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Abstract 

In this paper, we prove that there exists a perfect GO-space which cannot densely embed in any 
perfect orderable space. This result answers an open question: “Does every perfect GO-space have 
an orderahle perfect space in which it densely embeds?’ 
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1. Introduction 

A linearly ordered topological space (abbreviated LOTS) is a triple (X, X, <), where 

(X, <) is a linearly ordered set and X is the usual interval topology defined by < (i.e., X 

is the topologygeneratedby {(u,+)(G): a E X}U{(t,a)(<): a E X} as asubbase), 

where (a, +)(<) = {x E X: a < x} and (+,a)(<) = {x E X: z < u}. Similarly 

(C&b)(<) = {CC E x: a < 32 < b}, [u,b)(<) = {z E X: a 6 z < b}, etc. When it is 

needed to emphasize on which set the ordering or the topology is defined, we will write 

< ,x, A, instead of <, A. A generalized ordered space (abbreviated GO-space) is a triple 

(X, 7, <), where (X, 6) IS a linearly ordered set and 7 is a topology on X such that 

X c 7 and 7 has a base consisting of order convex sets, where a subset A of X is called 

order convex or simply convex if x E A for every x lying between two points of A. A 

LOTS (Y, A,, &,) is called a linearly ordered extension of a GO-space (X, 7, <x) if 
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X c Y, 7 = X,1X (= {UnX: U E X,}) and Gx = Gy IX (i.e., &, is an extending 

ordering of <x), and we also say that the GO-space (X, 7, <x) can order-preservingly 

embed in the LOTS (Y, X y, &,.). Furthermore if X is also dense (respectively, closed) 

in the space (Y, X y, &), then (Y, X y, &,) is said to be a linearly ordered d-extension 

(respectively, c-extension) of (X, 7, <_.,). A topological space (X, 7) is called orderable 

if there exists a linear ordering < on X such that the open interval topology defined by 

< coincides with 7. An orderable space (Y, X,) is called an orderable (respectively, d-, 

c-) extension of a GO-space (X, 7, <) if X is a (respectively, dense, closed) subset of 

Y and 7 = X,1X (where we do not require that the ordering on Y extends the ordering 

< on X). 

It is well known that a topological space (X, 7) is a GO-space together with some 

ordering Gx on X if and only if (X, 7) . is a topological subspace of some LOTS 

(Y, X, Gy) with Gx = &,1X, so any GO-space has an orderable extension. Naturally 

we are interested in that what topological properties which a GO-space has can be 

inherited by some orderable extension of the GO-space. It is known that metrizability 

and (hereditary) paracompactness of a GO-space can be inherited by some of its linearly 

ordered c-extensions [6]. But for the perfectness (a space is perfect if every open subset 

of the space is a F,-set) the following problem posed in [3] remains open. 

Problem 1.1. Does every perfect GO-space have a perfect orderable extension? 

Related to this problem, it is known that the Sorgenfrey line S is a perfect GO-space 

which has no perfect orderable c-extension [6, Theorem 5.91, but 5’ has a perfect linearly 

orderable d-extension [3]. The following problem which is a special case of Problem 1.1 

was posed in [2, “Posed problems” 81 or [7, Question (V)]. 

Problem 1.2. Does every perfect GO-space have a perfect orderable d-extension? 

Some partial answers have been obtained. Miwa and Kemoto proved that there exists 

a perfect GO-space which does not have any perfect linearly ordered d-extension [9]. 

Also Bennett, Hosobuchi and Miwa [I] gave some conditions under which Problem 1.1 

and Problem 1.2 have affirmative answers. 

In this paper, we shall give a negative answer to Problem 1.2 by proving the following 

theorem: 

Theorem 1.3. There exists a perfect GO-space which has no perfect orderable 

d-extension. 

Throughout this paper, N denotes the set of all natural numbers and Q denotes the set 

of all rational numbers. For undefined terminologies we refer the reader to [4]. 
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2. Preliminaries for the proof of Theorem 1.3 

First we state the construction of the space which satisfies Theorem 1.3. Throughout 

this paper in the below, we use the notations of this section. 

Example 2.1. Let X be the set of all real numbers, K the Cantor set and < the usual 

ordering on X. Put T = U{ K + q: q E Q}, where K + q = {x + q: z E K}. Let the 

topology 7 on X have a base as follows: 

{[x,x + E)(G): E > 0, x E X - T} u {{x}: CE E T}. 

Then (X, 7, <) is a GO-space (this space was constructed in [8]). Since T is clearly a 

g-discrete dense set of (X, 7, <), (X, 7 <) is perfect (see [5, Theorem 2.4.5 and the 

proof on p. 511). 

Let (Y, Xy) be an orderable d-extension of (X, 7, <). Then there exists an ordering 

G-2: on Y such that (Y,X,, ,y <“) is a LOTS and satisfies X c Y, 7 = A, IX and 

cl, X = Y. Then the LOTS (Y, A,, ,y <“) is a linearly ordered d-extension of the GO- 

space (X, 7, G”), where <” = <;lX. It is known that for the GO-space (X, 7, <“) 

there is a minimal linearly ordered d-extension (2, x- x, 6;) constructed as follows [9]: 

Let A, be the order topology on (X, GM), and let 

X=X x (0) U {(z, -1): z E X and [z, +)(<i) E 7 - A} 

U{ (z, 1): 2 E X and (t, %I(<,) E 7 - A} 

be a subset of the lexicographic product X x {-l,O, 1). Let <X be the lexicographic 

ordering on X and let x2 be the associated order topology on (2, <;). 

It is proved in [9] that (2, x- x, <$) can be densely embedded by an order preserving 

homeomorphism in any linearly ordered d-extension of (X, 7, <“). Because perfectness 

is a hereditary property, to prove that (Y, X y, <F) is not perfect it will be enough to prove 

(2, ;\x, <&) is not perfect. We will denote (X, i,-, <,“) by L(X, 7,<“) (cf. [l]). 

Because (X, 7, <) and (X, 7, <“) have the same topology 7, we will simply say 

that a subset of X is open or closed in (X, 7) without mentioning the ordering < or 

Q”. In the following the concepts “dense” and “nowhere dense” will be always in the 

sense of the Euclidean topology on the real line. 

Lemma 2.2. For z E X, if{x} is open in (X,?), then {x} is open in L(X,T, <“). 

Proof. By the construction of L(X, 7, <-), if {z} is open in (X, 7), then it is easy 

to see that x has a predecessor and a successor in L(X, 7, <-), so {x} is open in 

L(X, 7, c-). q 
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In the following discussion we assume that L(X, 7, <“) is perfect. By Lemma 2.2, 

T is an open set in L(X, 7, <-), so T is an F,-set. So 

T= u F,, 
nElV 

where each F, is closed in L(X, 7, <“). Let Ti = K + qi, i E N, where {qi: i E N} 

is an enumeration of Q. Put Ti, = T, n F,, then T = U{Tin: i,n E N}. 

Lemma 2.3. Ti, is closed in L{X, 7, <“) for i, n E N. 

Proof. Notice that Ti, c F, C X and Ti, is closed in (X, 7). 0 

Recall that a gap in a linearly ordered set (2, <) is an ordered pair (A, B) of subsets 

of Z satisfying 

(l)Z=AuB; 

(2) a < b for all a E A and b E B; 

(3) A has no right endpoint and B has no left endpoint (see [lo]). 

LetZ+=ZU{. c. c is a gap in (2, <)}. Now define a linear ordering gz+ on Z+ as 

follows: 

If a, b E 2, then a Gz+ b if and only if a < b. 

If c = (A, B), a E A and b E I?, then a cz.+ c cz+ b. 

For a pair of gaps ct = (Al, Bl) and c2 = (A2, &), cl < c2 if and only if A1 c AZ. 

Then (Z+, Gz+ ) is also a linearly ordered set. It is called the Dedekind completion 

of (2, <). In the following, for the linearly ordered set (X, <-), we write <” instead 

of <;+ for convenience. 

Lemma 2.4. If x E Ti, and x is not the right endpoint of Tin in (X, <-), then either x 

has a successor in the ordering <” in Tin or there exists a gap D(X) E X+ satisfying 

x <-- (Y(x), (2, Q(X))(<“) n T,, = 0 

andfor any y E X with Q(X) <” y, 

(Q(X), Y) (0 n T,, # 0. 

Proof. Let x E Tin and x be not the right endpoint of Tin in (X, <“). If x has no 

successor in the ordering <” in Tin, then there must be a point x0 E X with x <” x0 

such that (x, zo)(<-) n Tin = 0; otherwise, for any y E X with x <" y, 

($1 y)(C) n Tin # 0, 

which implies that {x} is not open in the sense of the interval topology of the ordering 

6” on X. Since {x} is open in (X,7-), we have (x, 1) E L(X, 7,<“) and 

(x:, 1) E cl~(x,-r,<-)Z,, 

but (XT 1) $ T,,, which contradicts the closedness of Ti, in L(X, 7, <“) (see 

Lemma 2.3). Hence x0 exists. 
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Let 

A = {y E X: y <-z for all z E Tin with 3: <“z}, and 

B={~EX: z<“yforsomezET,,withz<“z}. 

Then clearly (1) X = A U B; (2) if a E A and b E B, then a <” b; and (3) B 

has no left endpoint in (X, <“) from the construction of B and the fact that 5 has no 

successor in Tin with respect to the ordering <,” . We claim that A has no right endpoint. 

Suppose that uu is the right endpoint of A. By the fact that Tin is closed in (X, 7), 

(t, ua] (<“) is open. Since ~0 has no successor in (X, <“) from the construction of A 

and the fact that z has no successor in Ti, with respect to <-, (t, ue] (<“) is not open 

in the interval topology of the ordering <- . It follows that (~0~1) E L(X, 7, <“). Thus 

(‘ILO, 1) E clL(x,T,G-) Tim which contradicts the closedness of Ti, in L(X, 7, <“). Thus 

(A, I?) is a gap in (X, <“). Let a(x) = (A, B). Then it is easy to check that a(~) is 

the required point. 0 

Now we define an equivalence relation R on the set T as follows: For x, y E T, x R y 

if and only if there is no z E X - T such that 2 <” z <” y or y <” z <” x. Let 

S = {S: S is an equivalence class of R and 5’ contains at least two points of T). 

Lemma 2.5. S # 8 and for any a, b E X with a < b, there exists an S E S such that 

s C (a, b)(G). 

Proof. Since X - T is dense, there exists an r E (X - T) n (a, b)(G). It follows that 

there exists an open and convex set C in (X,7, <“) such that T E C c (a, b)(G) 

since (a, b)(G) is an open neighborhood of T in (X, ‘7-j. Moreover there exists an E > 0 

such that [r,r + E)(G) c C c (u,b)(<). T k a e rt, r2 E (T, r + E)(G) 0 (X - T) with 

r1 # rz. Then {r, rl, r2) C C. We may assume that r <” r1 <” r2. It follows that 

(r, r2)(<-) is an open neighborhood of rI in (X, 7). So there exists ~1 > 0 such that 

[ri,ri + El)(<) C ( r, r2)(<-) C C. Since (ri , r1 + &I)(<) f? T is uncountable and 

T = U {Tin: i,n E N}, 

there exist io, 720 E N such that (rl, ri + EI)(<) n Tiono is uncountable. So 

(r, r-2)(0 n Tioncj 

is uncountable. For each J: E (r, r2) (<“) nTinno satisfying that x is not the right endpoint 

of T&no in (X, <-), we define 

W(x) = 

( 

(x,x+)(<“)> if x has a successor x+ of the ordering <” in Tionr,; 

(z, a(~))(<~), if x has no successor of the ordering <” in Ti,,,,; 

where CY(Z) is as defined in Lemma 2.4. 

Clearly if x # y, W(x) n W(y) = 0 and each W(x) is open in (X, 7). Notice that, 

if W(x) n (X - T) # 0, there must be some open interval (c,d)(<) c W(z). Hence 
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there exist at most countably many W(z)‘s such that W(z) n (X - T) # 0 since the 

subspace (X - 7’) of the real line has countable cellularity in its Euclidean topology. It 

follows that there exists an z f (r, r?)( <“) 17 Tkno such that W(z) n (X - ‘I’) = 0. 

If W(x) = (z, a?)(<“>, then x,x+ E T,,,,,, and (x,&)(<“) ;1 (X - T) = 0, so 

x Rx+ which implies that there exists an S(z) E S such that {x,x+} c S(z). If 

W(x) = (3J,+g)(<--), f rom Lemma 2.4 we know that o(x) is a gap (A, B). By the 

definition of the gap, A has no right endpoint in (X, <“). So (cc:, a(~))(<-) # 0 since 

x E A. Thus (x,cr(x))(<“) C T since 

(z, o(x)> (G”) n (x ~ r; = u’(x) n (x - T) = 0. 

Take a y E (z,LY(z))(<~), th en x R y. Hence there exists an S(z) E S such that 

(x, y} c S(z). Noticing that 5 E (T,T~)(<-) 8 T,,,,,,, we have 

S(x) O (r, T2)(<_) # 0. 

By the definition of the equivalence relation R, 

S(z) c (f-,T2)(<7 

since {T,Q} c X - T. Therefore we have S(x) c (r,r~)(<“) c C c (a! b)(G). 0 

Lemma 2.4. tet C be a convex ser in (X, SW), If there exist three distinct etemerrts 

SI, S2, S?ofSsuch thatCn$ # I?f or i = I, 2,3, then C must contain one of the Si. 

Proof. Take zi E C O St for i = 1,2,3, then 21, 52 and x3 are distinct since 5’1, S, 

and Ss are distinct. We may assume x1 <- 52 <” .x3. By the definition of R there exist 

rl,rz E X - T such that 51 <” TI <” xz <” r:! <” 5~. Thus SZ c (TI,T$(<-). So 

for any z f 55, 21 <” x <” x3. Since xl ! x1 E C and C is convex in (X, <-}, we 

have x E C. Thus S2 C C. 0 

3. The proof of Theorem 1.3 

In order to prove Theorem 1.3 it is sufficient to show that the perfect GO-space 

{X, 7, <) constructed in Example 2.1 has no perfect orderable rl-extension. By the 

argument in Section 2 it is sufficient to show that L(X: 7,<“) is not perfect. 

Proof of Theorem 1.3. Suppose that L(X, 7, <“) is perfect and take the collection S 

defined as in Section 2. For each S E S, take two distinct points p(S), y(S) E S such 

that p(S) < y(S). Let A = {(O(S),y(S))(<): S E S}. Then A is a collection of open 

intervals of the ordering <. We will show that there exists an uncountable subset of 

X - T which is dense in X and each point of which belongs to infinitely many elements 

of d. 
For each n E IV, let 

B, = {x E X - T: z is contained exactly in n elements of A}. 
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Then each B, is nowhere dense in X with its Euclidean topology. In fact, for any open 

interval (a, b)(G), if (a, b)(6) n B, # 0 take an x E (a, b)(G) n B,, then 

U=(a,b)(<)n(n(A,d: XEA}) 

is an open interval on the ordering < which contains x. By Lemma 2.5, the set 

{p(S): S E S} is d ense in X. So there exists an S E S such that p(S) E U. 

Then (p(S),y(S))(<) E A and for each y E V = @(S),y(S))(<) n U, we have 

I{A E A: y E A}1 > n. Thus y $ B,. Hence V c (a, b)(G) and V n B, = 0. Since 

V is a nonempty open interval of the ordering 6, B, is nowhere dense in X with its 

Euclidean topology. 

Let clxcEj B, be the closure of B, in the sense of the Euclidean topology on X. 

Then 

F = T u u clxcE) B, 
nEN > 

is a u-nowhere dense set of X in the sense of the Euclidean topology, 

uncountable and dense in X such that X - F c X - T and for any 

{A E A: x E A) is infinite. 

Next we consider two cases: 

so X - F is 

XEX-F, 

Case 1: There exists an x0 E X - F such that {xo} = n{A E A: xo E A}. 

Notice that 

{A E A: 20 E A} = {(P(S), Y(S))(G): 20 E (P(S), Y(S)) (3, S E S}. 

For any open neighborhood of x0 in (X, 7) of the form [xc, x0 + E)(G), where E > 0, 

we have 

[x0, x0 + E)(G) n {y(S): x0 E (P(S)/Y(S))(Q S E S} 

is infinite and 

[x0, x0 + E)(G) n {P(s): x0 E (P(S), Y(S))(<), s E s} = 0. 

Since [xo,xo+E)(<) is open in (X, 7) there exists an open convex set C in (X, 7, <“) 

such that x0 E C c [x0, x0 -I- E)(G). Again because C is open in (X, 7) there exists an 

E’ > 0 such that [x0, x0 + E’) (<) c C c [x0, x0 + E)(G). It follows that there exists an 

infinite subset S’ of S such that y(S) E C, but ,0(S) $’ C for S E S’. By Lemma 2.6, 

C is not convex in (X, <‘-), which is a contradiction. 

Case 2: For any x E X - F, n{A E A: x E A} # {x}. 
Let D = {,0(S): S E S}. Rewrite F = UF, instead of 

F=TU 
( 

UclX&4z , 
nEN > 

where each F, is nowhere dense and closed in the sense of Euclidean topology on the real 

line. For x0 E X-F, take a0 and ba satisfying a0 < be, [ua, bo] (<) c n{A E A: x0 E A} 
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and [ac, be](<) n Fl = 8. In the following we will inductively choose (a,, &I(<) and 

S, E S for every n E N satisfying: 

[~o,bol(~) IJ [P(Sd,~(st)](6) 2 bl,bll(G,) 3 ... 

1 [Wn), r(Sn)] (<I 1 [an, M(G) 2 > (*) 
bo - a0 

O<b,-a,<7 and [a,, bn](<) n %+I = 0. 

Observe that, in the following process of defining [a,,, bn](<) and S,, the choice of 

S, depends only on [an-r, b,_l] (<) and the choice of [an, b,] (<) depends only on S,. 

So to initialize the induction we only need to define [aa, bo] which we have done. Now 

assume that for each i < n we have chosen [ai, bi](<) and Si E S satisfying: 

[ao,bo](<) 3 [P(SiM%)](<) 3 [at,btl(<) 3 ... 

3 [P&-,),&%-r)] (<) 3 [an-i, &-i](6), 

bo - ao 
O<b,-ai<F and [ai, bi](<) n F~+I = 8, 

fori= 1,2 ,..., n-l. 

By Lemma 2.5, D = {p(S): S E S} is dense. Let 

M-1 = {P(S) E (an-1,&-i)(<) n D: Y(S) 3 b,-1). 

If M,_l is dense in some 

(c, d)(G) c (an-i, &-i)(G), 

then for YO E (c, d)(G) n (X - F) and arbitrary E > 0 with [Ya,Ya + E)(G) c (c, d)(G), 

[YO, YO + &)(G) n W-I 

is infinite. Since [ya, YO + c)(G) 1s an open neighborhood of yo in (X, 7) there exists 

an open convex set C in (X, 7, <“) such that Ye E C c [Ya, ye + E)(G). Furthermore, 

there exists E’ > 0 such that 

[Yo, YO + &‘)(G) c C c [YO, YO + c)(C). 

Because that [ye, ya + E’)(G) n M+I is infinite and if p(S) E [yo, ye + c’)(G) n M+l, 

then p(S) E C and 

r(S) $ (an-l,bn-l)(G) 3 [YO,YO + s)(G) 1 c. 

By Lemma 2.6, C is not convex in (X, 7, <“) which is a contradiction. Therefore M+ I 

is nowhere dense in (a,_~, b,_l)(<). Let 

M” +, = ((an-lrbn-l)(G) nD) - M+I. 

Then M,“_, is dense in (an--], b,_,)(G) since D is dense. Take a fl(&) E M,“_,, then 

[P(Sn)&%)] (G) c (a,-1, &-t)(6). 
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Pick an CC, E (p(Sn),y(Sn))(<) n (X - F), then 

{G} # n{A E A: 5, E A} c (P(S&(S,))(<) c [a,-~, &-I](<). 

Hence we may choose a, and b, in n{A E A: 2, E A} satisfying 

b0 - a0 
O<b,-a,<- 

2n ’ Ia,, &I(<) n %+I = 0 

and 

[a,,&](<) c n{A E A: G E A}. 

So by the induction we may define [a,, b,] and S, E S satisfying (*) for each n. 

Hence there exists a zo E X - F such that 

zo E [a,, f-h](<) c [P(G), r(G)](G) for every n E W. 

It follows that {ZO} = n{A E A: zo E A}. This contradicts the assumption of this 

case. 0 

Remark. Unfortunately, by Example 2.1 we cannot answer Problem 1.1. In fact there 

exists a perfect linearly ordered extension of (X, 7, <) according to the result in [ 11. 
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