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a b s t r a c t

We present and analyze energy-conserving methods for the numerical integration of IVPs
of Poisson type that are able to preserve some Casimirs. Their derivation and analysis is
done following the ideas of Hamiltonian BVMs (HBVMs) (see Brugnano et al. [10] and
references therein). It is seen that the proposed approach allows us to obtain the methods
recently derived in Cohen and Hairer (2011) [17], giving an alternative derivation of such
methods and a new proof of their order. Sufficient conditions that ensure the existence
of a unique solution of the implicit equations defining the formulae are given. A study
of the implementation of the methods is provided. In particular, order and preservation
properties when the involved integrals are approximated by means of a quadrature
formula, are derived.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we deal with the numerical solution of Initial Value Problems (IVPs) in ordinary differential systems where
the vector field can be written in the gradient form, i.e.,

d
dt

y(t) = f(y(t)) ≡ B(y(t)) ∇H(y(t)), t ∈ [0, h],

y(0) = y0 ∈ Rm,

(1)

where B(y) is a skew-symmetric matrix and H = H(y) a scalar function that will be called the Hamiltonian function. We
shall assume that (1) has a unique solution y = y(t), t ∈ [0, h] and that both B(y) and H(y) are sufficiently smooth in a
suitable neighborhood around such a solution.

The differential system of (1) has the first integral H(y) = const, and numerical methods that preserve this integral are
usually called energy-preserving methods. Further, any scalar function C = C(y) such that ∇C(y)T B(y) ≡ 0, called a
Casimir function, is as well a first integral for (1).

In this paper we study numerical methods that provide a vector-valued polynomial approximation u = u(t) ≃ y(t),
t ∈ [0, h] to the solution of (1) preserving the energy in the sense that H(u(0)) = H(u(h)) and eventually possible Casimirs
of (1).
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A natural way to preserve a first integral G(y) of a general differential system ẏ = f(y) in the numerical integration with
a one-step method ϕh is, after each step (t0, y0) → (t1 = t0 + h, y1), to project the numerical solution y1 = ϕh(y0)
onto the manifold {y;G(y) = G(y0)}. In the case of orthogonal projection the new approximation ỹ1 is defined by
ỹ1 = y1 + λ ∇G(y1), where λ is a Lagrange multiplier to be chosen so that G(ỹ1) = G(y0). This approach can be used for
any numerical method but it requires the solution of a non linear equation at each step. Although this projection preserves
the order of the original method its main drawback is that it may destroy other good properties of the original method, in
particular the affine invariance. Because of this the authors [1] haveproposed for Runge–Kuttamethods a different projection
that is affine invariant and, as shown in some numerical experiments, provides better results than the standard orthogonal
projection.

On the other hand, in the special casem = 2d and B(y) = J =


0d Id
−Id 0d


, the standard (2d)-dim skew-symmetric matrix

ofHamiltonian dynamics, (1) defines a canonical Hamiltonian systemand the derivation ofmethods that preserve the energy
in Hamiltonian systems has been the subject of an extensive research in the last years. Among them, we may mention the
so called ‘‘averaged vector field’’ of Quispel and McLaren [2] in which the solution of (1) at t = τh is approximated by the
first degree polynomial u(τh) = (1 − τ)y0 + τy1, τ ∈ [0, 1], where y1 is the solution of the implicit equation

y1 = y0 + h
 1

0
J ∇H((1 − τ)y0 + τy1)dτ . (2)

It can be seen that this method is energy-preserving because it satisfies H(y1) = H(y0). Observe that (2) amounts to
substitute in the integral equation equivalent to (1) with B = J , the average along the exact solution y(t) by the average
along the first order polynomial u(τh). As a further remark, note that for some Hamiltonian functions the right hand side of
(2) can be integrated exactly and the computational cost of (2) is similar to an implicit one-stage Runge–Kutta (RK) method
but in general this is not the case and to solve the integro-algebraic equation (2) we must combine a quadrature formula
together with a non linear solver.

The above approach, based on a first degree polynomial approximation, has been generalized by Hairer in [3] to s-degree
polynomials u(t) that satisfy u(0) = y0 together with s collocation conditions at tj = cjh, j = 1, . . . , s where {cj}sj=1 is a
given set of non confluent nodes (cj ≠ ck for all j ≠ k). This author has studied the order and the conjugate simplecticity
of their proposed methods by using appropriate modification techniques employed in the theory of RK methods. In more
detail, [3] describes the limit formulae of a particular instance of Hamiltonian BVMs (HBVMs, see below), as is shown in [4].

An alternative approach to the derivation of Hamiltonian conservative methods, to the best of our knowledge the first
instance of energy-preserving Runge–Kutta methods for polynomial Hamiltonian dynamical systems, was given in an early
paper by Iavernaro and Pace [5] and, as later observed in [6], they can also be derived by the discretization of the averaged
vector field method in [2]. HBVMswere formerly presented in [7] (see also [8–10] and references therein), as a generalization
of the s-Stage Trapezoidal Methods [5] and of the energy-preserving methods for polynomial Hamiltonians derived in [11,
12]. In this class of methods, the polynomial approximate solution u(t) of (1) with degree ≤ r is given as the solution of the
implicit equation

u(0) = y0, u̇(τh) = h
r−1
j=0

γjPj(τ ), γj =

 1

0
Pj(c)f (u(ch)) dc, j = 0, . . . , r − 1,

where u̇(τh) is the derivative of u(t) with respect to its argument at t = τh and the right hand side is a truncated series
expansion of the vector field f(u(τh)) along the Legendre polynomials basis Pj(τ ), shifted to the interval τ ∈ [0, 1] and
normalized to be orthonormal on that interval (see [13,14]). The authors show that such methods preserve the energy and
attain order 2r . Here again the explicit computation of u(t) leads to a set of implicit integro-algebraic equations that, as
mentioned above, requires combining a quadrature formula together with a non linear solver. We alsomention that HBVMs
admit a straightforward Runge–Kutta formulationwhich, in turn, is closely related to that of Gauss collocation formulae [15].

On the other hand, Line Integral Methods, recently introduced in [16], represent a straight generalization of the approach
which has led to define HBVMs, where the key idea of imposing energy conservation through a line integral, has been
extended to any invariant and to any conservative problem.

For Poisson type systems in which B(y) satisfies also the Jacobi identity or, more generally, for gradient type systems,
there are several proposals to preserve energy. Thus in a recent paper of Cohen and Hairer [17], a generalization of [3] is
proposed in order to preserve the energy of systems (1) as well as quadratic Casimirs. A different approach by Dahlby et al.,
based on Discrete Gradients [18], allows to construct methods that preserve simultaneously several invariants in systems
of type (1).

In this paperwederive and analyze a class ofmethodswhich are energy-preserving and are also able to preserve quadratic
Casimirs. It is found that these methods are equivalent to those recently proposed in [17], giving an alternative derivation
of such methods and further a new proof of their order. This paper is also motivated by the recent research in [19], which is
concerned with the error growth in the numerical solution of periodic orbits. Indeed, for problems in the form (1), methods
able to preserve more invariants of the dynamical system have a more favorable error growth.

With these premises, in Section 2 we introduce the new class of energy-preserving formulae, associated to a Gaussian
set of nodes and they are analyzed in Section 3. In Section 4 the above analysis is extended to an arbitrary set of nodes.
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In Section 5we then state and analyze the numerical methods obtained by the discretization of such formulae. Finally, a few
numerical tests, as well as some concluding remarks, are contained in Section 6.

2. The energy-preserving formulae

We denote by {Pj(τ )}j≥0 the Legendre orthonormal polynomials shifted to [0, 1] that satisfy

deg(Pi) = i, and
 1

0
Pi(τ )Pj(τ )dτ = δij, (3)

for all i, j ≥ 0.
For all h > 0 and real continuous function g(t), t ∈ [0, h] the series expansion of g(τh), τ ∈ [0, 1], in terms of Legendre

polynomials is given by
j≥0

γj(g)Pj(τ ), τ ∈ [0, 1], (4)

where the coefficients γj(g) are

γj(g) =

 1

0
Pj(τ )g(τh)dτ . (5)

The coefficient γj(g) can be interpreted as the density of the jth Legendre component in g(τh), τ ∈ [0, 1] and also as the
projection of g(τh) on the jth Legendre polynomial.

It is well known that, for a fixed h > 0, γj(g) → 0 as j → ∞ and (4) converges to g(τh), (t = τh) in the mean norm in
the sense that

lim
n→∞

 1

0


g(τh) −

n
j=0

γj(g)Pj(τ )

2

dτ = 0.

Further, if g(τh) has a continuous second derivative on [0, 1], then the series (4) converges uniformly to g(τh) (see,
e.g., Isaacson–Keller, pp. 206 [20]) so that we have g(τh) =


j≥0 γj(g)Pj(τ ), τ ∈ [0, 1]. Recall that in themore general case

of an analytic function g(t) of t (see Whittaker and Watson, pp. 322 [21]) the series (4) is called Neumann’s expansion of
g(t) in a series of Legendre polynomials, and it is proved that if g(τh) is analytic inside and on an ellipse C of the τ complex
plane whose foci are the points τ = 0, 1, the expansion (4) converges uniformly to g in any domain inside C .

In the following we will consider flows f : Rm
→ Rm, and vector valued functions u : [0, h] → Rm so that the series

expansion of each component of f(u(t)), t ∈ [0, h] converges uniformly, so that

f(u(τh)) =


j≥0

γj(f(u))Pj(τ ),

holds for all τ ∈ [0, 1].
In the use of vector valued polynomials we will denote by Πm

r (t) the set of m-vector polynomials in t with degree ≤ r .
With the above notations our proposed methods are defined as follows.

Definition 1. Let r be a positive integer, the polynomial approximation u = uh(τh) ∈ Πm
r (t), to the solution y(τh),

τ ∈ [0, 1], of (1) is defined by the r + 1 (vector) conditions
uh(0) = y0,

u̇h(cih) = B(uh(cih))
r−1
j=0

Pj(ci)γj(∇H(uh)), i = 1, . . . , r, (6)

where ci, i = 1, . . . , r , are the Gauss nodes of Pr(τ ), i.e. the roots of the Legendre polynomial Pr(τ ). The solution at t = h is
y1 = uh(h).

Note that we have used the subscript h in the polynomial uh(t) =
r

j=0 aj t
j to make clear that the coefficients aj may

depend on h, but to simplify the notation we will omit this subscript in the sequel.
In the next section, we prove that these formulae are well defined, that is, the implicit equations that define them have

a unique solution for h small enough, and they are energy-conserving, namely H(y1) = H(y0). Moreover, quadratic Casimir
C(y) are also conserved C(u(h)) = C(y0).

We also prove that they have a 2r order of convergence, for all r ≥ 1. Later on, in Section 5, we discuss the order of
approximation of the numerical methods obtained by approximating the involved integrals by suitable quadratures.
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3. Analysis of the energy-preserving formulae: Gaussian nodes

Since u(τ ) is defined by the implicit equation (6), our first concern is to give sufficient conditions to ensure the existence
of a unique solution. In order to do that, let us give first some preliminary results.

By construction, the polynomial u satisfying (6) has degree ≤ r . Consequently, u̇(τh) can be expanded in terms of the
polynomial basis {Pj}r−1

j=0 as

u̇(τh) =

r−1
j=0

ΓjPj(τ ), τ ∈ [0, 1], (7)

where the (vector) coefficients are (see (5)) Γj = γj(u̇). By imposing the initial condition in (6) it is clear that

u(τh) = y0 + h
r−1
j=0

Γj

 τ

0
Pj(s) ds, τ ∈ [0, 1]. (8)

The following result then holds true.

Theorem 1. Let bi and ci, i = 1, . . . , r, be the coefficients and the nodes of the Gaussian quadrature formula in [0, 1]. The vectors

Γ = (Γ T
0 , . . . , Γ T

r−1)
T

∈ Rrm, γ = (γ0(∇H(u))T , . . . , γr−1(∇H(u))T )T ∈ Rrm

whose (block) entries are those appearing in (7) and (6) , respectively, are related by

Γ = S γ, (9)

where

− ST = S = (Sij), Sij = Sij(u) =

r
l=1

blPi−1(cl)Pj−1(cl)B(u(clh)), i, j = 1, . . . , r. (10)

Proof. Let us define the following matrices:

P = (Pj−1(ci)) ∈ Rr×r , Ω = diag(b1, . . . , br). (11)

From (6), and evaluating (7) at the Gauss nodes {ci}, one obtains:

(P ⊗ Im)Γ =

B(u(c1h))
. . .

B(u(crh))

 (P ⊗ Im)γ .

By considering that the Gaussian quadrature formula has order 2r (and thus it is exact for polynomials of degree 2r − 1),
P TΩP = Ir , and solving for Γ the result holds. Note that the matrix S is skew-symmetric because the matrices B(u(cjh))
are skew-symmetric. �

Now, we can state the following result.

Theorem 2. Assume that, for a given ρ > 0, the functions B = B(y) and H = H(y) are C1(V0) and C2(V0), respectively, where

V0 = {y ∈ Rm
; ∥y − y0∥ ≤ ρ},

for a given norm ∥ · ∥ in Rm. Then, there exist h0 > 0 such that, for all 0 < h ≤ h0, there is a unique vector valued polynomial
satisfying (6).

Proof. Let

β0 = sup{∥B(y)∥; y ∈ V0}, β0 = sup{∥B′(y)∥; y ∈ V0},

β1 = sup{∥∇H(y)∥; y ∈ V0}, β1 = sup{∥∇H(y)′∥; y ∈ V0},

where in each case we have used the corresponding norm associated to the given vector norm.
SinceV0 is a convex and compact set, βj,βj, j = 1, 2 are bounded and by themean value theorem B(y) and∇H(y) satisfy

the Lipschitz condition in V0 with constantsβ0 andβ1 respectively.
After Theorem 1 we can see that the existence of a unique solution of (6) is equivalent to the existence and uniqueness

of the solution of (8) with Γj given by (9)–(10).
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Let h be a positive constant and Φ : Πm
r (τ ) → Πm

r (τ ) be an operator such that for all v = v(τh) ∈ Πm
r (τ ), τ ∈ [0, 1],

Φ(v) is defined by

Φ(v)(τh) ≡ y0 + h
r−1
i=0

Γi

 τ

0
Pi(s) ds


, τ ∈ [0, 1], (12)

with Γi =
r−1

j=0 Si+1,j+1γj, i = 0, . . . , r − 1, and (see (10))

Sij =

r
l=1

blPi−1(cl)Pj−1(cl)B(v(clh)), γj = γj(∇H(v)),

where bi and ci are the coefficients and nodes of the Gaussian quadrature formula with r nodes in [0, 1]. We now consider
them-dim vector valued space of polynomials Πm

r (τ ) of degree ≤ r in the interval τ ∈ [0, 1] with the uniform norm

∥v∥∞ = sup{∥v(τh)∥; τ ∈ [0, 1]}.

Since maxt∈[0,1] |Pj(t)| =
√
2j + 1, then, for all j = 0, . . . , r − 1:

∥γj(∇H(v))∥ =

 1

0
Pj(τ )[∇H(v(τh))] dτ

 ≤

 1

0
|Pj(τ )| ∥[∇H(v(τh))]∥ dτ

≤ β1

 1

0
|Pj(τ )| dτ ≤ β1


2j + 1 ≤ β1

√
2r − 1.

Further, for all i, j = 0, . . . , r − 1,
r

l=1

bl|Pj(cl)Pi(cl)| ≤ 2r − 1

and, consequently, ∥Sij∥ ≤ (2r − 1)β0. Therefore, for v(τh) ∈ V0, τ ∈ [0, 1] it follows from (12) that

∥Φ(v) − y0∥ =

h r−1
i=0

r−1
j=0

Si+1,j+1γj(∇H(v))
 τ

0
Pi(s) ds

 ≤ h β0 β1 r2(2r − 1)2.

Consequently, if

h ≤
ρ

r2(2r − 1)2 β0β1
, (13)

then ∥Φ(v)−y0∥ ≤ ρ and the polynomialΦ(v) is also contained inV0. Moreover, the setΠm
r (τ ) is a Banach space with the

uniform norm. Denoting by M the closed set M = {v ∈ Πm
r (τ ) such that v(0) = y0 and v(τh) ∈ V0 ∀τ ∈ [0, 1]}, under

condition (13), Φ(M) ⊂ M. On the other hand, for v, ṽ ∈ M, we have

∥Φ(v) − Φ(ṽ)∥ =

h r−1
i=0

r−1
j=0

(Si+1,j+1 γj − S̃i+1,j+1 γ̃j)

 τ

0
Pj(s) ds

 ,

where

S̃i,j =

r
l=1

blPi−1(cl)Pj−1(cl)B(ṽ(clh)), γ̃j = γj(∇H(ṽ(τh))).

Observe that

∥Si+1,j+1 γj − S̃i+1,j+1γ̃j∥ = ∥Si+1,j+1 γj − S̃i+1,j+1 γj + S̃i+1,j+1 γj − S̃i+1,j+1γ̃j∥

≤ ∥Si+1,j+1 − S̃i+1,j+1∥ ∥γj∥ + ∥S̃i+1,j+1∥ ∥γj − γ̃j∥,

and

∥γj − γ̃j∥ =

 1

0
[∇H(v(τh)) − ∇H(ṽ(τh))]Pj(τ )dτ

 ≤

2j + 1 β1 ∥v − ṽ∥,

∥Si+1,j+1 − S̃i+1,j+1∥ ≤ (2r − 1)β0 ∥v − ṽ∥.

Hence,

∥Si+1,j+1 γj − S̃i+1,j+1γ̃j∥ ≤ (2r − 1)3/2 β1β0∥v − ṽ∥ + β0(2r − 1)3/2 β1 ∥v − ṽ∥

= (2r − 1)3/2 (β1β0 + β0β1)∥v − ṽ∥
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and, then,

∥Φ(v) − Φ(ṽ)∥ ≤ hr2(2r − 1)3/2(β1β0 + β0β1)∥v − ṽ∥,

which implies that Φ is a contractive mapping on M if

h <
1

r2(2r − 1)3/2(β1β0 + β0β1)
. (14)

Consequently, the solution of (6) exists and is unique, for all h > 0 such that (13)–(14) hold. �

Next, we will analyze the energy conservation.

Theorem 3. The method proposed in Definition 1 preserves the energy of (1).

Proof. We will show that

1H ≡ H(u(h)) − H(u(0)) =

 1

0

d
dτ

H(u(τh))dτ = h
 1

0
∇H(u(τh))T u̇(τh)dτ , (15)

vanishes. Substituting (7) into (15), and using Theorem 1, we have

1H = h
r

j=1

 1

0
∇H(u(τh))TPj(τ ) Γjdτ = hγT Γ = hγT S γ = 0, (16)

where the last equality follows from the skew-symmetry of S. �

Remark 1. Observe that the essential point in the vanishing of (16) is the skew-symmetry ofmatrix S. By taking into account
(10), it then follows that if in (6) we replace B(u(cih)) by any skew-symmetric matrix Bi, then the method would be energy
preserving as well (though, its order could be affected).

Let us consider now the preservation of Casimir functions.

Theorem 4. The method proposed in Definition 1 preserves all Casimir functions C(y) that are polynomial functions of degree
≤ 2.

Proof. It follows the same line as the above theorem. Starting from the identity

C(y1) − C(y0) = C(u(h)) − C(u(0)) =

 1

0

d
dτ

C(u(hτ))dτ = h
 1

0
∇C(u(τh))T u̇(τh)dτ , (17)

if C(y) is a polynomial of degree ≤ 2, all components of ∇C(y) are polynomials of degree ≤ 1 and the integrand function
in the right hand side of (17) is a polynomial of degree ≤ 2r − 1 and will be integrated exactly by the Gauss formula with r
nodes, i.e.,

C(y1) − C(y0) = h
r

i=1

bi ∇C(u(hci))T u̇(hci). (18)

Then, by substituting u̇(hci) from the Definition 1 each term of the right hand side of (18) vanishes. �

The next part of this section will be devoted to discuss the order of accuracy of the formulae (6). Before that, we need the
following preliminary results.

Lemma 1. Let g : R → V be a suitably smooth function. Then

γj(g) =

 1

0
g(τh)Pj(τ ) dτ = O(hj).

Proof. See [13, Lemma 1] or [14, Lemma2.1]. �

We are now able to state the result concerning the accuracy. The proof strictly follows that of [14, Th. 1] which, in turn,
is based on that of [22, Th. 6.5.1, pp. 165–166].

Theorem 5. y(h) − u(h) = O(h2r+1).
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Proof. Let us denote by y(t, s, v) the solution of problem (1) satisfying the initial condition y(s) = v. We also denote
by Φ(t, s, v) the fundamental matrix function of the corresponding variational problem, satisfying the initial condition
Φ(s, s, v) = I . Then (see (5)),

y(h) − u(h) = y(h, 0, y0) − y(h, h, u(h)) = −

 h

0

d
dt

y(h, t, u(t)) dt

= −

 h

0


∂

∂t
y(h, t, u(t)) +

∂

∂u
y(h, t, u(t)) u̇(t)


dt

= h
 1

0
Φ(h, τh, u(τh))[B(u(τh))∇H(u(τh)) − u̇(τh)] dτ

= h
 1

0
Φ(h, τh, u(τh))


B(u(τh))∇H(u(τh)) − B(u(τh))

r−1
j=0

γj(∇H(u)) Pj(τ )


dτ

+ h
 1

0
Φ(h, τh, u(τh))


B(u(τh))

r−1
j=0

γj(∇H(u))Pj(τ ) − u̇(τh)


dτ

≡ h(E1(h) + E2(h)).

Concerning E1(h), by setting G(τh) = Φ(h, τh, u(τh)), and considering that

∇H(u(τh)) =


j≥0

γj(∇H(u))Pj(τ ),

one obtains, by virtue of Lemma 1:

E1(h) =


j≥r

 1

0
G(τh)B(u(τh))Pj(τ ) dτ


γj(∇H(u)) =


j≥r

O(hj)O(hj) = O(h2r).

Concerning E2(h), one obtains:

E2(h) =

r
i=1

biG(cih)


B(u(cih))

r−1
j=0

γj(∇H(u)) Pj(ci) − u̇(cih)


+ O(h2r)

= O(h2r),

since the Gaussian quadrature formula has order 2r . Consequently, the thesis follows. �

4. Analysis of the energy-preserving formulae: Non Gaussian nodes

In the above analysis the Definition 1 of u(τh) is given with respect to the Gaussian nodes in [0, 1]. In this section, the
analysis will be extended to any other quadrature formula. Let (bi, ci), i = 1, . . . , r be a quadrature formula of order q ≥ r
andwewill denoteP andΩ the correspondingmatrices defined by (11). Observe that for theGaussian formulaP TΩP = Ir ,
but now, this is no longer true. In this case, we have.

Lemma 2. If the quadrature formula has order q ≥ r (degree of precision q − 1) then

P TΩP = Ir + M, M = (mij) = MT , mij = 0 for i + j ≤ q + 1. (19)

Proof. MatrixM is clearly symmetric. The result then follows taking into account that the (i, j)-th component of the matrix
P TΩP is

r
l=1

biPi−1(cl)Pj−1(cl) =

 1

0
Pi−1(τ )Pj−1(τ ) dτ = δij,

whenever the degree of the integrand, i + j − 2, is not larger than the degree of precision, q − 1, of the quadrature. That is,
when i + j ≤ q + 1. �

If we define the methods in the same way as in the case of the Gauss quadrature formulae, the Hamiltonian is not
preserved in general. Then, to ensure the preservation of the energy, instead of (6), we will define the method by.
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Definition 2. Let r be a positive integer and (bi, ci), i = 1, . . . , r the coefficients and nodes of a quadrature formula of order
q ≥ r . The polynomial approximation u = uh(τh) ∈ Πm

r (t), to the solution y(τh), τ ∈ [0, 1], of (1) is defined by the r + 1
(vector) conditions

uh(0) = y0,

u̇(cih) = B(u(cih))
r−1
j=0

qi,j+1 γj(∇H(u)), i = 1, . . . , r, (20)

where qi,j+1 are the coefficients of the matrix

Q = (qij) = P (Ir + M)−1
∈ Rr×r . (21)

The solution at t = h is y1 = uh(h).

From (19), we have

(Ir + M)−1
=


Is 0
0 M̂


= Ir +


0 0
0 M̃


, M̃ ∈ Rr−s×r−s, (22)

with

s = q − r + 1, (23)

and, therefore, the first s columns of Q (see (21)) are the same as those of P . Hence (20) can be written as

u̇(cih) = B(u(cih))


s−1
j=0

Pj(ci)γj(∇H(u)) +

r−1
j=s

qi,j+1 γj(∇H(u))


, i = 1, . . . , r.

A comparison with (6) shows that to preserve the energy for non Gaussian nodes, we have perturbed the last r − s terms of
the expansion of ∇H(u) in terms of the orthogonal polynomials {Pj}. This may imply, as it is seen below, a reduction of the
order with respect to the order of the quadrature formula.

In a similar way to the Gaussian nodes, it can be proved that the Eqs. (20) have a unique solution.
Expanding again u̇(τh) =

r−1
j=0 ΓjPj(τ ) in terms of the polynomial basis {Pj}, we have, in place of (9)–(10), the following

result.

Theorem 6. The coefficients Γj satisfy

Γ = S γ,

with

− ST = S = (Sij), Sij =

r
l=1

bl qli qlj B(u(clh)), i, j = 1, . . . , r. (24)

Proof. Using the matrices and vectors defined in (11) and substituting (20) into (7), one obtains:

(P ⊗ Im)Γ =

B(u(c1h))
. . .

B(u(crh))

 (Q ⊗ Im)γ

and taking into account that (see (19)–(21)) P −1
= QTΩ ,

Γ = (QT
⊗ Im)(Ω ⊗ Im)

B(u(c1h))
. . .

B(u(crh))

 (Q ⊗ Im)γ,

so that (24) follows. At last, the matrix S is skew-symmetric because the matrices B(u(cih)) are skew-symmetric. �

With this result, Theorem 3 can be applied and we conclude that the formulae (20) preserve the energy. Conversely,
quadratic Casimirs turn out to be preserved only when q = 2r , whereas, in the general case, only linear Casimirs are
preserved.

To discuss the order of accuracy of the formula (20), we need a couple of preliminary results.
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Lemma 3. If the quadrature formula (bi, ci) has order q ≥ r then

r−1
j=0

[Pj(ci) − qi,j+1]γj(∇H(u)) = O(hs), i = 1, . . . , r

with s given by (23).

Proof. The above expression can be written in compact form as

r−1
j=0

[Pj(ci) − qi,j+1]γj(∇H(u)) = ([P − Q] ⊗ Im)γ . (25)

From (21)–(23) we have

P − Q = P


0 0
0 M̃


.

This means that the expression (25) only depends on γ j(∇H(u)), j = s, . . . , r − 1 and, since γ j(∇H(u)) = O(hj), the thesis
follows. �

Note that if q = 2r or q = 2r − 1, then M̃ = 0 and, therefore, (25) vanishes. Consequently, no perturbation must be
introduced in the method.

Lemma 4. If the quadrature formula (bi, ci) has order q ≥ r (that is, degree of precision q − 1), then
r

i=1

bic li [Pj(ci) − qi,j+1] = 0, j = 0, . . . , r − 1, l = 0, . . . , s − 1,

with s given by (23).

Proof. Denoting b = (b1, . . . , br)T and c = diag(c1, . . . , cr), the above expression can be written in compact form as

r
i=1

bic li [Pj(ci) − qi,j+1] = (bT c l[P − Q])j+1 =


bT c lP


0 0
0 M̃


j+1

, j = 0, . . . , r − 1, (26)

so that the first s entries (j = 0, . . . , s− 1) vanish for all l ≥ 0. On the other hand, for j ≥ s, by the order q of the quadrature
formula and the orthogonality of the polynomials, it is clear that

r
i=1

bic liPj(ci) = 0, whenever l < j and l + j ≤ q − 1,

so that (see (23)) l ≤ s − 1. This means that the row vector bT c lP has its last r − s components zero for all j = 0, . . . , r − 1
and l = 0, . . . , s − 1. Consequently, the thesis follows. �

Theorem 7. If the quadrature formula (bi, ci) has order q ≥ r then y(h) − u(h) = O(hp+1) with p = min{q, 2(q − r) + 2}.

Proof. Proceeding as in the proof of Theorem 5, we arrive at

y(h) − u(h) = h(E1(h) + E2(h))

with E1(h) = O(h2r), and

E2(h) =

r
i=1

biG(cih)


B(u(cih))

r−1
j=0

γj(∇H(u)) Pj(ci) − u̇(cih)


+ O(hq)

=

r
i=1

biG(cih)B(u(cih))
r−1
j=0

[Pj(ci) − qi,j+1] γj(∇H(u)) + O(hq)

since the quadrature formula with weights {bi} has order q. Let us assume that the (matrix) function G(cih)B(u(cih)) is
smooth enough so that it can be expanded as

G(cih)B(u(cih)) = T0 + (cih)T1 + · · · + (cih)sTs + · · · .
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Then, by virtue of Lemmas 4 and 3, one obtains, respectively,

E2(h) =


l≥s

Tlhl
r−1
j=s


r

i=1

bic li [Pj(ci) − qi,j+1]


γj(∇H(u)) + O(hq)

= O(h2s) + O(hq).

Consequently, from (23) the thesis easily follows. �

In the remaining part of this section, we show that the formulae (6) are actually those defined in [17], so that we have
here provided an alternative proof of their properties, which relies on the use of the orthonormal basis (3), in place of the
Lagrange basis {λi(τ )} defined at the abscissae {ci}. Before that, we need the following preliminary result.

Lemma 5. Let λi(τ ), i = 1, . . . , r, be the Lagrange polynomials defined at the Gauss abscissae c1, . . . , cr . Then

r−1
j=0

Pj(ci)Pj(τ ) =
λi(τ )

bi
, i = 1, . . . , r. (27)

Proof. By expanding the Lagrange polynomial λi(τ ) along the orthonormal basis (3), one obtains:

λi(τ ) =

r−1
j=0

Pj(τ )

 1

0
Pj(c)λi(c) dc =

r−1
j=0

Pj(τ )

r
ℓ=1

bℓPj(cℓ)λi(cℓ) =

r−1
j=0

Pj(τ )biPj(ci),

since λi(cℓ) = δiℓ, the Kronecker delta, so that (27) follows. �

Consequently, one obtains that formula (6) can be rewritten as

u̇(cih) = B(u(cih))
 1

0

λi(τ )

bi
∇H(u(τh)) dτ , i = 1, . . . , r,

i.e., the formulae defined in [17]. However, the choice of the orthonormal basis (3), in addition to providing an alternativeway
to study the properties of themethods,will in turnmakemore intuitive (in our opinion) the analysis and the implementation
of the numerical methods obtained by discretizing (6). �

Remark 2. It has been proved by Quispel and Capel [23] that an autonomous differential system ẏ = f (y), y ∈ Rm has a
first integral I(y) iff it can be formally written as a skew gradient system

d
dt

y = B(y)∇I(y), where B(y)T = −B(y). (28)

Moreover for an arbitrary vector field g(y) (not orthogonal to ∇I(y)) the components of B(y) = (Bij(y)) are given by

Bij(y) =
fi(y)gj(y) − fj(y)gi(y)

g(y) · ∇I(y)
. (29)

In fact, by taking into account that I(y) is a first integral iff

d
dt

I(y) =

m
j=1

∂ I
∂yj

(y)fj(y) = 0,

we have
m
j=1

Bij(y)
∂ I
∂yj

(y) = fi(y),

and, then, (28)–(29) is equivalent to the original differential system. This implies that an arbitrary differential system with
a first integral can be written in a Poisson type form and, then, the above methods can be used preserving the first integral.

5. Discretization

Clearly, formulae (6) do not yet provide numerical methods, since the integrals appearing in them cannot, in general, be
directly computed. Numerical methods will be obtained once such integrals are conveniently approximated by means of a
quadrature formula. This aspect will be studied in the sequel.
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Let us suppose to approximate the integrals defining γj(∇H(u)) by means of a quadrature with k ≥ r nodes {ĉℓ} and
weights {b̂ℓ}. In such a case, the solution will not be u(t) anymore but another polynomial of the same degree, let us denote
it by ω(t), satisfying

ω̇(cih) = B(ω(cih))
r−1
j=0

Pj(ci) γ̂j(∇H(ω)), i = 1, . . . , r, (30)

where the coefficients γ̂j(∇H(ω)) are computed by means of the above mentioned quadrature formula. Clearly, the best
choice for the nodes is that of placing them at the Gauss points, thus providing a quadrature of order 2k (i.e., exact for
polynomials of degree 2k − 1), which we assume hereafter:

γ̂j(∇H(ω)) ≡

k
ℓ=1

b̂ℓPj(ĉℓ)∇H(ω(ĉℓh)) = γj(∇H(ω)) − ∆j(h), j = 0, . . . , r − 1 (31)

Since the quadrature has order 2k, then

∆j(h) = O(h2k−j), j = 0, . . . , r − 1. (32)

Remark 3. In the particular case where H is a polynomial of degree ν, by considering that ω is itself a polynomial of degree
r , one obtains that γj = γ̂j, j = 0, . . . , r − 1, provided that

ν ≤
2k
r

. (33)

As already observed in [10,7,4], this provides a practical conservation for all suitably regular Hamiltonians, by choosing k
large enough, since it suffices that the integrals are approximated within machine precision.

By following similar steps as those in Section 3, let us set

ω̇(ch) =

r−1
i=0

Pi(c) Γ̂i,

Γ̂i =

r−1
j=0

Si+1,j+1 γ̂j(∇H(ω)), i = 0, . . . , r − 1,

Sij =

r
l=1

bl Pi−1(cl)Pj−1(cl)B(ω(clh)), i, j = 1, . . . , r.

(34)

Moreover, we define the following matrices and vectors, besides those defined in (11):

P̂ = (Pj−1(ĉi)), Î =

 ĉi

0
Pj−1(x) dx


∈ Rk×r , Ω̂ = diag(b̂1, . . . , b̂k),

γ̂ = (γ̂0(∇H(ω))T , . . . , γ̂r−1(∇H(ω))T )T , W = (ω(c1h)T , . . . ,ω(crh)T )T ,
B(W ) = diag(B(ω(c1h)), . . . , B(ω(crh))),

e = (1, . . . , 1)T ∈ Rr , ê = (1, . . . , 1)T ∈ Rk, I =

 ci

0
Pj−1(x) dx


∈ Rr×r .

Then, the discrete problem (30)–(31) can be written as

γ̂ = (P̂ T Ω̂ ⊗ I) ∇H(ê ⊗ y0 + h(ÎP TΩ ⊗ I) B(W ) (P ⊗ I) γ̂),

W = ê ⊗ y0 + h(ÎP TΩ ⊗ I) B(W ) (P ⊗ I) γ̂ .
(35)

We observe that the discrete problem (35) can be more efficiently cast, by introducing the block vector

Γ̂ = (Γ̂ T
0 , . . . , Γ̂ T

r−1)
T

≡ ((P TΩ ⊗ I) B(W ) (P ⊗ I)) γ̂,

as

Γ̂ = (P TΩ ⊗ I) B(e ⊗ y0 + h(I ⊗ I) Γ̂ ) (PP̂ T Ω̂ ⊗ I) ∇H(ê ⊗ y0 + h(Î ⊗ I) Γ̂ ), (36)
which has block size r , independently of k. Once (36) has been solved, the new approximation (see (8) and (34)) is given by

y1 = y0 +

r−1
j=0

Γ̂j

 1

0
Pj(σ ) dσ = y0 + Γ̂0. (37)

Remark 4. In the case where in (1) B(y) ≡ B, a constant skew-symmetric matrix (e.g., in the case of Hamiltonian problems),
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by considering that P TΩP = Ir , then (36) reduces to the discrete problem generated by a HBVM(k, r) method [24]:

Γ̂ = (P̂ T Ω̂ ⊗ B) ∇H(ê ⊗ y0 + h(Î ⊗ I) Γ̂ ).

Remark 5. As already observed above, it is worth noting that the (block) dimension of the discrete problem (36) is r ,
independently of k. This means that we can always choose k large enough, for getting an accurate enough quadrature,
without increasing the computational cost of the method too much.

Clearly, the order of the resulting method will depend on the order q ≡ 2k of the quadrature formula. The following
theorem, which follows the proof of [14, Th. 3.1], addresses this issue.

Theorem 8. For all k ≥ r, one has y(h) − ω(h) = O(h2r+1).

Proof. The steps are quite similar to those followed in the proof of Theorem 5. By using a notation similar to that used in
that theorem, one has:

y(h) − ω(h) = y(h, 0, y0) − y(h, h, ω(h)) = −

 h

0

d
dt

y(h, t, ω(t)) dt

= −

 h

0


∂

∂t
y(h, t, ω(t)) +

∂

∂ω
y(h, t, ω(t)) ω̇(t)


dt

= h
 1

0
Φ(h, τh, ω(τh))[B(ω(τh))∇H(ω(τh)) − ω̇(τh)] dτ

= h
 1

0
Φ(h, τh, ω(τh))


B(ω(τh))∇H(ω(τh)) − B(ω(τh))

r−1
j=0

γj(∇H(ω))Pj(τ )


dτ

+ h
 1

0
Φ(h, τh, ω(τh))


B(ω(τh))

r−1
j=0

γj(∇H(ω)) Pj(τ ) − ω̇(τh)


dτ

≡ h(E1(h) + E2(h)).

Concerning E1(h), by using the same arguments as in the proof of Theorem 5, we arrive to state that E1(h) = O(h2r).
Concerning E2(h), by setting G(τh) = Φ(h, τh, ω(τh)) one obtains, by virtue of (31)–(32),

E2(h) =

r
i=1

biG(cih)B(ω(cih))


r−1
j=0

γj(∇H(ω)) Pj(ci) −

r−1
j=0

γ̂j(∇H(ω)) Pj(ci)


+ O(h2r)

=

r
i=1

biG(cih)B(ω(cih))
r−1
j=0

∆j(h) Pj(ci) + O(h2r)

since the Gaussian quadrature formula has order 2r . Let us assume that the (matrix) function G(cih)B(ω(cih)) is smooth
enough so that it can be expanded as

G(cih)B(ω(cih)) = T0 + (cih)T1 + · · · + (cih)sTs + · · · .

Then, considering that
r

i=1

bic liPj(ci) = 0, for l = 0, . . . , j − 1,

one obtains:

E2(h) =


l≥0

Tlhl
r

i=1

bic li
r−1
j=0

Pj(ci) ∆j(h) + O(h2r)

=

r−1
j=0


l≥j

Tlhl


r

i=1

bic liPj(ci)


∆j(h) + O(h2r)

=

r−1
j=0

O(hj) ∆j(h) + O(h2r) = O(h2k) + O(h2r).

Consequently, the thesis follows. �
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Table 1
Problem (38), error after one period for the 2-stages Gauss method (eG) and for the (12, 2)
conservative variant (eCV ), when using a stepsize h = T/n, along with the estimated order of
convergence.

n eCV p eG p

20 1.287e−02 — 6.556e−01 —
40 2.124e−03 2.60 4.509e−02 3.86
60 4.589e−04 3.78 1.331e−02 3.01
80 1.510e−04 3.86 4.298e−03 3.93

100 6.300e−05 3.92 1.796e−03 3.91
120 3.068e−05 3.95 8.751e−04 3.94

The next result concerns the order of approximation of the Hamiltonian, in case it is not a polynomial and/or (33) is not
satisfied, thus extending to the discrete setting the result of Theorem 3. The proof strictly relies on the concept of discrete
line integral, as defined in [9,8,10,7,4,5,11,12].

Theorem 9. For all k ≥ r, H(ω(h)) − H(y0) = O(h2k+1). In addition, if H(y) is a polynomial of degree ν satisfying (33), then
H(ω(h)) = H(y0).

Proof. From (31) and (34), one has:

H(ω(h)) − H(y0) =

 h

0
∇H(ω(t))T ω̇(t) dt = h

 1

0
∇H(ω(τh))T ω̇(τh) dτ

= h
 1

0
∇H(ω(τh))T

r−1
j=0

Γ̂jPj(τ ) dτ = h
r−1
j=0

Γ̂ T
j γj(∇H(ω))

= −h
r−1
j=0

Γ̂ T
j ∆j(h).

If H is a polynomial of degree ν satisfying (33), then ∆j(h) = 0, j = 0, . . . , r − 1. Conversely, by using (34), and expanding
B(ω(clh)) as a series power of (clh), it is easy to see that Γ̂j = O(hj) and, therefore, H(ω(h)) − H(y0) = O(h2k+1). �

On the other hand, it can be readily proved that the result of Theorem 4 continues to be valid after the discretization.
Moreover, for a general Casimir C(y), one obtains C(ω(h)) = C(y0) + O(h2r+1), for all k ≥ r .

6. Numerical tests

We consider the Poisson problem defined as follows:

B(y) =

 0 c3y3 −c2y2
−c3y3 0 c1y1
c2y2 −c1y1 0


, H(y) = y121 +

1
2
[(y2 − y3)2 + (y1 − y3)2], (38)

with c1 = 1, c2 = 5, c3 = −4. The solution started at (1, 1, 1)T turns out to be periodic with period T ≈

0.53102669598427. The problem admits also the quadratic Casimir C(y) = (c1y21 + c2y22 + c3y23)/2.
Weuse themethods derived by formula (6) with r = 2, by considering k = 12 Gauss points for the numerical quadrature

approximating the integrals. Consequently, according to (33), the quadrature turns out to be exact for this polynomial
Hamiltonian of degree ν = 12, so that themethod is energy conserving. Moreover, also the quadratic Casimir C(y) turns out
to be conserved. In the practice, we obtain a method closely related to the HBVM (12, 2) method (for Hamiltonian problems,
they are, indeed the same method, as observed in Remark 4). In Table 1, we list the errors after one period by using the
2-stages Gauss method, and the (12, 2) conservative variant (i.e., the method defined by (30)–(31) with k = 12 and r = 2).
As one can see, the order four of the methods is numerically confirmed. Moreover, the error for the conserving method
is smaller than that for the Gauss method, which turns out to preserve only the Casimir. This fact is further confirmed by
considering a longer time interval, where the conserving method exhibits a linear error growth, whereas the Gauss method
has a quadratic error growth, along with a drift in the Hamiltonian, as is shown in Figs. 1 and 2, respectively. We observe
that the linear growth of the error with the (12, 2) conserving method (which, actually, preserves two invariants of the
problem), confirms the analysis in [19]. In addition to this, in Fig. 3 we plot the error growth by using the (12, 2) method
and the (4, 2) method. According to Theorem 9, the latter method preserves the Hamiltonian only up to order 8, which is
doubled with respect to that of the method (the Casimir is, instead, exactly preserved). In such a case, even though a drift
in the Hamiltonian still occurs (though, much smaller that that observed for the fourth-order Gauss method), according to
the analysis in [19] it turns out that a linear growth of the error is to be expected, provided that Nh4 (N being the number
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Fig. 1. Problem (38), error in the computed solution by using the 2-stage Gauss method and the (12, 2) conservative variant with a constant stepsize
h = T/50.
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Fig. 2. Problem (38), drift in the Hamiltonian by using the Gauss method with stepsize h = T/50.
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Fig. 3. Problem (38), linear growth of the error by using the energy conserving method (12, 2) and the almost energy conserving method (4, 2), with
stepsize h = T/50.

of periods) is ‘‘small’’ (say, less than 1). This fact is duly confirmed by the plot in Fig. 3, where the error turns out to grow
linearly for both the methods.
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Conclusions. In this paper, we studied energy preserving methods for Poisson type systems. The proposed methods
approximate the local solution in a step by a truncated Fourier series with coefficients defined by some integrals. We show
that the proposed approach allows us to obtain themethods recently derived in [17], giving an alternative derivation of such
methods and a new proof of their order. In addition, sufficient conditions that guarantee the existence and uniqueness of
the solution of the implicit equations defining the method are given. To provide effective numerical methods quadrature
formulae with k nodes are considered to approximate the involved integrals. We show that the order is maintained and the
methods are energy-conserving for polynomial Hamiltonians of suitable degree and ‘‘practically’’ energy-conserving, for k
large enough, for all sufficiently regular Hamiltonians. Quadratic Casimirs are also preserved. Some numerical experiments
are presented to confirm the above theory.
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