(i) for each x E S, HJx, .) is a measure on Z, 

(ii) for each il E 1, HE(x, A) is a Z-measurable function of x, 

and 

(iii) for any stopping time T and .4 E Z, 

qx, t A ( JF7) == HF.-Y7 , A) P-a.e. on (7 < mot, C1.1) 

where y :=: 7 + B,ci, and u = inf{t: -1; E E’}. 
In (iii) 8, is a shift operator. A more intuitive characterization of y is as the 

first post-T hitting time of E, that is, y = inf{T: t ;> 7 and X, E Fj. 
Suppose that (X, , 1 2 0) (with associated a-fields {?.a,)) dots not have the 

Markov property, but that (iii) still holds. We say that such a process has state- 
dependent hitting probabilities. 

Let {X,, t > O] and {8,, t Ii- 0) be standard Xfarkov processes with 
the same hitting distribution. In [3] (see also [2]) Blumenthal, Getoor, and 
McKean, in a significant achievement of the theory of general Markov 
processes, showed that there is an additive functional for (-Yt , E I- 01 whose 
inverse (TV , t > 0) is a time change for which {XT1 , t >Z O$ is a standard Markov 
process equivalent to {X1, t > 0). (“Equivalent” means having the same 
transition probability operator.) A question which naturally arises is whether 
analogous results hold for non-Markov processes. It is not true, in general, that 
hitting probabilities are preserved under time changes, even if the time changes 
are non-anticipating, (A time change (7t , 1 > 0) is called non-anticipating if 
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(TV < S) E ~2’~ for each t 2 0, s 3 0,) They are preserved under such time 
changes, however, if the process in question has state dependent hitting proba- 
bilities. The conjecture suggested by the Blumenthal-Getoor-McKean theorem 
is that if (X, ,t > Oj and {xt , t > O> are processes with the same state-depen- 
dent hitting probabilities HEI then there is a non-anticipating time change {TV> 
for which (XT1 , i > 0) has the same finite-dimensional distributions as (Xi , 
t 2 01. Simple examples, however, show that this conjecture is false. For 
instance, if the probability space (62, a, P) on which {X, , t > 0) is defined to a 
singleton &? = (w>, with P a unit mass on w, then, for any time change 
{q , t ;< 0) defined on !2, (XTt, t 2 0} has only one possible sample path, so 
cannot possibly have the same finite-dimensional distributions as (xt , t 3 0) 
unless the latter also has only one sample path. In order to salvage the conjecture, 
we allow the process (X, , t 2 0) to be transferred to a probability space 
(I(f, @, p) with a richer structure, on which we construct a time change 
{fl 1 t 3 01, non-anticipating relative to new u-fields i-R,>, for which 
(X,, , t 2 0) and {a, , t 3 0) h ave the same finite dimensional distributions. 

We now outline the approach we use in the proof of the conjecture. Suppose 
that (S, Z) is Euclidean n-space, and that the paths of both {X, , t > 0} and 
(R, , t 2 Oj are rectifiable curves. Suppose that {X,) and {x,} are defined on the 
probability spaces (Q, 02, P) and (a,#?, p) respectively. Let {At} be an increasing 
family of sub-u-fields of 6Z having the property that X, is measurable with respect 
to At for each t 2 0, and let (J?f) be a corresponding family of sub-u-fields of 8. 
For each w E Q, let (Y,(w), s 2 0) be the sample path {X,(W), t > 0) reparame- 
trized by arc-length s. It is suggestive to think of (YJw)) as a geometrical object, 
called a trajectory. We call (.&(cu)} the path corresponding to w. Different w’s in 
general determine different paths, but different paths may correspond to identical 
trajectories. If we regard Y,(W) as the position at time t of a particle on the 
trajectory { Ys(w)), we may think of particles following distinct paths with the 
same trajectory as travelling along that trajectory at different rates of speed. 
Now let {P, , s >, 0) be the trajectory process determined by {xt, t > 0). If 
{X, , t 2 01 and {?8, , t 2 0) are processes with the same state-dependent 
hitting probabilities, {Yt , 1 > O> and (pf , t >, 0) have the same finite-dimen- 
sional distributions. Suppose that the paths {X,(m)) and (XJiir)} correspond to 
the same trajectory, in other words, that {Y#(w)} = (P,(&)}. Fix t. As t’ goes 
from 0 to t, the successive positions &-(&) of the particle labelled by ij sweep 
out an initial portion of the trajectory {P,(6)). Let 7t be the time it takes for the 
particle on the path (,Y,(w)] t o sweep out this portion of the trajectory (YJw)> = 
{P,(G)). Then t -+ TJW) is continuous and monotone, and XTt(w) = &(6). 
If, for each possible trajectory, there are at least as many w’s as G’s whose paths 
sweep out that trajectory, one might hope to match up the w paths to the B 
paths in a measurable way, and for each OJ use the procedure just given to define 
TV in terms of the w-path {X,(u)) an d a corresponding &path {fl,(iir)). The 
necessity of enlarging the space ~‘2 arises if there are trajectories with fewer 
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w-paths than w-paths. The measurability problems involved in this approach, 
however, arc formidable, and the construction we actually use is more like the 
following enc. First, let J?? =:: B x a, and embed {X, , t > O]- in fi in the obvious 
way. Let d = 6?! x 0. We put on d not the product measure P Y p, but the 
measure i) defined for A E I%! and AE@ by &A x -4) := J,.# pJ-4) P(A), 
whcrc pJ,-i) is the conditional probability of a given that {p,Vi [V,V{w)). IA 
A?, = A!, x d. The time change is now defined as follows. Let (w, 6) EJ?. 
If -[YJw)) is not equal to (P*(G)], T! CIJ, G) is undefined or set equal to a. The ( 
set of (w, &)‘s for which this happens is ~-null. If {17,S(w)) is equal-to 1 TX(&)}, 
T,,(w, 6) is defined as above. Then {T( , t > O} is a time change on Q, non-anti- 
cipating relative to {A&?~), having the property that for p-almost all (CU. &;) ~0, 
A- 7,,Uj,Cz,(~) -~~ wt(6) for a/ t i; 0. Therefore [(w, 63): -ITT,, E E, ,..., A\-,,t E R,J .- 

1 -. ((w, 0.1): AtI f El ,..., A,,,(G) E I$,) for any n =; 1, 1, ,..., I, m [0, .Yj), and 
E 1 ,,.,, I?, in Z. It follows from the definition of P and the fact tkat (I-* , s _: 01 

and {p,, s -;: 0) have the same distribution that &((w, 6): -Tf,(G) t E, ,..., 
k,,(G) E &I) == I’({&: X,l(W) t E, ,..., AI+fn(G) E EJ). ‘Therefore 
and (XL , 

:S;, , t ..: 0) 
t 2,: 02 have the same finite dimensional distributions. 

Even if the state space S is finite dimensional Euclidean space, the assumption 
that paths of (St , t ;:Y 0) be rectifiahlc excludes the most interesting processes, 
like Brow-man motion. In section 3 of this paper, we introduce what, in effect, is 
our substitute for arc-length. Whereas a particlt: moving along a cur1.t: can keep 
track of how far it has travelled only if the curve is rectifiable, WC show that a 
particle moving along a curve can keep track of the oscillations it has undcrgonz 
provided that the curve is everywhere right-continuous with left limits. The 
oscillation record does not yield a reparametrization of the curve with parameter 
set [0, co) as does arc-length. The parameter set is instead a collection of finite 
sequences of non-negative integers ordered lexicographically, and the collection 
associated with a given function varies from function to function. The main 
purpox of this paper is to present this method of recording oscillations, and 
to develop its basic properties. We do this in section 3, Section :! is given over to 
notation and other preliminary material. In section 4 we cnlargc the space 
supporting the (-Y, , t g> 0) process, and show that the resultin,q enlargement is 
“distributional” in the sense of [I] and [4j. I n section 5, wc establish our basic 
conjecture in the case that the paths of both [X, , f .:c 01. and [.qf , r :I 0; arc 
right continuous with left limits, hut free of intervals of constancy. In section 6, 
we give some examples, 

2. NOTA'I'~OS AND PRELIM~NAKIES 

Let (S, d) be a t+compact metric space, and Z its Bore1 sets. \J:‘c shall denote 
by L) the set of all S-valued functions on [O, co) which are right continuous and 
have left limits at every t E [0, oo), and by 9 the u-field on 13 generated by all 
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sets of the form (f:f~ D, f(t) t E}, w h ere t ranges over [0, co) and E over ..Z. 
There is a metric on D relative to which D is a complete, separable metric space 
with 3 as its class of Bore1 sets ([S], 153). For each t E [0, oz), Bt denotes the 
u-field generated by sets of the form {f: f E n,f(s) E E) where E ranges over ,Z 
and s ranges over [0, t], and 9!tL denotes &,, gt+ . 

Let D,$ --- (f: f E D A f(r) =f(s) if f > $1. ClearIy D, E 9%. Let xB be the map 
of D into D,s which sends f E D into the function x8(f) whose vaIue at t is t A s. 
Clearly xs is (3 ~ .P) measurable, and is onto D, . 

2.1 PHOPOSITIOK;. Let s > 0 and A E 9. The-n (i), (iii) and (iii) are egrkr,&rrt 
(in (iii), S and g are assumed to belong to D). 

(i) 12 t? Qs 

(ii) il E x;‘(9). 

(iii) If f~ A, and ifg(t) =f(l) for all t E [0, s], then g E A. Also, condz’tiom 
(iv) and (v) me epide7at: 

(iv) A Egt 

(e?) [ff~ A, and there is a 6 > 0 such thatg(t) =f(t)for all t E [O, s + 61, 
then g E /I a 

Proof, Let 9* be the collection of all A E 9 for which (iii) holds. We establish 
the equivalence of (i), (ii), and (iii) by h s owing 9,q C LF* C x;‘(B) C G3. It is 
easy to see that 9* is a u-field, and that it contains all sets of the form (f:f(t) E E} 
for Et S and 1 < .T. Therefore D, C 9*. Suppose A E ~3”. Let f~ A. We see 
from (ii) that x,<(,f) E ,4, so f~ x;‘(A). Conversely, if x,?(f) E A, f E A by virtue 
of (ii). Thus A m= x;‘(A). Thus 3* C x;‘(g). If ,4 = {f:f(t) E E), and t s< $, 
A = x;l(A) and A E g,% . That ~‘(3) C ga now follows from the facts that Bs 
is a u-field and that x;‘(3) is generated by the x;l images of any class of sets 
generating G. 

Suppose that A E ~3,~ + , thatfE A, and that f =f on [0, s + S], where B > 0. 
PicknsothatI/n<8.Theng-~fon[O,s~-(l/n)j.SinceA~9,+i,il,~,g~A 
by (i) -+ (iii). Th’. h 15 s ows that (iv) + (v). Let A E 9 have the property described 
in (v). SupposefF A, and that g -f on [O, s + (l/n)]. Then g E A by assump- 
tion. It follows from (iii) -+ (i) that iz E 9aL(1,n~ . Since this holds for each 
n = 1, 2 ,..., -4 E fib, ~n+(l,n~ = 2zsl . This completes the proof of the propo- 
sition. 

We adjoin OD to the half-line [0, M) in the usual way, obtaining the extended 
real line [0, m]. The class of Bore1 subsets of [O, co] is denoted by 97. A function 
u on D into [0, co] is called a path-@‘ined stopping time vekztive to {gt) (relative 
to {gt ))) if, for each t > 0, the set {f:f E D, u(f) < t> belongs to 3t (to gtL). 
It is convenient for us to assign a value tof(t) when t = 03. To do this we adjoin 
to S as an isolated point a point d not belonging to S. We set S* = S fl {O}, 
and Z* is the corresponding cIass of Bore1 subsets of S*. We shall at times be 
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careless about the distinction between (S*, Z*) and (S, 2). The mapf+f(cr(f)) 
of D into S* is 9 - Z* measurable. To see this, let gfl be equal to k + 1/2n on 
[k/2” 5; 0 < k -t- r/279, k = 0, l)..., and equal to cc on [Q --= ~131. 1t is easy to 
see that f--f(~~(f)) is .9 - .Z* -measurable. (As a matter of fact, [a, & ~1 
belongs to 9, (to 9$+) if u is a stopping time relative to (9,) (to {gt+>),) Because 
of the right continuity off,f(ufl(,f)) +f(~(f)) as 12 --f 00. We shall often usef(u) 
as an abbreviation forf(c(f)). If LS I a stopping time relative to (St} (to {Bt+}), ‘s 
P,, denotes the class of all subsets A of 9 for which A n (U < $1 belongs to 
LBs (to 2?,,~) for each s > 0. 

Let 7 bc a stopping time refative to {gt+}, and Ea subset of S. The functions 0 
and u 1~ are defined from D into [0, io] by 

u(f) = inf{t : t >3 $f),f(E) E E} 

g+(j) = inf(t : t > ~(f),f(t) E E). 
(24 

We use here and elsewhere the convention that the infimum over an empty set 
is m. Both (I and IS+ will be referred to as post-r hitting &es of E. 

2.2 PROPOSITION. If E is open, both o and u’+ are stopphg times rehfhe to 
{-1”1+). 

Proof. Assume that E is open. For each n, let u,(f) be equal to 
inf{l: t 2 ?t + I/n,f(t) GE) on (K/n :< I < 12 1. l/n>, k :-- 0, l,..., and to 
co on [I := co]. Because of the right continuity off and the assumption that 
B is open, {tin < s) is the union of the sets {f(r) E E, k/n < T(J) < K I- l/n) as 
I ranges over the rational members of [k + 1 /n, s) and k over those non-negative 
integers for which 14 -k l/n .< 9. Thus (ufi < 3 c; 9,5 + . Since {Us .< $1 == 
or,, [o < s + (I/m)] it follows that {o-~ < s) E 9,<, . Thus crm is a stopping time 
relative to (9,;:. It is clear that u,$ > c~ !- for each n, and that uTn‘\, Let D,~ = 
lim, g,n . Clearly a, 2 crl., Suppose that u;-(f) < co, and that f,, > u’(f). Then 
there is a t E [o”(f), t,) with t > 7(f) andf(t) E B. Let K, be such that k,/n < 
-r(f) -c (k, + 1)/n. Then t > (& + l>/ n f or ail suficiently large n. Since .f(t) G E, 
t 1;: (r,(f) for these n. It follows that t,, > t > o*,(f), so if I,, > u+(,f), then 
t(, > I,,.. Therefore o!. > D:,> , so D- ~z os, . The non-decreasing limit of 
stopping times is a stopping time ([2], page 33) , so 0 is a stopping time relative 
to {.gi, ), We can express u in terms of u+ as follows: a -z T on {I(T) E E}, and 
0 -: U+ on (f(7) $ E’>. However, {f(7) E &?I E 9,([2], page 34), so {f(~) E E} n 
(T -;; Sj E Sfsi- . Since T < &, a3, C gm+ ([2], page ), so {f(7) E E} fl {u+ 2; ~1 E 
9,\ . This show that o is also a stopping time relative to {gtt}, which completes 
the proof of the proposition. 

2.3 PROPOSITION, Let (Sz, G& P) be a probability space and (D, 9) a measurable 
spue. Let V be a sub-o-jield of CJ?. Let 3 be a (67 - 3) measurable map of Q into D 
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and F a B-measurable map of D into [0, 03). Let r = P o X-l (that is: m(A) = 
P(X-I(A)), A E 9). Then 

E,(F 0 x ( x-l(Gq) = EJF 1 W) 0 x (2.2) 

Proof, By Ep and E, we mean the expectation operators on (Q, a, P) and 
(0,9, Z-) respectively. For the definition and basic properties of conditional 
expectation, we refer the reader to any of the standard treatises, for example, [6]. 
To prove the proposition, we must show that for any C E %‘, the integral over 
X-*(C) of the right hand side of (2.2) with respect to P is equal to sx-l(c) F 0 XdP. 
We require 

s 
FoXdP= Fdz-, CE%?. (2.3) 

X-‘(Cl j c 

To prove (2,3), it is enough to establish that the equality holds for F = 1, , 
AE~. ThenFoX= IBoX= lx-~(a~, and the left hand side is P(X-l(B) n 
A-l(C)) = P(X-l(B n C)). The right hand side is Q@ n C) = P(X-‘(B n C)). 
This proves (2.3). N ow fix C E V. Using (2.3) twice, the first time with F replaced 
by E,(F 1 %‘I, we obtain 

s EJF 1 2?) o X dP = j” E,,(F I V) dn 
x-‘(c) c 

= 
J 

F dm 
c 

Z .c FoXdP. 
X”iC)) 

This completes the proof of the proposition. 
Suppose that d is a o-field over a set E which is countabIy generated, that is, 

there is a countable G?‘~ C 8’ such that d is the u-field generated by 8. We may 
assume without loss of generality that 8, is a field. For each x E E, let E, = 
n {F: F E gO , x E F}. Clearly E, E b, and it is easy to see that either E, = E, 
or E, n E, = a. Let 8, be the class of all members F of t for which F = 
U (E(x): x EF). It is clear that gO C &I . In particular E E 8, , and it follows 
that &‘1 is closed under complements. It is clearly closed under unions, so it 
is a u-field. Hence ~~ = 8, so every member of t is a union of &‘s. The E*‘s 
are called the fibres of &. 

2.4 THEOREM (Disintegration of measures). Let D be II complete separable 
metric space, with 93 its class of Bevel sets. Let Z- be a probability meamre oti 9, and 
let B be a countably generated rub-u-field of 9. There is a fcrmily (v-r,},,D of measures 
on .9 satisfying the folZowing conditions. 
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(i) for each A E 9, v,(A) is an b-measurable function of x, 

(ii) for each A E 3 and E E 8, 

(iii) for a-almost all x & D, STY is a probabilit-y measure &t/i z-JEJ = 1, 

I’YOOJ The proof of this theorem is adapted from the proof of a more general 
disintegration of measures theorem presented in a measure theory course taught 
by Professor M. Sion, and included in a set of course notes written up by Mr. 
Faulkner, a student in the course. We take this opportunity to thank both 
Professor Sian and Mr. Faulkner for making these notes available to use and for 
their most helpful discussions. 

Assume the hypotheses of the theorem. For each A E 8, let X(X, A) be a 
function of x which is an B-measurable version of the conditional probability 
of .4 given 8. Thus (i) and (ii) are satisfied for each A E 9 if we substitute 
,(x, A) for ~~(~4). 9 is countably generated ([73, page 5). Let 8, be a countable 
generating sub-field of 8. It is a consequence of the usual properties of condi- 
tional probabilities that there is a set N1 E 9, with x(N,) =L 0, such that, if 
x $ N1 , then x(x, .) is a finitely additive measure on 63” with n(x, D) 2 1. 

For each A E 9 and l > 0 there is a compact set CC II with CC A and 
n(AC) < E ([7], page 29). It easily follows that there is a countable family V, 
of compact subsets of D such that I =: sup{+C): C E VP, , C C A} for each 
A E ~9~ . For each x E D and A t P,, , let 

x,(A) :.= sup{+, C): c E ‘K(, ) c c A) 

Since C&‘” is countable, +,(A) is an &‘-measurable function of x. Given any R and F 
in g/;, with B C F, v,(E) < nz(F) for T-almost all x. Therefore there is a Xa E ~3, 
with x(N,a) = 0 and for which rr(x, C) < ~(3, A) provided x &IV, , C E V. , 
and 4 E g0 and C C A. If x $ iVa , then 6,(A) < n(x, 4) for each A t 9,. Let 
A E sI . Suppose < > 0. There is a C E K’,, with CC A and x(A) < r(C) + C. 
Then, by property (ii), 

a(A) - c ?< T(C) = i x(x, C) rr(dx) 5; j ii,(A) x(dx). 

Since c > 0 is arbitrary, x(A) :< l+,.(A) I. But ~(~4) = Jn(x, A) I by 
virture of (ii). Since *,(A) < ~(5, 4) n-almost everywhere, this is possible only 
if iiS = x(x, 4) for m-almost all x. Therefore there is an N:, ~9 having 
v-measure zero with QT~(J) :: rr(x, A4) for all il E Q0 and x $ N3, It follows that, 
if x $ N = Nt u Na , then ,(x, .) is a finitely additive measure on 3,, for which 

77(x, A) = sup{+, C): c E V* , c c il>, AELF:,. 
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We claim that P(X, .> is countably additive on ~3~ if x # N, Suppose z #N. 
Denote P(X, .) by A. To show that A is countably additive, it suffices to show 
that if if {Ad is a descending sequence in B0 with lim, A(&) > 0, then fin A, # 
.a. So assume (AR) is such a sequence, and that A(&) 2 S > 0 for all n. Let 
Ed > 0, n = 1, 2 ,..., x,T=, E, < 6. For each 12 there is a C, t V0 with C, C A, 
and A(A,\C,) < E, . Note that flE=t C, C A, , and that A,JC, C Ak\Cn , 
k = l,..., n. We have 

h (fj Ck) = X(A,) - X (Am/h Ckj 
k=l %=l 

2 W&x) - 2 W,\C,) 
I:=1 

Therefore ni==, C;, + a. Since this is true for each IE, and each C, is compact, 
n;=:=, C, -f 6. Thus fl;=:=, A, # 0, as was to be shown, so h = ~(x, .) is 
countably additive on ~3~ . 

For each x $ N, x(x, .) extends to a countably additive measure rTTz on 9. 
Define rz(A) = 0 for a11 A E 9, s E N. The family {rzJZED of measures satisfies 
(i) and (ii). Let 8, be a countable subclass of &which generates d If E E 8, , 
then 

I 
m=(E) +kc) = n(E n EC) = 0 

EC 

by (iii). Since rz(D) = 1 for n-almost all x, this implies that m(Be) = 1, where 
D, = {x: TV = I&}. Let D, = (-lEEgo De. Then n(Q) = 1. If x E D,, , 
then v,JE) = 1 for all E E; 8, with xE, so r.JEJ = 1. The family (~~}~~n there- 
fore also satisfies (iii). This completes the proof of the theorem. 

Suppose (fz, f7&, P) IS a probability space, that {~4’~]~~,, is a nondecreasing 
family of sub-o-fields of GI!, and that, for each t 3 0, X, is a (A@‘, - .Y) measurable 
map of Q into S. Then X = (D, GY, .A?~ , X, , P) is called a snxhastic process. We 
shall assume that (0, GZ, P) is a complete measure space, and that (A%~} is right 
continuous, that is, At = A@‘,+ , where Ai+ = ns,b ~9’~ , We shall also assume 
that the sample paths of X, are right-continuous and have left limits: in other 
words, for each w E 5*>, the map t -+ X,(w) of 10, co) into S belongs to D. It will 
cause no confusion if we use the letter “_Y” to denote not only the stochastic 
process but the associated map of r;2 into D. Thus, X is defined to be the function 
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on B whose value X(W) is that member of 11 whose value at t is given by .Yt(w)~ 
It is clear that X is (OT - 9) measurable. We will use r to denote the image of I’ 
under the map A-, that is, 7~ = P 13 A--l. In terms of finite dimensional cylinder 
sets, n((f:f E D, f(t,) E E, ,..., f(tJ f En} = P(-Yf, E El ,..., StlL E En). -4 func- 
tion 7 on L? into [0, OS] is called a stoppiq time for the process S -: (~2, O!, d, , 

X, , Z’) if {T $;l /> E AI for each t E [0, co), We USC the symbol ,&‘, to denote the 
sub-a-fkld of @consisting of all subsets A of Q for which .4 n {T -:G t) E Ml for 
each I ..Y 0. Then AY7 is +,&t-msasurable (see [2], theorem 6.1 I and the remark 
preceding it). It is clear that if 0 is a path-defined stopping time on II relative to 
{P1’j, thon the function 7 := D 0 X is a stopping time for the process (Q, 67, A, , 
-‘i, , I’), and that X--l(SC) CA!, . Because of the right continuity of {,U,j, the 
same is true if (7 is a stopping time relative to (9 [ 11.. If T is a stopping time for the 
process S and R a subset of S, the POSL-T Aitting tke of A is defined in the same 
way it was for T a stopping time defined on D, and is a stopping time for the 
process x. 

2.5 DEFI;~ITION. Let S = (D, 67, A’~, -Yri, , I’) be a stochastic process. We 
say that X has sfafe-dependent hitting probnbilities if the following is true. Txt R 
be open in S, and A E 2: Then there is a non-negative S-mcasurablc function g 
on S having the property that for any stopping time T, 

where y is the post-T hitting time of B. 

We emphasize that our assumptions that [A!() is right continuous and that the 
sample paths of X are everywhere right continuous with left limits arc implicit 
in the statements of all definitions, propositions, lemmas, and theorems. lf T 
is a path-defined stopping time, and u the post-7 hitting time of E, then (2.4) 
together with proposition 2.2 imply that 

2.6 DEIWITION. Let .Y -2 (X2, fl, df, , .‘lr;, P) and X 1 (Q,!%.NY~ , -Tt, F) 
bc stochastic processes. We say that X and .f haae the same state-dependent 
hitting probabilities if, for any open I:’ in S and A E 2, there is a non-negative 
Z-measurable function g for which the fotlowing is true. For any stopping 
times 7 and T relative to {A’?~) and {.,kTj, 

where o and 6 are, respectiveIy, the post-7 and post-? hitting times of E. 
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It follows from (2.6) and proposition 2.2 that if T is a path defined stopping 
time on D (relative to (gt+>), and (T is the post--r hitting time of E, then 

Here and elsewhere # = v 0 -T-l, 
Let X = (a, GE, A!, , -yt , #‘) b e a stochastic process. We say that (TV , t 3 0} 

is a time change relative to (At} if, for each t E [0, co), 7t is a stopping time 
relative to {A’?‘,}, and for each w E R, TV is a non-decreasing and right conti- 
nuous function of t. 

2.7 THEOREM. Let X = (52, @, At , Xt, P) be a stochastic process witpl state 

dependent hitting probabilities. Let {a, , t 2 0) be a time change relative to {Jt} 
such that, for each w E 5-2, ut(u) is u strictly irwreasizg, continzrous, Jinite-valued 
ftinction of t with q(w) 1 w as t -+ a. Asswne also that uu(w) = 0 for all w E -0. 

For each t, let Y, = X0, and JvE = .A’” . Then Y = (Q R, Jvl , Yf , P) is a 

process with the same state-dependent hi&g probabilities as X. 

Proof. We note that XV, is measurable with respect to A,,, , so Y is a sto- 
chastic process. Let E be an open subset of S. Let T- be a stopping time relative 
to {A’$. Let ur be defined by a,(w) = us(,Jw), w E Q. 

(a) (5, is a stopping time relative to {Al>. 

Proof of (a). Suppose T assumes only the values f, , t, ,... . Then {or < s} = 
uz, {“t, < s, 7 = fk}. But (T = tJ E “YE, c dHvt so 

L 
{Uf, < s, 7 = trc} = 

tT = 1,) n {ut, < S} E A!, . It f o II ows that (a7 < sj E &, for each s, so Us is a 
stopping time relative to (A!,}. If T is a stopping time relative to {AJ, let +) = 
(k + l)/Zn on {k/2” < T < (k + 1)/2”). By virtue of the right continuity of 
(4, udn’ L (+, as n ---f co. It follows that a, is a stopping time relative to {MJ 

t PI 3 page 32). 

Let y be the post-s hitting time of E: cr, is also a stopping time relative to {A%‘~>. 

(b) oy is the post-u, hitting time of E. 

Proof of (b). First, we claim that for any S C [0, co], uinIs = inf(us, : t E S>. 
This is an easy consequence of the continuity of ot , By definition, y = inf{t: t > 
7, Yt f Ej = inf{t: t > 7, IY,, E E}. Note that D,, = inf{ut : f > T, X,,, E E) = 
inf{ui : ut > u, , XU* E E) = inf(s: s > CT, , X, E E}. (We have used the fact that 
t + Us is a strictly increasing one-one map of [0, 031 onto itself), Thus u,, is 
the post ur hitting time of E, which proves (b). 

(c) .N, c AYo,. 



STATE-DEPENDENT HITTING PROBABILITIES 11 

Proof of(c). Again we begin by assuming that T has only a countable number 
of values, namely t, , t, ,,.. . Suppose A g Jv; . Then A n {ur < 3) = ub, A n 
k=tk-, ot* -.. .~<~.ButB=An{~=t~~~Jlrt~=.,~~,~,soAn~~=t~,u~~~’~~-~ 

Bn{utk~s}F~~s. Tf 7 is an arbitrary stopping time relatirc to {&I, let T(?~’ 
he defined as in the proof of (a). By what we have just shown, NT C &,, C -HP+, 
for each rr = I , 2,.. .: so ,4: C nz_I &Y,,,,, . Since {-Ht} is right continuous, and 
since u,(,,) \ii (T, , it follows from (6.7) on page 33 of [2] that fiE?t .J?~,,., = ,/YVr, 
This completes the proof of (c). (Th e reference cited also establishes the right 
continuity of (&) = {-4Y0,).) 

Now suppose that A E 2’. Then 

where g is as in the statement of Definition 2.5. This completes the proof of the 
theorem. 

Let (X, , ~~~~, PK) b e a strong Markov process (see page 37 of [2]f (We assume 
that 5 - co, where [ is the killing time, and that the sample paths all belong to 
D.) Let {XC, , f 2 0) be the process determined hy selecting a distribution for X0 . 
Then X = (Q, G& 4,) Xr , P) is a stochastic process with state-dependent 
hitting probabilities. The last theorem thus implies that, with some restrictions, 
non-anticipating time changes of a strong Markov process yield processes with 
state-dependent hitting probabilities. Since non-anticipation alone does not 
guarantee that the resulting process is ;LZarkov, this shows that the class of 
process with state-dependent hitting probabilities which are not Markov is quite 
extensive. 

3. KEEPING TRACK OF OSCILLATIONS 

Given an J E D, we associate with it certain finite sequences as records of 
oscillations undergone by ,f(t) as t varies over [O, CO). Fix f, and consider, for 
example, the sequence d = (2, 7, 3, I). IV e associate 4 with J if the following four 
conditions are met. (1) f(t) executes at least two oscillations of size 1. (2) After 
its second oscillation of size 1, it executes at least seven oscillations of size I /2 
before executing a third oscillation of size 1. (It may or may not execute a third 
oscillation of size 1. The association of (2, 7, 3, 1) withf does not provide that 
information.) (3) After this seventh oscillation of size l/2, and before either its 
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(a) SU@ISe j < k. Let j = (ix ,..., ij). Let J == (il ,.,., & , 0 ,..., 0) E Sk . 
Then J E q(f) -+ C E Fk(f), in which case p(3) = p(/). 

(b) (strict monotonicity) Suppose J and /belong to Uirl z(f). Thtx J < t + 

P(4 < P(f). 

0 . . Y’ ( 
re 

d 
uction of lust component). Suppose (il ,..., ike1 , i) E 3TA-(f). Then, ;f 

L < i, (i1 ).I.) iJCll , 1) E sqf). 

(d) (MMJXZ~~~~). Suppose j < k. rf(i, ,..., iic) E 9Jf), therz (i1 ,..., ij) E q(f). 

(e) Under the hypothesis of (d), d(f(t), x(iI ,..., fj)) :< 1/2$-l for all t E 
[PIG ,“.I ii), PC& I...> h& 

(f) (order) Let / = (iI ,..,, i,J ark. Sup$ose that t is not the <-lust 
member of 7JJ.f). Then the <-next member of FJf) (that is, the <-smallest 
member of&(f) which <-foZZows &(.f)) is one of/; = i, + 1, fz = (iI , & + I), 
‘.-, /,: =~- (i1 ,..., ilzpl , ir, .--I- I). Let 

TV = inf(t: 5 > p(L), d(f(t), x(il ,..., iE)) > l/2c-1), (3.2) 

l-1 ,..., h. Then i’is the (-last member of&(f) ifand OT@ ;f~~ = ... = rB = CD?. 
Suppuse 71 A ... A rh. < ar,for each E = I,..., k the foUowing are eqpliztatenf. 

(i) the <-next member of Ak(f) is t, 

(ii) TZ=~,~“‘~~kr and l=inf(m:r,=T1/\‘..~ck} 

IffL is the <-next member of%?(f), then p(*i) = TV. 

(g) (structure). Let k > 1. Assume lhad J = (il ,..., &,) E Fk-,(f). ,@ d 
is not the <-last member of T,C-I(f)r let G be the <-next member of k&(f), and 
let T(Q, t) be the set of members of &(f) which are <-between J and G and which 
are n.ot oftheform (jl ,..., jE , 0 ,..., 0) for some 1 < k. Then either T(J, /) is empty, 
or else there is an m fop which 

Jf s is the <-last member of FkPl(f), let T(d) be the set of members of F,Jf’) zchich 
are <-greater than 5. Then either T(g) is empty, OY there is an m for which 

T(J) = {(i1 ,..., z’,,-~ , i): 1 .< i < m), 
OY else 

T(s) = {(iI ,..., ird.-1 , i): i = 1, 2,...). 

(i) In the notation uf (g) 

T(J, t) = 3 --[f(t)), X(J)) < l/2”-] for all tt [P(J), p(t)), (3.3) 
T(d) -- 2~ -+ d(f(l), X(J)) < l/Zk-’ for all 1 E [p(d), ~0). (3.4) 

In our inductive definitions and proofs, we will be making repeated use of 
the folIowing immediate consequence of basic property (e). 
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3.2 PROPOSITION. ,Suppose (il ,..., ik) E YJ(f) and that j < k. Then 
inf{t: t > p(ir ,.,., il), d(f(t), x(i, ,..,, ii)) > l/2$-r) 2s tIze sunze for each I in 
cj,j + I,..., .q. 

Let P(n) be the assertion that the statements of 3.1 all hold provided K < n. 
P( 1) follows from the definitions of rr(f) and p(t) for k E q(f). Assume, then, 
that 9%(f) has been defined and that p(t) has been defined for t E $Qf). Also 
assume P(n). We now define Tn+I(f), p(.F) for t E Y,,+r(f), and prove P(n + 1). 
First, if (ir ,.,., i,) E Yn(f), then (ir ,..., i, , 0) E rn+r(f) and p(il ,..., t , 0) = 
P(4 ,-a*, in). Fix (ir ,.,., &J = d. Suppose both that (ir ,..., i, , I) E Y*+r(f) and 
that p(i, ,~.., i, , Z) has been defined for Z = 0 ,..., a, and that either 1 == 0 or 
p(il ,.,., ie , 0) < *.. < p(il ,..., i, , i). Let 

til = inf t : 1 2 p(ir ,..., i, , d), d(f(t), x(E; ,..., il)) > -& 
1 1 

, (3.5) 

I = l,..., 12 + 1 (with (ir ,..., ir) = (& ,..., i, , i) if 1 = n + 1). If tl,,+r < t,r for 
each E = 1, 2 ,..., n, then (i1 ,..., i,, i + 1) E &r(f), and we set p(il ,..., i, , 
i + 1) = t++r : clearly p(il ,..., & , i) < p(il ,.,., i, , i + 1). Otherwise (& ,..., in , 
i + 1) # Yn+r(f); indeed (& ,..., i, , j) $ Ym+l(f) for all j > i. Assume that this 
procedure has been carried out for all 3 = (il ,..., in) ET%(~), producing for 
each such u either a finite sequence (il ,..., &, , 0) ,..., (i1 ,..., i, , i) or the infinite 
sequence {(iI ,.-, i, , i)>L in A+l(f)T with p defined and strictly increasing 
thereon. We next show that 3.1(e) holds for all k < n + 1. Since we are assuming 
P(n), this amounts to showing that it holds for R = n + 1. Supposej < R + 1. 
We must show that if (ir ,..., i, , i) E Y%+r(f), then 

d(f(G 44 ,..., id) < & (3.6) 

for each 1 E [p(ir ,..,, iJ), p(il ,..., in , i)). We do this by induction on i. First, 
suppose thatj < n. Then this holds for i = 0 by virtue of P(n). Suppose it holds 
for i = 0 ,..., Z and that (ir ,..., i, , I + 1) ~9++++~(f). Then (3.6) holds for each 
t E Wil ,..., ii), P& ,..., is, 1). If there is a t E Lp(ir ,..., i, , Z), p(i, ,..., i, , I + 1)) 
for which (3.6) does not hold, then tr,-+r < p(il ,..., i, , E + 1) by virtue of (3.5). 
This contradicts the definition of p(ir ,.,., i, , 2 + 1). This takes care of the case 
j < n. Again proceed by induction on i. For i = 0, what we want to prove is 
vacuously true. Assume it holds for i = 0 ,..., Z, and that (ir ,..., i, , 1 + l} E 
Yn+r(f). Then (3.6) holds for all t E [p(ir ,..., i,), p(ir ,..., i,, , 1)) by hypothesis, 
and the existence of a t in [p(;r ,..., i, , Z), p(ir ,..., is , 1 + 1)) for which 3.6 
doesn’t hold contradicts the definition of p(ir ,.,., in , Z + 1). This takes care of 
the case j = n, and completes the proof of 3.1(e) for K < 71 + 1, 

We now compIete the proof of P(n -t 1). Suppose that (I = (i, ,..., $J E Y*(f), 
and that 9 is not the <-largest member of Fm(f). By P(n), more precisely 3.1(f) 
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with k = n, the <-smallest member of YV(f) strictly <-greater than ti is 
4 = (i, ,..., i,-, , i, + I) for some 1 I-= 1, .,., n. We claim that for each /’ E +Yn+I(f) 
for which u <J’ < C, we have P(J) < p(/‘) < p(G). WC have already shown that 
p(d) < p(O) for such t’. We have p(d) < p(t), for p is strictly monotone on YJf) 
by P(n). Therefore p(iz ,..., i, , 0) = p(il ,... , i,J < p(C). Suppose p(i, ,..., i, , i) < 
p(t), and that (il ,..., C , i -f- 1) E ,L&(.f). Then p(iI ,..., i, , i $-- 1) = ti,, tl < 
t,,i . But 

Thus p(i, ,-.., i,, i I- 1) < ,o(J), establishing our claim by induction. Since 
Wf(~l ,-a*> in I i + 1)),f(ph If.., in 3 i)) 2 l/2n-1 by the right continuity off, 
the set (8: d’ E T,‘+,(f), J < d’ < tl is finite by virtue off having a left limit 
everywhere. Suppose (il ,..-, 4J is the <-largest member of z&(f). We have 
already shown that p(& ,..., &J < p(il ,..., i, , 1) < ... . Since the only members 
of Tn+I(,f) which are <-larger than (iI ,..., i,) (assuming there are any) are of 
the form (& ,..., i, , i), we have established the monotonicity property 3.1(b). We 
have estabhshed the structure property 3.1(h) for k = n + I. Property (1) of 3.1, 
for h = ti + 1, is an immediate consequence of our definition. So is property 
fc), and property (d) is obtained by iterating property (c). We now establish 
the order property 3.1(f). Suppose first that (i1 ,..., i,J E &(,f), and that 71 
.‘. = T,~ = UJ. Suppose (j, ,..., k,) E Fk(f), and that (il ,..., ik) < (jI ,..., j,,.). 
It is an easy consequence of the definition of < together with the truncation and 
reduction-of-last component properties that (iI ,.,., i,-, 1. 1) E Y!;(f) for some 
m-l ,..., k, whence p(il ,..., &. 1 , i,, + 1) < m. But 

the last equality being a consequence of proposition 3.2. But this last expression 
is equal to T, , which we have assumed is equal to 03. Contradiction. This shows 
that if ‘1 = ..’ = 7k = CO, then (& ,,.,, ik) is the <-last element of 9Jf). 
Suppose, then, that one of ‘T I ,..., ‘k is finite. Assume that ~~ == 7I A ... A ~~ and 
that j<E-+Tj<TI. We must show that (jl ,..., i,-, , i, + 1) E q(f), that 
7-1 = p(i1 . ,..., I[~, , i,, -i.- I), and that no member ofFk(f) is (-between (iL ,..., ik) 

607/32/1-z 
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and (i, ,..., il-, , ‘I E + I). This is obvious from what we have already shown in 
I = k, so assume I< k. We have 

by virtue of proposition 3.2. Suppose there is aj = I,..., I - I with 

Using proposition 3.2 again, we obtain 

which contradicts j < EA 7L < 7i . Therefore (i1 ,,.., i,-, , iz + 1) E F&f), with 
T1 = p(i, ,...) i,-, , i, + 1) by virtue of (3.7) and the definition of p(;r ,..., i,-r , 
i, + 1). Suppose there is a member / of &[f) (-between (i1 ,..., ik) and 
(h I..., i,-, , i, + 1). Then f = (ir ,. .., i, ,jl+r ,..., jk), with jl+l 2 i,,, ,..., jk > i,. 
The inequality must be strict in at least one of these last inequalities, or 
c = (il ,*.*, Q. Let m. be the smallest of I + I,..., K for which j, > i, Then 
(h ,-., L, , jrn ) E.F(~) by truncation, so (i1 ,..., i,_, , i, + 1) E S(f) by 
reduction of last component. Let 

Ti = inf t : t Q? p(iI ,..., i,), d(f(t), X(ir ,..., ij) > & 
I I 

, 

j = I,..., m. Since (i1 ,..., 2,,-1 , i, + 1) ET(f), ok < ~j’ , j = I ,..., nz. But 
proposition 3.2 implies that rj = 7j , j = l,..., 1, so 7, < I$ , j = l,,.., 1. But 
T& = rl A .‘. A 7Jc , and so 71 < T,~ , Contradiction. No member of &+(f) is 
between (a, ,..., ik) and (ir ,..., i,-, , L i + I). This completes the proof of 3.1(f). 
Thus P(n + 1) holds. This completes the proof of the induction step, and 
therefore the proof of theorem 3.1. 

3.3 COROLLARY. Suppose that LI E T,,(,f). If .I is the <-last member of YJf), 
then 

Wt), fb(4) G 1 P-l (3.8) 

for all t 2 p(,J). If t is the <-next member of ~FJf), then (3.8) holds for 
aZl t fz [p(9), p(d)). 

Pyoof. If rl is the <-last member of FJf), then inf(t: t > P(J), d(f(t), 
f(p@))) > l/Zn-l} = cc by 3.1(f) (with k = n and E = n in 3.2.) Thus (3.8) 
hoIds for all f > P(J). If / is the <-next member of &(f), then p(t) < 
infit: t -2 p(d), d(f(l),f(p(~)) > l/Zn-l}, again by 3.1(f). 
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3.4 COROLLARY. Let t y= (i1 ,... , l,,) E 9(f), FOP each j = I, ...l m, let S, Be 
the rlosed sphere of radius I /2j-l and center x’ I ( 1 ,..., ii). Then x(/) E Si ,j = I ,..., m, 
infact, there is a 8, > 0 such that f(t) t S, ,for all t E [x(t), x(t) ~;~ Sj). 

Proof. The proof is by induction on m. The corollary is trivial for m .- 1. 
Suppose it holds for I ,..., wz - 1. Then ~(i, ,..., i,, J E ~‘;, ,j -- l,..., m - I. !I’e 
continue by induction on the value k of wz -- I. Since ,x(i, ,..., i,,, . . . . , 0) is clearly 
an interior point of the sphere of radius I jZiJf 1 centered at itself, ,p(iI ,..., i,,, I , 0)~ 

X,8 1 and “r(iI ,..., js,--l , 0) = x(il . ..., i,,) E Sj , j -== I,..., HI .- I by the original 
induction hypothesis. Suppose (il ,..., i,n.I) E F(J) and ~(i, ,..., i ,,,- 1 , k) t S, 
for each j 1 ,. ‘., nz. If (il ,... , i,,, l , k 2 I) ES(j), it folIows from 3.1(f) that 
p(i, I..., jr,,-, I Jz + I) is strictly less than inttt: I ;.? p(i, ,..., i,,, . k), d(f‘(t), 
X(il ,.,., j,)) ;- 1/2)-l} for each j -- I,..., opt - 1. The conclusion thus follows 
for these values ofj, and it follows forj -1 TU from the right continuity off. 

3.5 COR~I.L.~RY. Suppose 0 51: s < t, and that f(s) -/!. f(t). Then there is an 
., E .S(f) ZLv?h s < p(;l) 2; 1. 

Proof. Let d = d(f(s),f(t)). Assume 3 > 0. Choose 7~ with f/2’&-” <.’ d. 
Let ,, c 37,,,(f) be such that p(d) <z S, and p(/) > s if /E *YTL(f) with / >,- .I. Let 
r = P(J). By the t&n& incquatity d 5:; ci(f(s), f’(v)) m! d(f(!),f{r)), so either 
d(f(~),f(~)) ;--> l/2+’ or d(.f(s),f(~)) ;> ljZ=m~l. If n(f(~),f(r)) ;, 1,‘2”- 1, then, 
by the preceding corollary, .I is not the -.:-last member r~f SFn(f), and, furthcr- 
mow, if / is the <-next member of ,T?&:,Cf‘), then p(r) r< p(.,). This contradicts 
the definition of J, so d(J’(t),J(r)) > 1/2’~-‘. We again invoke the preceding 
corollary, this time to conclude that there is a <-next member / in -c,(,f) and 
that r- .:: p(f) 5:: f. Since / > il, p(I) > s, so p(/) F (s, t]. 

3.6 COROLLARY. If .f is disconfinuous af t, t p(.,) for some .I t .Y-( f). 

Ihof. Suppose d(f[t),f(t - 0)) ~~ 8 ::> 0. Ch oosc II so that 6 _‘.- l/211--2. Let 
j be the <-largest member of my& with P(J) -..:.; 1. If p(.j) = f, we m-e done. 

Otherwise, either ti is the <-last member of FJJ) or else the <-next member / 
of .9:(f) satisfies p(/) > t: in either case it follows from corollary 3.3 that 
d(f(s),f(p(J))) 7;. 1/2”-l for s F [,I(J), t). Th us d(f(p(.,),f(t ~ 0)) 5:: l/P’. 
Therefore 

d(f(t),f(p(J))) > d(f(f),f(t ~- 0)) ~-’ dCf(f+)),.f(f - 0)) -2 8 -- j’1.1,~ 

But 6 > l/2+“, so d(f(t),f(p(~))) :;, I /2”-I. Contradiction: P(J) must equal f. 
‘I’his finishes the proof. 

3.7 C~IIOLLARE-. The set {p[f, J): 2 c t<b(,f)) has rzo @z&e Zimit poi?zts. 
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PYOO$ We prove this by induction on n. Yi(f) is either the set of all non- 
negative integers, or else a set {O, 1 ,,.., k). It is clear from the definition of p(d) 
for J E Yi(f) that n(f(p(k)), d(f(p(R + 1)) 2 I, so (p(k)} must be unbounded or 
finite (since f has left limits everywhere). Suppose that the corollary is true for 
Y%-,(f). From this assumption together with 3.1(g) we see that <-between no 
two successive members of Yn-r(f) is there an infinite number of members of 
&(f). Therefore if 9Jf) is to have a finite limit point, Y%-,(f) must have a 
<-last member (il ,..., i, .r). It then follows from 3.1(g) that the members of 
yn(f) <-following (a, ,..., i,-r) consist either of the entire sequence (& ,..., i,-r , 
l), (i, ,.*., i+r * 2) ,... or an initial segment of it. But if B and t are consecutive 
members of this sequence, d(f(p(d)),f(p(t) > l/Z+l by virtue of 3.1(f) [use 
(3.2) with k = 1 = n] and the right continuity off, so even if (il ,..., i, , i) I& 
for all i, the fact thatf has left limits everywhere ensures that the corresponding 
p-values do not converge to a finite-limit. Thus the statement of the corollary 
holds for n, and the proof by induction is complete. 

3.8 COROLLARY. Let 4 = {i1 ,...,i,,)~Y(f). For each 11 > m, let u, be the 
n-tuple (2.1 ,..., i,n , 0 ,..., 0, 1). Suppose p(t) is not the left hand endpoint of an 
interra1 of constancy for f. Then 

(a) there is a sequence n, t co with dpag E S(f), 

(b) if"?&, ~~y(f)f~r nk -+ 03, th dgn,) - p(t). 
Proof. To prove (a), we need only establish that there is an n > m for which 

the n-tuple (& ,..., i, , 0 ,..., 0, 1) E Y(f), apply this result to the n-tuple (& ,..., 
i, , 0 ,..., 0) in place of (i, ,..., &J, and repeat this process again and again. By 
virtue of corollary 3.3, there is a S > 0 such that d(f(t), x(il ,..., ij)) < I/2j-’ 
for all 1 E [p[l’), p(/) + S]. Let fl = sup(d(f(tf, x(J)) : t f [p(E), p(L) + S/Z]}. 
Since p(J) is not the left-hand endpoint of an interval of constancy, A > 0. 
Suppose k satisfies l/Zicpl < d and k > m. Then inf{t: t > p(t), d(f(t), x(t)) > 
1/2”.-l} 2 p(L) + 6/2, while inf{t: 1 > p(C), d(f(t), x(il ,,.., ij)) > 1/2j-‘} 2 
p(k) -1.. 6, j = 1 ,...) m. It follows from 3.1(f) that one of (ir ,..., i, , 1) ,..., (ir ,..., 
;,, , O,..., 0, I) (the last one listed being an E-tuple) is the <-next member of K(f) 
following the l-tuple (ir ,..., & , 0 ,..., 0). This <-next member is the sought 
after n-tuple. 

To prove (b), since p(~~,) is non-increasing, it converges to a limit as k + CO. 
This limit is clearly no smaller than p(d). Suppose it is equal to p(k) -I-- 8, where 
6 > 0. We apply corollary 3.3 to obtain d(f (t), x(C)) < l/2nk-1 for each t E 
[p(l), p(k> + (6/2)] and k = I, 2 ,.,. . This is possible only if f(l) = x(t) for 
t E [p(6), p(t) + S/2], violating the assumption that p(C) is not the left-hand 
endpoint of an interval of constancy. Therefore ~(a,) -p(t). This completes 
the proof of(b). 

So far, we have, for a fixed f E D, defined Y(f) and p(f, 3) for J E 9, in- 
vestigated the structure of F(f), and listed some of the properties of p(f, ti) as a 
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function of J E Y. WC cannot, however, use these notions in a theory of stochastic 
processes (with sample paths in D) without certain facts about the measurability 
of p(f, 9) as a function off E D. We have not even established that {f: d E Y(f)} 
belongs to 9, much Iess what we require, namely that (f: j E s(f) and p(J, J) :z 
s] E gSc To verify this fact requires some preliminary definitions, notation, 
and results which we now present. 

Let ., E F. Suppose .J = (ii ,..., i,). For each j = I ,.,., n, Jut dj be the n-tuple 
(iI ,... , ij , 0 ,... , 0). We call J, ,..., 2 ,,,-, the natural predecessors of 1. Fixf E Y-( .I). 
Let Sj = X(Jj) 1 f(p(Jj)), and R;(J,f) = (y: d(Xj , j') > ,:'2'-1},j =~= I,..., ?z, Let 

R(J,f) : (Jyel R,(+f). Define 

a(J,f) = inf{l: I i;-; p(f, :j),f(t) f R(,,f){, J E <s(f) 

=cxj J $ ?f) 

Denoting R,(,,f) by Rj , let pl(J,i) = R, , and Qj(j,f) : Rr n .‘. n I$, n 
Rj , j = 2,..., n. Consider the rz-tuples i, = (;r f- 1, 0 ,..., 0), k, z--z (ii , ia + 1, 
0 ,..., 0) I..., I,& = (il , i, ,.... inml , in + 1). We call d, ,..., /w the natural sz~ccessors 
ofti. 

3.9 PROPOSITION. Suppose J E q&(f). Then d is the <-last member of&(f) 
if and only if ~(3, f) = 00. Suppose o(j, f) < CD. Then, for each j = I ,..., n, the 
<-next member ofTn(f) is Jj ?j(‘and only ;ff(o(J,f) EQj(d, f)- 

Proof. The proposition is an immediate consequence of the definitions of 0, 
Qj and the order property 3.1(f). 

For each PIE = 1, 2 ,..., there is a partition G?(‘~‘J 1 (& : j .--= 1, 2 ,... } of S into 
Z-measurable sets of diameter no greater than I/m. We shall assume, without 
loss of generality, that 8 frn+iJ is a refinement of Gcrnl. (In what follows we shall 
use n-tuples (j, ,..., jm) of positive integers as indices, with the Eth component j, 
referring to a partition element E, j , We apologize for and warn against the 
possible confusion of the indices (j, :.f.,i,) with the fixed member J = (ii ,..., i,) 
of Yn), For each n-tuple (j, , . . . , j,) of positive integers, and each 1 = l,..., n let 
&(ji ,..., j, , I) =1 {.y: d(y, E’,.jl) > lj21-1), 1 = I, 3 ,..., n and Rm(j, ,..., j,) := 
u:, R(j, ,..., j, , 1). Set 

r’“Vl ,..., jn ,f) = inf{l : t ;z p(f, 3), f(t) ER(jl ,.,., j,,):, J enf) 
(3.9) 

E-al: J v-(f) 

Let C,,(j, .-.., j-> = flrS1 (f: J F r(f),f(p(~~)) E ,!&i,f. The definition of 
C,(j, ,..., j,) requires the observation that if 3 E Y(f), each of the natural 
predecessors of J is also in F(f). Th’ f 11 IS o ows from 3.1(a) and the truncation 
property 3.1(d). Let urn(f) = y’“‘(j, ,..., jn ,f) forfe C&i ,..., j,L) 
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Proof. Fix f with J E Y(f). For each m = 1, 2 ,... , let olfmf be that {j, ,..., j,,J 
for which f~ C(jr ,..., j,), that is, for which f(p(tll)) G I?m,i, , 1 = 1 ,... , n. Let 
R,,(E), R,n denote R,(e(m), E) and R,n(a(m)) respectively. It is clear that o,,(f) > 
u(f). Since R,(i)T in nz for each I = I,..., j, it is also clear that o,(f) h in m. 
Assume that a(f) < 00. Let t* =z lim crTm(f). Suppose L* > (T = urn(f). Then 
there is a t’ E [o, f*) with f(t’) E R(d,f). Suppose f(t’) E R,(+f). Then d(f(t’), 
XL) > 1/21-l + s, where 6 > 0. Let jl be the Zth component of a(m), and E = 
Em,jt _ Since p(f, 3) < t’ < t* .< a,(S), d(f(t’), E) < 1/21-1. Suppose x f E. 
Then d(x, XJ -< I/m, so 

W(f), 4 2 d(f(Q, 4 - 4% , 4 

Since this is true for all x E E, d(f(t’), E) 2 l/21-1 + 6 - (l/m). But d(f(t’), 
E) < l/2E-1, and 8 does not depend on m, so by choosing m > l/S, we arrive at a 
contradiction. Therefore t* = o,(f), and (b) is proved. 

3.11 LEMMA, Foreach3~Funds>O, 

Proof. Y = urzI Ya , and the proof is by induction on K We consider first 
the case n = 1. FI is the sequence of non-negative integers, and our proof is by 
induction. If 4 = 0, {f: 9 E r(f) and off, 3) f s} = D E s3,+ . The induction 
step, in which we assume the validity of the statement of the lemma for J = k 
and show that it is valid for u = K + 1, is no easier for 1~ = 1 than it is for 
general n. Assume, then, that the statement of the lemma holds for each d E Ynml . 
Suppose that t = (il ,..., &) E Yn . By 3.1(a) and the induction hypothesis, 
the lemma holds for (ir ,..., iPI , 0). We now show that, for any value of k = 0, 
I,..., it holds for (ir ,..., iVbPl , k). Then, in particular, it holds for B. The proof is 
by induction on k. The value K = 0 is already taken care of, so assume that 
the lemma holds for 4 = (i1 ,..., inPI , k). We want to show that it holds if 3 is 
taken to be (il ,..., inPI , K + I). Extend p(. , 0) to f~ D for which J 6 5-(f) by 
setting p(f, .J) = CO for such $ Then (f: p(f, 3) < S) = {f: 9 E Y(f) A p(f, 4) < 
s] E 9,+ , so p(*, J) as so extended is a stopping time relative to {.5Bt+j. Now fix m, 
and consider the partition d cm) of 5’ considered earlier. Set i, = K: we now use 
notation defined earlier in terms of a fixed (& ,..,, in) EY’. For each n-tuple 
(jr ,...,i) of positive integers, the function y(Vn)(jI ,...,j, , .) on R is the first 
p(., o)-hitting time of the open set R(j, ,...,jn). Therefore -+“)(jl ,..., j, , .) is a 
stopping time relative to {gE%,+) by virtue of proposition 2.2. We claim that, for 
each I = I,..., n A, = {f: 3 E 9”(f) A f(p(dJ E Em,ii) E B’,w (here p(4) is not an 
abbreviation for the number p(f, ti) but stands for the function p(., J)). To prove 
this, we argue as follows. First {f: d E Y(f)] = uy-, (f: J E Y(f) A p[f, 4) < i}, 
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and since the statement of the lemma holds for J, {f: J E Y(j)} E 9:. Second, for 
each 1 = I,..., n - 1, the statement of the lemma holds by virtue of the induction 
hypothesis and 3.1(a) if 2 is replaced by Jo . Consequently the extension of 
p( ., JJ to all of D obtained by setting p(., oL) = M if s1 $ F(j) is a {%+)-stopping 
time. Therefore {f:f(p(oJ) E EWL,jJj E spLG,) C s%?. We USC the statement of the 
lemma again to obtain this last for 1 = n (recall d, : d). Since -‘I, = (f: J E 
Y(f)> n {f:f(p(~~)) E E,.j,}, it follows that A, E 9, 1 := I,..., H. ‘I’o show that 

A, E G~,,(J requires that we show that A, n {f: p(f, .,)I E 9?,+ for each s. We 
apply proposition 2.1. Suppose that f~ A, n (f: p(f, 3) ::< s), and let g E D, 

g -f on [o,S + 61 for SOme 8 > 0. SirIce {p(', J) :< S> EQ,qI , p(R, J) Y< S, SO 

ii t -F(g). Since -iI E Y(g) if 4 f F(g), we have from 3.1(b) p(g, +) < p(g, 3) :< s, 
and since b(‘, do) < $1 E ~?,~i , Pkt 4,) := P(f> 4)’ so g((P(-‘o)) =f(P(f, Jo)) f 
K!‘ni,ji _ Therefore g E A, n {f: p(f, g) < s). It follows from proposition 2.1 that 
A, ~7 (f: p(f, .,) .< $j- E B’,,- . Since s is arbitrary, A, F 2~~) . It follows that 

G(il ,“‘1 j,) n’rcl A, belongs to LX?,,,) . Recall that ~(~“1 is defined to be equal 
ttr ycTtlJ(jl ,..., j, , .) on C(j, ,..., in). It follows easily that {f: ain’) < $1 E Q?,, for 
each s. Therefore I.+) is a {L@$+) stopping time. This implies that 0 is a (gf+) 
stopping time. By 3.1(c) {f: L E Y(f) A p(f, /) .< s) ---z {f: 3 E Y(,j’) A / E 
Y(f) A p(f, /) .c<, s}. By proposition 3.9, this last set is equal to if: (r(j) ::: s A 
f(u(f)) E Qn(+ f) = (fi u(f) < s} n ny:: B(E), where B(1) ::: (~5 d(f(c~), 
f(p(~$)) 5: l/2’P1J. Since both f(p(., dL))  and f(u) are g,-measurable, the same 
is true of B(I), hence of ny;;’ B(E). But then nyz: B(E) n {f: CT(~) :.< s) E SJ?,, by 
definition of QV . Therefore the statement of the lemma holds if J = (ii ,..., i,. i , 
h) is replaced by (ii ,..., i,-i , k + I). It f o 11 ows by induction that it holds for all 
J t & . It now follows by induction that it holds for all r) E F = uz=i F?;, . This 
completes the proof of the lemma, 

3.12 D~FINITI~K. For each J E F we denote by J%~ the cs-field generated by 
sets of the form 9 = (f: r E S(f) A p(f, /) < t A f(~ A p(d)) E R A f(p(4)) E F} 
as t and u range over [0, co), E on F over Z, and / over those members of $ for 
which I < 3. 

It is clear that if / ( ., then g( C 58d _ 

3.13 PROPOSITION. Y, CiZ',,,j 

P~ooj. We must show that if A E 9, , then A n {f: p(f, J) :< s]l- E Y,s for 
each s ,:z 0. It is enough to show this for the class of sets A specified in the 
definition of *J . Let A be such a set. Then A E LZ by virtue of 3.11 and the 
general theory of stopping times, so A n {f: p(f, J) <. sj E 9:. To show that 
this last set belongs to -gs+ it suffices by virtue of proposition 2.1 to show that 
ifj belongs to it, and if g E D with g = f on [0, s $ 61 for some 6 > 0, then g 
belongs to it. But this is an almost immediate consequence of the monotonicity 
property 3.1(b). 
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The reader may be wondering why we have introduced the fields gd when we 
have available the fields B,c,j . First, we note that it is not true that if t < d, 
then 9D(t~ C .9P(d) . Second, and more important, it is easy to see that 9d is 
countably generated, so the disintegration of measures theorem applies when 9?, 
is used as a conditioning sub-a-field of 9. We do not know whether or not 
So(d is countably generated. 

3.14 DEFINITION. Let 9 E 7. 8, is the sub-u-field of 9 generated by sets of 
the form {f: k E Y(f) A f(p(d) E E} as 6 ranges over all / E Y with t < 0, and 
E over Z. B, is the sub-u-field of 9 generated by sets of the same form, but 
with G ranging instead over all t E Y with t > 4. 0 is the a-field generated by 
sets of the same form, but with G ranging over all members of .9+: thus 0 = 
Od A 9, f 

It is clear that 8, and :?pd , hence of course 8, are countably generated. 

3.15 THEOREM. If X and T? are stochastic processes with the sawae state- 
de$endent hittilag probabilities, then the restrictions of T and 77 to 0 are identical. 

Proof. Let 0, be the collection of a11 sets of the form 

(f:+EY(f) np(f,dJEl$,i= I ,..., &t,$Y(f},j= l,..., m>, (3.10) 

where m and n are arbitrary non-negative integers, ‘Jo ,..., dI , tl ,..., Lm arbitrary 
members of 9 and El ,..., E, arbitrary members of 2. Qt, is closed under finite 
intersections. Note that {f: rl E Y(f) A p(f, J) E E}c = (f: J $ F(f )] n {f: J E 

r(f) * fb(4 E EC”), and (f: J $ S(f)>” = {f: ri E Y-(f) A f(p(cr)) E S}. It fol- 
lows that the complement of a member of 0, is a finite disjoint union of members 
offi, I and that any finite union of members of 9, can be expressed as a finite 
disjoint union of such members. We conclude that the class of finite disjoint 
unions of members of 0, is a field which generates 0. Therefore to prove the 
theorem it suffices to show that the restrictions of x and ii to o0 are identical. 

We call a sequence C = (f~~ ,-.., s,,J of members of Ym an n-chain if 

1. HI = (O,..., O), 

2. /$ < 612 < .-- < /crrr 
3. if 9 E C and 1 # cc1 , then each of the natura1 predecessors of J belongs 

to c, 
4. for each i = I,..., m - 1, ui+, is one of the natural successors of or* , 

5. if (i i ,..,, in) E C, and i, > 0, then (ii ,..., in+l , i, - 1) E C. 

Note that if (ur ,..,, u,) is an n-chain, so are ~Q(CQ , ti2) ,..., (cc, ,..., +-J. It is 
clear from Theorem 3.1 that if we list, in <-order, the first m members of Z,,(f), 
the result is an n-chain. An immediate consequence of this is that the members 
d1 ,..., dm of 9’- of (3. IO) can be embedded in at least one n-chain where we identify 
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(ii ,__., ik) with the n-tuple (il ,. .., 0, , O,..., 0) if k < n and n is the least integer 
for which each of J 1 ,...) -Ii , -!I ,“.,, L,n is a k-tuple with k < a). We say that an 
n-chain C : (gl ,,.., Q) is maximaIZy determining for (pi ,..., JJ and (l, ,..., /,J 
if (i) each of J i ,..., J! belongs to C, (ii) none of /i ,,,., /m belongs to C, (iii) there 
is no n-chain with l/l ,..., ,dt as its first k elements containing any of /i ,..,, /!?, , 
and (iv) ifj < k then at least one of(i), (ii), and (iii) does not hold if (+ ,..., ffk) is 
replaced by (f/i ,..., ((j). It is not hard to see that the set (3.10) is a countable 
disjoint union of sets of the form 

{f: o/i E A,(f) A f(P(NJ) EF, , i =: I,..., Fi}, (3.1 I) 

where (t/i ,..., t/,) ranges over the n-chains which are maximally determining for 
pi ,..., dJ and di ,... , /nt , and where Fi = s unless f/z := Jo for some j = I,..., m, 
in which case F, = Ej . From this it follows that we need only prove that sets of 
the form (3.11) are assigned the same measure by both x and+. We now pro- 
ceed to do this. The proof will be by induction on the length m of the n-chain 

( (cl ,..., 
For2.1, (3.11) reducesto{$‘:f(O)EF}, andn((f:f(O)EF}) =ii({fif(O)~F}) 

by virtue of the assumption that X0 and -vi, have the same distribution. Assume, 
then, that x and 5 assign the same measure to all sets of the form (3.11) for any 
n-chain (/bi ,..., //m) and any choice of Fl ,..,, F, in .Z, and suppose that (N, ,,.., 
lfnl+i) is an n-chain and that F,,+, is in Z. Let 3 : U, . Since {f: 4 E Y(f) and 
p(f, J) 2~ s) E g,+ for each s, P(J), extended to all of D by defining it to be + ~13 on 
(f: 9 E Y(f)}, is a stopping time relative to {G,, >. We shaI1 use the symbolism 
introduced just before the statement of lemma 3.1 I, using “k” instead of the ‘<m” 
referred to here. For each n-tuple (j, ,...,j,J of positive integers, the function 

PYjl ,.,., jn , .) on D is the post-p(.)) hitting time ot the open set R(j, ,..., j,). 
Also, as we showed in the proof of lemma 3.11, C,.(j, ,...,jJ E QO(O, .Letting 

a -- (A ,..., k), it follows from definition 2.6 that for each A E 2 there is a 
(2 - ~3) measurable function g,4 on S into R for which 

It follows from (3.12) that 

=dB * {f :fk”“‘(a)) E A)) = j-- E4(.f(f’(J)) r(df)) 
(3.13) 

+(R * If : .f(r'"'(=)) E 4) = jB SAVM'J)) Sf)) 

for each B E gpfd) _ Let E be the a-field generated by all sets of the form 
{f: wf E y(f),f(p(//f)) EF~ , Z’ = I,..., m}, where Fl ,..., F,, range over members 
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of 2. Clearly V C gpcdj . Furthermore, by the induction hypothesis, T(C) = +(C) 
for all C E V. Since the map j-+gA(f[p(s))) is W-measurable, the integrals on 
the right hand side of each equation of (3.13) are equal. Hence 

n(C n (f : f(y’“‘(cx)) E A>) = ;i(C{f :f(y’“‘(a) f A)) (3.14) 

for each A E 2 and C E V. Clearly, for each n-tuple OL of positive integers, 
C,(a) E V. If we substitute C n Ck(~) for C m each side of (3.14) and sum the 
result over all such 01, we obtain, for each C E G? and A E L’, 

n(C n {f : f(u’“‘) E A}) = qc n {f : f(d”‘(~) E A)). (3.15) 

By the usual sort of argument we go from (3.15) to 

jc (g of)(d”‘) qqf) = jc (g ~fW7Y fib!f), 
for each non-negative E-measurable g on S and C E V. Take g to be continuous 
with compact support on S. If we let k - CO in (3.16) and apply proposition 3.10 
and the continuity of g of, we obtain 

Using the usual sort of argument, one obtains (3.17) for non-negative z-mea- 
surable g on S. (3.17) also implies that, if Z is any non-negative V-measurable 
function on D, then 

jc Z(f 1 * cg Of)(U) n@f) = jc Z(f) ’ k of)(a) +vL c E Gir’. (3.18) 

Let h be any non-negative function on the (n + 1)-foId product of D with itself, 
measurable with respect to the corresponding product u-field ,P+l. Since each 
of the natural predecessors ‘1, ,..., J,~, of ti is in the n-chain /f1 ,,.., /tnr by virute of 
property (3) of n-chains, each of f(p[~l)),...,f(p(;lpa)f is V-measurable, where 
CI, = A From the fact that (3.18) holds for all Z and g as specified above we 
obtain 

f h(f(p(~l))i...,f(P(~n)),f(a)) 44 c 

= s htf(f(sl)),...,f(f(~~,)), f(4) f@f) (3.19) 

for each C E ‘X. Because of property (4) of n-chains, tiFn+r is one of the natural 
successors/i ,..., 8, of J. Suppose blm+r = tj. In (3.17), take C = (f: c/(1 E F(f) A 
f(p(uJ gFi , i = I ,..., nz). By proposition 3.9, /j E T(f) if and only if f(o) E 
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Q,(,,m ,f). But the indicator of the set of f~ D for which this holds can be 
u-ritten as a Bore1 function of f(p(+)),...,f(p(Q), andJ(u), and so the same is 
true of the indicator of the set {f: tj E F(f) and f(p(/,)) ~Z;b,+r]. Let the 1z in 
(3.19) bc such a Bore1 function. Since /, -= ,tnc,., , (3.17) then yields 

7r({f: //i ET(f),f(p(//;)) EFj , i L- I,..., 77L $ 1)) 

= T({f : Ni E.qj),.f(p(uj)) EF, , i z= I )..., 112 ,- II). 

This completes the induction step, hence the proof of the theorem. 

(3.20) 

3.16 LGvma. Let ,ri’ be a stochastic ~mxss with state-dependent hitting p&a- 
hilities. Let .I E 5, alzd d E Pp, . Then 

%-{A ( 9;) = 7r(12 ) fiJ (3.21) 

Proof. It suffices to prove (3.21) f or .4 of the form (f: li f F(f) h f(p(/,)) E 
EL , i = l,..., m>, where k, E.F, i 2: I,.,., m, and J < I1 < ... < /,, . It is not 
hard to see that no loss of generality is involved if we assume that [I is a natural 
successor of J and that /i.+.l is a natural successor of l1 for i ~~ I ,..,, m - 1, The 
proof is by induction on ‘EI. For m = 1, what we are to prove reduces to 

T(C E S(f), f(p(/) E R 1 a,) = n(/ f F(f), f(p(/)) E E 1 C;‘,), (3.22) 

where / is a natural successor of J, and B i: S. The complete proof of (3.22) is not 
short. The basic ideas and techniques, however, are so similar to the proof of the 
preceding theorem that a great deal of repetition would bc involved were we to 
present the proof in detail. Therefore, xve leave these details to the reader, and 
proceed to the induction step. k\‘e assume that (3.21) holds for sets d as specified 
above, and try to prove 

7r(Li &(f) A f(f(li)) E Ei ( i ...- I,,,., ?I2 i 1 1 gd) 

-= 77(/i tF(f) A ,f(p(/;)) E B, , i L 1.. , 777 -I- 1 1 P,), (3.23) 

where /, E .F’, i = I,..., wz ,! I, 6, < ... < /1,1+, , and E, E Z, i = I,..., m + I _ 
Let G be the indicator of (,f: /r E F(f) A j(p(J?)) E Ki , i 2,..., WL I- I). Let CC? 
be the u-field generated by {f: /r E F(f) A j(p(C,)) E I?! as K ranges over all 
E c: 2. Now (3.23) becomes 

E,,(GH 1 .O.) ~ EJCZZ j C!;). (3.24) 

But 

(3.25) 
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the last equality being a consequence of our induction hypothesis. Note that 
GE,(H ] fJt,) is measurable with respect to 0& a = 0, A 2J7. From 3.22 it follows 
that 

TtK I 90) = n(K I 0,) (3.26) 

for all non-negative g-measurable functions K on D, from which in turn follows 

T+TL 1 P&J = a(KL 1 UJ (3.27) 

for g-measurable K and B,-measurabIe 1; (here we use 0, C 9J. But (3.27) yields 

,(JQf I 9.d) = 4fif I fld,) (3.28) 

for 0, A g-measurable M. Taking M = GE,(N 1 otI,), we continue the chain of 
equalities in (3.25) to obtain 

&‘,(Gff I gc,) = -UGEM I ot,) I Q.J 

= 4&W= I @‘t,) I 6) 

= EJGH 1 e;,). (3.29) 

This establishes (3.24), hence (3.23) and completes the proof of the induction 
step. The lemma is now proved. 

We refer the reader to [6] for the notion of conditional independence. 

3.17 COROLLARY. Let X be a stochastic process with state-dependeent hitting 
probabilities. Then, for each -;I E Y, 0 and 9, are conditionally independent given 
8. (relative to the measure r on 2). 

Proof, Suppose E E Pd . Then (3.21) holds. If 0 E 0, , then 0 is also in gJ 
(clearly 0d C L@J, so from (3.21) follows 

x(OE 1 izIs) = a(OE 1 U,). 

The fact that (3.30) holds for each 0 E 0, and E E PO implies that 

(3.30) 

x(F 1 BJ = n(F 1 O,,) (3.31) 

hoIds for each FE &d v Pd But 00 v P< = 0, and 9, = 0d v 9, (again because 
O0 C BJ. Therefore 

x(F I Ud v 9,J = T(F 1 UJ (3.32) 

hoIds for each FE 0. But this is equivalent to B being independent of a,, given 
0, (relative to the measure x on Q), which proves the corohary. 

SupposeJE 3 and g E 9. We writef = g(mod 0) if, for each 3 E Y’, r) t F(f) 
if and only if Q E F(g), and thenf(P(f, d)) -f(p(g, $1). It is clear that -(mod 0) 
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is an equivalence relation, and that the corresponding equivalence classes are 
the fibres of the a-field 9. It is not difficult to verify that, if we set B, = ((f, g): 
f 7. g(mod 0)}, then B, E 0 x 0. 

4. THE ENLARGEMENT 

Let X := (G, G?, JY! , S, , P) and X = (0, d, J ,J?, , I’) be stochastic 
processes with the same state-dependent hitting probabilities. The u-field 0 is 
countahly generated. This permits the application of the disintegration of 
measures theorem 2.4 to the measure + = P 0 -2-l on (0, 69) to obtain a family 

(+j)ftD of non-negative measures on (U, 9) satisfying the conditions of the 
theorem (with 8 taken equal to 0). Let fi 7: Q x II, and d :p fl \ 9’. WC now 
define a probability measure $’ on & Suppose B ~7 A x C, where il E 0’ and 
C E 9. The equation 

extends first to a measure on the field consisting of finite disjoint unions of such 
sets B, and then to a measure on the o-field generated by this field, namely d. We 
denote this measure on d by P, and note that P satisfies 

where B, >-= {f: (~,f) 6 B}. (This last equation could also have been used to 
define P). 

Let k’ be the map offi into II x D defined by I’(w, g) = (-Y(w), g), (w, g) E 8. 
Let + = P 0 Y-,l. Then, for each C, C’ in 53, i3 satisfies 

i3(C x C’) 7 J)?,(C) n(df). (4.3) 

Since x~(D) is U-measurable in f, and since TT :- 7i on P, iif == 1 for 
v-almost all f~ II. It follows that +xc,,(D) = I for P-almost all w E 52. Let 
B, = ((f, g):fE D, g E D, f = g(mod 0)). We have observed that B, E 9 1 9. 
For &almost all f, ii, assigns measure zero to the complement of {g:g = 
f(mod 0);. Thus nJ(B,),) = 1 for ii-almost all .f. From the fact that nf(fl) is 
&measurable in f for all A E 53 it follows that rrr(B,) is O-measurable in f for 
all B tB x I?, in particular for B = B, . It follows that nl((B,Jf) : 1 for 
r-almost all f, hence that 7j(B0) = 1. 

For each t 2 0, let &(wJ) = ik;(w), and A, = dt x D = {M x D: 
32 E JYJ. It is clear that zt is A,-measurable. We regard 8, as an extension of X7( 
to 0, and often denote it by Xf _ Let & == VI.M, , and .F = ,H x D. A non- 
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decreasing family (,dt} of sub u-fields of d ’ IS dalled an enlurgemen~ of {JZ’J if 
At 3 A, for each t 2 0, in which case X = (a, &, -4, , J%?, , P) is a stochastic 
process. An enlargement {At} is said to be a d&ribuiional enlargement if it is 
right continuous, and if, for each d 2 0, 

P(B I PGt) = P(B I F), BEJd,. (4.4) 

The concept of distributional enlargement is introduced in [ 11. For the rationale 
behind the concept, we refer the reader to [l] and [4]. Suppose {At) is an 
increasing family of sub a-fields of 6Z? with dto I3 .Ft such that (4.3) is satisfied 
for each B E JZ?,“* . Thus if we set A,, = -.&‘+ for each t, {At) is a distributional 
enlargement of {A,). 

Let Af be the a-field generated by all sets of the form 

{(WI .f): f>(W) < 1, Td(W) E a P(f, 3) E c> (4.5) 

with ;1 an arbitrary member of fl, and B, C arbitrary Bore1 subsets of [0, CO]. Let 
d&,o = & v ,.&$, and J&~ = J.&+ . Finally we complete -&, with respect to p, 
still denoting it by dt . 

4.1 THEOREM. {k,) is a distributional enlargement of {At). 

Proof. It is clear that {At} is an enlargement of {&Zt}. To prove the theorem, 
it suffices to show that (4.4) holds for all B E Ato. Let HZ and 7~ be non-negative 
integers, + and J, in Y for i = I,..., 7p1 andj = l,..., n, and Bi, Ci Bore1 subsets 
of [0, co) for i = I,..., m. We assume that Jo < ... < J,~ . Let 

u = {(w,,f) : Td.(W) .< 1, i =: I ,..., ml 

v = {(Q-) : $) E B, , p(f, &) E ci , i = l,..., m} 
(4.6) 

W = {(~,f) : T&~(W) > t, j = I ,..., nj. 

Let H be the class of all sets U n V n W which arise from any such choice of 
112, n, isi}, {Ji>? {B;}, and {CJ. It is clear that sip is closed under finite inter- 
sections. The complement (U n Y n TV)” of a member of 2 is the disjoint 
union of UC, C’ n Vc, and U n V n IV. It is not hard to see that each of these 
sets can in turn be expressed as a finite disjoint union of sets of the same form 
U n I/’ n IV. It folIows that the class X of all finite disjoint unions of members 
of X is a field. It is clear that &’ contains all sets of the form (4.69, so X is a 
field generating ,.&. To show that (4.4) holds for all 3 E -&, it suffices to show 
that it holds for all B E &. Let B E ~6’. Then 3 = U n V n W, where U, V, W 
are as in (4.6) We see that B : E x F, where 

E={w: T+(W) < I, T+(W) E Bi , i = 1, .., m, TL~(W) > t,j = 1 ,...I n}, 

F = {f : p(f, ii) E Ci, i = 1 ,..., pn). 
(4-7) 
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Let 

0 = (j p(f, Ll() -5 t, p(f) +) E Bi , i = 1, .,) 777, p(f, /j) > t,j =: 1 ,..-I ). 

Clearly R L -V’[O]. 

I. Let X be a bounded (23 - .B) measurable junction of III into R. Then 

Proof of I. This is an almost immediate consequence of (4.3), the only 
subtle point being that am = I f or a-almost allf as well as for +almost all f. 

Let~s=~,xD=(C\<D:Cf~,,),andi~_~I’LJ. 

2. The function 

where the last equality results from (1) with X(j) = I,(f) ir,(F). 

I,“, lo(f) +,F’) 4df) 

the last equality following from (1) with X(f) = I, (,f) G,(F). 

3. g + ii,(F) is r-a.s. O,~n-memurabk. 

Proof of 3. WC have shown (corollary 3.17) that, given rOflt , ej and &@d are 
conditionally independent (relative to the measure kj. Clearly P E 9J_ . This, 
together with the fact that e,,(F) is a version of the conditional +-measure of F 
given 0, implies that G,(F) is ii-essentially constant on ii-almost all fibres of 8. , 
hence r-essentially constant on rr-almost all fibres of I!‘drn . Thus ii,(F) is T-ct. 
P,,nl-measurabIe in J 

4. Suppose t' > 1. If I, t F,* then L n 0 f 28/T _ 
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Proof of4. The class of L’s in Odn for which L CT 0 E a,, is closed under 
countable intersections and monotone limits. It therefore suffices to prove 
L n 0 E Bt, for a subclass of L’s in fid, which generates .!VO, and is closed under 
complements. Such a subclass consists of L’s of the form 

L = if: PM a) E B * f(t * ~(4) E Cl, 

with B E g and C E 2. But then 

LnO=(f:p(f,~,)~B,p(f,d~)~Bn[O,t],i=l,..., m,p(f,k$)>t, 

j = l,..., % f(t * P(fl 48 f CL 

which clearly belongs to ??J~ if t’ > t. 

5. If t’ > t, then +(O x F 1 %t,) = +(O x F 1 9). 

Proof of 5. By virtue of (2), it suffices to show that 1o(f) ff(F) is n-a.s. 
Q,,-measurable inf. By virtue of (4) a set L which is Otin-measurabIe has the 
property that L n 0 E 9,, . This is also true for functions. Since ti#‘) is x-as. 
OO’,n-measurable inf by (3), it follows that I,(f) ir,(F) is p-as. $!,s-measurable. 

6. +(O x F 1 gt+) = 7j(O x F j 8) 

This is an immediate consequence of (5). 

7. P(E x F ] Y-l[a,+]) = P(E ‘r: F 1 Yp1[9]). 

Since E = ,F[O] and 77 = p 0 Y-l, this is an immediate consequence of (6). 

8. (w, 9) --E(W) Km(F) is a version of fj(E x F 1 F). 

This foIlows from (4.1) in the same way that (2) followed from (4.3). 

9. P(E x F 19) = P(E >( F 1 Y-‘[S]). 

This follows from (8) and the fact that IE(w) ii,(,)(F) is X-i[g]-measurable in W. 

10. P(E x F i 9) = P(E x F ) Y-l[5?,+]) 

This follows from 7 and 9. 

Il. P(E xFI%) =P(E xFIF) 

Proof of 11. Since S-l[Q?J,] C A, f or each s, it follows from the right 
continuity of {A’,} that X-i[Bt,.] C -4, , from which it follows in turn that 
Y-‘[?Jt+] C A, . Now (11) follows from (10). 

With (1 I), we have (4.4) holding for each B E Z’, hence for all B E k*. It then 
follows that (4.4) holds for all B = G n B, with G E & and B, E A@, This 
yields (4.4) for all B E Ato, completing the proof of the theorem. 
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5. THE TIME CHANGE {T$ 

In this section X and a are assumed to be stochastic processes with the same 
state-dependent hitting probabilities. We continue to assume that the sample 
paths of both processes are in D. In addition, we assume that the sample paths 
of both processes have no intervak of constancy. The process {-Yt) can be defined 
on the enlarged space (0, G?, P) defined in the preceding section, and adapted 
to the family {A!,] of enlarged o-fields also defined in the last section. In this 
section we construct a time change (7t , t 3 O> relative to {AZ,) for which the 
process {X7,) has the same finite-dimensiona distributions as {Y?J. We show also 
that ,(u, .) is continuous and strictly increasing for p-almost all cu E 8. 

For each pair (f, g) in D x D for whichf 4 g (mod O;), let d(f, g) = (p(g, J): 
J E F(f)}. Since g h as no intervals of constancy, it follows from corollary 3.5 
that d(f, g) is dense in [0, CO). We define u0 as follows. If f and g are in D, but 
J + g (mod 0,), th en cO(f, g, t) is defined for t E d(f, g) by 

%(f, g, p(g, 3)) =: P(f> J). (5.1) 

5.1 LEMMA. 1fff = g (mod 8), then o,(J, g, .) is a strictly increasing and right 
continuous function on A(f, g). 

Proof. If p(g, 3) = p(g, k), th en <i -- t since p(g, ,) is strictly increasing 
(relative to the order -< on F(g)). This shows that p4 is a we&defined function. 
Since p(f, .) is also strictly increasing on F(g) = F(f), a, is strictly increasing 

ofl4A g)* 
Let G = (il ,..., 2J E Y(g), and suppose that p(g, Ln’,) ‘;I p(g, C), where t,A E 

*T(g), n :=: 1, 2 ,... . For each n > nz, Iet +, be the ordered n-tuple (il ,..., i,, , 
0 ,--., 0, 1). Let N = fn: 6, ET(g)}. Suppose n EN. Since jpi > /, p(g, dIa) > 
p(g, 0. Th ere fo f re or al1 sufficiently large values ofk, ~(g, t) < p(g, ik) < p(g, dn) 
from which it folIows that 

b<‘k,<J, (5.2) 

for al1 sufficiently large values of h. By virtue of part (a) of corollary 3.8, N is an 
infinite set. Let (nj& be an enumeration of N in increasing order. Then, since 
Y(f) = Y(g), p(f, o,.) I p(f, k) asj-+ co by virtue of part(h) of corollary 3.8. 
But from (5.2) we obiain 

P(f! 4 < P(f! ~a) < df, q (5.3) 

for eachj and all k > Kj . Thus p(f, C,) 7 p(f, I} as k 4 M, completing the proof. 
Supposef 3 g (mod 6). We extend o,(f, g, .) on d(f, g) to a function ~(f, g, .) 

on [0, co) by right continuity. That is, we define u(f, g, t) to be equal to Iim,C 
DO(f, g, p(g, JJ), where p(g, +) 4 t. It follows from the lemma just proved not 
only that this definition is valid, but that ~(f, g, *) is strictly increasing and right 
continuous on [0, m). 

6071341-3 
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5.2 LEMMA. Iff = g (mod oi), then u(f, g, *) is continuous and strictly increa- 
sins 072 to, ~01, adf 0 u(f) g, *) = g. 

Proof. Suppose f = g (mod U), We have already observed that u is strictly 
increasing. Since u(f, g, p(g, 4)) = p(f, .5), and since f (p(f, 4) = g(p(g, 4)) for 
0 E F(j) = F(g), it is clear that f 0 o(f, g, .) = g on d(f, g). Since f, g, and 
~(f, g, *) are right continuous, and since d(f,g) is dense in [O, CO), we have 
f o u(f, g, .) = g on [0, 00). Now interchange f and g: u(g, f, *) is strictly incre- 
asing and right continuous on [O, 03). Let y = u(g, f, -) 0 ~(f,g, e). Clearly y is 
right continuous. On O(f, g), y is the identity function, and it follows from right 
continuity and the density of d(f, g) that y is the identity function on 10, co). 
The continuity of u(f, g, .) is now a consequence of the following proposition. 

5.3 PROPOSITION. Suppose Gwt 01 and p are strictly increasing, right continuous 
functions on and into [0, co), and that 010 p is the identity function on [0, co). Then 
ol and fl are continuous. 

Proof. Assume the hypotheses, and suppose that ,X is discontinuous at some 
t E [O, 00). Then a(l - 0) = s,, < s = a(t). The range of c( 0 fl omits (s,, , s). 
If /3 is discontinuous at some point, the range of /3 omits an interval 1, so the 
range of ci a,6 omits the interval a[I]. I n either case, the assumption that 010 ,B 
is the identity is contradicted. This completes the proof of the proposition. 

Let D, be the set of all members of D without intervak of constancy. It is 
easy to see that D,, E 3, Recall that B, = ((f, g): f = g [mod Cl)). 

5.5 PROPOSITION. Let Co = B, n (O,, x Q), artd Zet 

Proof. This is an immediate consequence of the definition and right con- 
tinuity of u(J, g, -) for (f, g) E C, . 

Now consider the stochastic process J!? = (0, 6?, kt, x,, p). Define 7 on 
I2 x [O, m) by 

We use 7t to denote T(. , t). 

5.6 THEOREM. {TV, t > 0} is a P-almost surely continuous time change relative 

to Wt>. ~~7J ad GO h aoe the same finite-dimensional distributions. 

Proof. That T((w, g), t) is strictIy monotone and continuous in t for P-almost 
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all (w, g) E 0 follows from the corresponding properties of t 4 u((f, g) t) for 
(J g) E B, , stated in Lemma 5.3, together with the fact that &(B,,) Q= I. The 
process {X,) which is time changed into {-li;J is actually the process {/ytj: recall 
that -Y!(w, g) 1 X,(W). Thus X7,(w, g) = xT(w,r,,t)(~, g). We shall show that, 
for each C E 9, $(X7+ F C) = +(c’), which, of course, shows that {X7,} and :R,) 
have the same finite-dimensional distributions. Let (w, g) E Q. Then 
x r(u,,O,l~(~, g)  = XT(u,,a,t~(~) =- the value of A-(w) at ~(w,g, f), which is the 
value of X(W) at g(X(,), g, t). But 6 assigns all its mass to pairs (J, g) for which 

f and g have no intervals of constancy and for whichf 0 ~(f, g) -= g (lemma 5.2). 
It follows that f assigns all its mass to pairs (w, g) for which X(w) 0 u(.\(w), g) = 
g, in other words, for which the value of -Xxw) at 0(X(w), g, f) is simply g(t). 
Thus f’((w, g): &o,,r,.,~(w R) E 4-l -= PC’ ,u,g);g(t) E C)) = Y?(L) x C) --. +‘(C)by 
virtue of (4.3). 

To complete the proof of the theorem we must show that {(w, g): T(W, g, s) -< 
t) E -8, for each s > 0, t ;: 0. Let Gt be the sub-n-field of 9 Y 9 generated by 
all sets of the form {(f, g): p(.f, d) & t, p(f, J) E B, p(g, d) E C) as j ranges over F, 
and B, C over the Bore1 subsets of [0, CO]. We see from 4.5 that Y~‘(&$J = 
A& C A’?~” (recall that Y(w, g) = (-‘i(w), g)). It follows that I;-l(G’t,) = -&‘,. . 
From proposition 5.5 it follows that {(J, g): (f, g) E C, , u(J, g, s) :< t). belongs 
to9 b+l in for each n, hence to $:t + . Therefore {(w, g): (-‘i(w), g) t C, , T(W, g, s) $1 
t} =- l”l({(f, g): (f, g) t Co , a(& g, s) < t}) E wdft = A& . But {(w, g): r(w, g, 
s) 51 ti differs from ((w, g): T(W> g, s) <L tj by a subset of the P-null set$\Y-‘(C,). 
Since At is p-complete, this shows that ((w, g): .(u, g, s) .>I t> E A#, , which 
completes the proof of the theorem. 

Let S == [0, cc), and let r;’ be the Bore1 subsets of [0, co). Let (Xt , t ,: O> be a 
stochastic process on a probability space (a, CY, P) with values in S, and suppose 
that for eachw E Q, X(U, t) = X,( w is a continuous strictly increasing function ) 
oft with X(W, 0) :: 0 and lim,m,,Y, ,Y(w, 1) 7: ~4. For each t, let ..R, be the n-field 
generated by S, as s ranges over [0, t]. Then X = {Q, Q!, AYE, , -let, P) is a 
stochastic process with state dependent hitting probabilities. Suppose that 
2 7 (Q, a, dt ) 2, , P) 1s another such process, that is, one with (S, ,Z) as 
state space, and whose sample paths are also strictly increasing continuous 
functions equal to 0 when t := 0 and increasing to to. ‘I’hen X and x have the 
same state-dependent hitting probabihties. Since we have excluded the possi- 
bility of intervals of constancy, the theorem of the last section applies, and it is 
possible to define {X,] on an enlarged probability space (8, d, P) in such a way 
that there is a time change {TJ (relative to enlarged u-fields {J?,}) for which 
07-,: and {X,} have the same finite-dimensional distribution. In this special case, 
moreover, we can actualIy exhibit the time change, and we now proceed to do so. 
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LetSZ-IZy.~,~~=~X,and~=PxI~.For(o,8)~~,let_~~(w,~)= 
X,(w), t E [O, CD). For each t E [0, a) and (0, i;) E&, let T~(w, 6) be that value 
of s for which X;(w) = &(a). Clearly 7t w, &) is a strictly increasing, continuous ( 
function of t. Let A?* = At x 67, t > 0. It is easy to see that (TV < s) E A!, for 
each t and sin [O, CO), so {TJ is a time change relative to {A@~}. Since X’,$(o, &I) = 
&(&), and since P = P i: p, {XTl} and {xi} 1 lave the same finite-dimensional 
distribution. We now show that the enlargement is a distributional enlargement. 
For each t 2 0, let A, = {IM x 0; ME At}, Fix s and t, with 0 < s < t. Let 
M E 4, and A E a. It is trivial to verify that the function(w, 6) + lM(w) $(A) 
is a version of &M x A 1%). Thus P(M :,: A 1 Fat,) = p(M x A 1 q) for 
each t > s, and it follows that {A?~> is a distributional enlargement of {A%‘~}. 
(This is hardly surprising, for P x P is the product measure, and the notion of 
distributional enlargment represents an effort to isolate the salient feature of the 
product-space enlargements with product measures used in defining so-called 
“random” stopping times and time changes. We again refer the reader to 111 and 
[4] for more extensive discussions of this point.) 

Special cases of this example make it clear that some sort of randomization is, 
in general, necessary. Suppose, for example, at Sz has just one member wO, and 
that .Y{(wJ = t. Unless {.& , t 2 0} is also deterministic, (that is, unless the 
distribution of x, degenerates for each I), there is no time change 7t defined on s2 
for which (XTt] has the same finite-dimensional distributions as {xi}. Suppose 
for example, 8, moves uniformly to the right at the rate of 2 units per second 
with probability X/2, and at the rate of 3 units per second with probability l/2. 
Then the time change with we apply to {Xt) amounts to flipping a coin, and 
speeding X-, up by a factor of 2 if the coin comes up heads, and by a factor of 3 if 
it comes up tales. We do not claim, however, that our method does not sometimes 
involve more randomization than necessary. Suppose, for example, that x is the 
process just described, and that X is a process in which Xt moves to the right 
with unit velocity with probability l/2, and at the rate of 6 units per second with 
probability l/2. If we doubled the speed of the unit velocity path, and halved the 
speed of the other path, we would have a time change on the original space 
(52, @, P) which takes Xt into a process equivalent to xt. The time change we 
construct, however, depends not only on w, but, also on what amounts to the toss 
of a fair coin. Given that the Xf process is moving to the right with unit veIocitp, 
the time change speeds it up by a factor of 2 with probability l/2 and by a factor 
of 3 with probability l/2. Given that X, is moving to the right with a velocity of 
6 units per second, the time change slows it down by a factor of l/6 with proba- 
bility I/2, and by a factor of l/2 with probability l/2. One of the open problems 
in the general case is, in constructing the time change, to not over-enlarge, but 
to introduce randomness only when it is required. In work now under prepara- 
tion, we show how to do this when the 2 process is Markov. 

We next consider an example with a more complicated state space. Consider 
the set of all lattice points (i, j) in the right half plane: that is, for which 
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i = 0, 1, 2,... andj=O,+l, f-2,... . For each such i and j, connect (;,j) to 
(i-f- f,j-t- l)byonel ine segment and (;,j) to (i 1 I,j ~ I) bj another. Let S 
be the resulting chicken-wire-fence-like structure. Endow S with the obvious 
topology-the one whose restriction to each of the connecting line sqymonts is 
Eucfidean --and let Z be the corresponding Bore1 field. For each (i,j),-let p(i?j) 
and q(i,j) be a pair of non-negative numbers adding up to one. Now consider a 
particle moving as follows. At time t :: 0, it is at one of the lattice points (0, jj, 
and immediately starts moving along either the segment connecting (0,j) to 

(1 ,j + 1) or the segment connecting (0,j) to (I, j - I), the first segment being 
chosen with probability p(O,j), the second with probability q(O,j). Its journey 
along the chosen segment may be either deterministic or non-deterministic, 
subject only to the proviso that it move always to the right, and never stands stilt. 
M;hcn it reaches, say (1, j -1 l), it switches ti) the segment connecting ( I ,j + 1) 
to (2, j -.L. 2) with probability p( I 1 j + 1) and to the one connecting (1, j +- 1) to 

(2, j) with probability q(l, j -+ I). The particle continues to proceed in this 
zig-zag fashion. It is clear that the resulting process has state-dependent hitting 
probabilities. If we consider any other such process, it has the same state- 
dependent hitting probabilities as the first, provided that the choice r~f segments 
upon reaching (i,j) is made in accordance with the same probabilities p<;,j) md 

q(i, j) as for the first process. Two paths are equivalent mod P if and onI? if they 
traverx the same vertices (i,j). In this respect the vertices (;,j) p&t: the role Of 
the positions r(>) -f(p(d)) f or j E F(f). If the motion along the segments is 
deterministic, the process is a Markov process. Note that then thcrc is only one 
path with given vertices, i.e., each equivalence class mod F has only one member. 
In work under preparation WC show that this is characteristic of strong 5’Iarkov 
processes whose paths have no intervals of constancy. 
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