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a b s t r a c t

It is increasingly important for investigators to efficiently and effectively access, interpret, and analyze
the data from diverse biological, literature, and annotation sources in a unified way. The heterogeneity
of biomedical data and the lack of metadata are the primary sources of the difficulty for integration, pre-
senting major challenges to effective search and retrieval of the information. As a proof of concept, the
Prostate Cancer Ontology (PCO) is created for the development of the Prostate Cancer Information System
(PCIS). PCIS is applied to demonstrate how the ontology is utilized to solve the semantic heterogeneity
problem from the integration of two prostate cancer related database systems at the Fox Chase Cancer
Center. As the results of the integration process, the semantic query language SPARQL is applied to per-
form the integrated queries across the two database systems based on PCO.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Biomedical data systems and their associated information mod-
els, terminologies, protocols, and data dictionaries have often been
developed independently. Consequently, data integration has be-
come an important tool for biomedical researchers since the data
obtained from experiments frequently needs to be combined with
the data or the annotations derived from other systems. For exam-
ple, it will significantly increase the value when human tissue
specimens are combined with the medical data describing mor-
phology, histopathology, and so on. Further, the integration of
the data from a variety of sources improves the clinical decision
making process and the quality of patient care [1,2]. Data integra-
tion has the capacity to expand research scope by focusing on com-
mon elements across studies and thus, create opportunities to
achieve large enough sample sizes to detect the significant results.

Current data integration research is concerned with the seman-
tic integration problem. The problem involves the best approach to
resolve semantic conflicts (the conflict caused by using different
terms in the heterogeneous systems to express the same entity
in reality) among the heterogeneous data sources. A common strat-
egy to address the semantic conflicts is through the use of an ontol-
ogy with explicitly defined schema terms [3,4]. This approach is
called ontology-based data integration.

In this paper, we demonstrate the implementation of the Prostate
Cancer Information System (PCIS) based on one of the ontology-
ll rights reserved.
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based data integration approaches. Besides providing services for
researchers and clinicians in the field, it also provides a verified solu-
tion for large biomedical data integration projects (e.g., cancer Bio-
medical Informatics Grid (caBIG) [5,6], etc.). PCIS demonstrates the
advantages of the ontology-based data integration strategy pre-
sented in Section 1.4.2.

1.1. Ontology

The term ontology has its origin in philosophy, where it is the
name of a fundamental branch of metaphysics concerned with
being or existence. In both computer and information science,
ontology is a data model that represents a set of concepts within
a domain and the relationships among these concepts. In short,
ontology is a specification of a conceptualization [7]. A conceptual-
ization is an abstract, simplified view of the world. The specifica-
tion is a declarative representation of the conceptualization in a
concrete form. It tries to interpret knowledge in a way that a com-
puter can process unambiguously and consequently encode the
concepts and relationships in a computer-usable language. The
Web Ontology Language (OWL) is recommended by W3C to
represent the web ontologies [8]. OWL has a greater machine
interoperability for the web content than the Extensible Markup
Language (XML), DARPA Agent Markup Language (DAML), Re-
source Description Framework (RDF) [9], and RDF Schema. OWL
has three sublanguages: OWL Lite, OWL DL, and OWL Full [8].
OWL DL is chosen as the ontology representation language in this
paper.

A number of ontologies have already been developed in the dis-
ciplines of biomedicine. The Unified Medical Language System
(UMLS) is a comprehensive source of biomedical terminology that
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consists of a large number (over 100) of national and international
vocabularies and classifications [10]. The National Center for
Biomedical Ontology (NCBO) [11] builds a library of biomedical
ontologies known as the Open Biomedical Ontologies (OBO) [12]
which is now comprised of more than 70 biomedical ontologies
(such as Cell Ontology (CO) [13], MGED Ontology [14], Founda-
tional Model of Anatomy (FMA) [15], and National Cancer Institute
Thesaurus (NCI Thesaurus) [16,17], etc.). The Ontology for Biomed-
ical Investigations (OBI) [18] project has developed an integrated
ontology for the description of life-science and clinical investiga-
tions. The OBI Consortium is a member of the OBO Foundry. Cur-
rently, the OBI uses the Basic Formal Ontology (BFO) [19] as its
upper-level ontology. The upper-level ontology captures mostly
concepts that are basic to human understanding of the world. It de-
scribes very general concepts that are the same across all domains.

1.2. Ontology application in the database and information systems

In the field of database and information systems, ontology plays
a crucial role in integrating the data from multiple heterogeneous
resources by transforming the underlying data into a common rep-
resentation and transmitting this knowledge to the application
programs [20,21]. The semantic heterogeneity has been identified
as the most challenging issue of data integration since it requires
understanding of the relationships between the data and the real
world objects, often based on various points of the view. Ontology
provides a solution to address the semantic heterogeneity problem
[4]. It provides formal definitions of the terms used in the data
sources, and renders the implicit meaning of the relationships
among the different terminologies of the data sources explicitly.
For example, one can determine whether two classes of the data
items from two different database systems are equivalent, or
whether one is a subset of another by using ontology. Ontology
also allows the users to query different database systems as one
by tying them together at a semantic level.

1.3. Prostate cancer data at Fox Chase Cancer Center (FCCC)

Prostate cancer is the most common cancer (excluding skin can-
cer) among American men. American Cancer Society estimated
that there would be more than 186,320 new cases of prostate can-
cer and approximately 28,660 deaths in 2008 in the United States
[22].

Fox Chase Cancer Center (FCCC) is a National Cancer Institute
designated comprehensive cancer center which admits over 7000
new patients annually. Given its high incidence of prostate cancer,
Fox Chase has a very large number of prostate cancer patients who
are currently under treatment or have completed treatment. There
are several major information systems at FCCC that contain the
data relevant to prostate cancer. These include the Tumor Registry,
Pathology Report System, Pharmacy, Risk Assessment Program,
and Laboratory System, etc. These systems were designed for dif-
ferent tasks, and were either purchased or developed indepen-
dently. Consequently, these systems use different underlying
data and information models, as well as lexicons and vocabularies
to represent the data captured at the point of service. For example,
the systems use diverse staging standards to describe how far the
cancer has spread. The Tumor Registry at FCCC uses the American
Joint Committee on Cancer (AJCC 6 Edition) TNM staging system
[23]. However, the Radiation Oncology Department at FCCC em-
ploys the FIGO staging system [24]. A translation between the
two staging systems must be applied to query the data across these
two database systems. The development of a common interface for
information retrieval will benefit the efforts in prostate cancer pre-
vention, diagnosis, treatment, and research for improving the qual-
ity of prostate cancer patient care.
1.4. Data integration methods

Biomedical data are collected from a large range of various
fields including daily clinical practice, clinical trials, and scientific
experiments. Data integration is the process of combining the data
residing in different data sources to provide the users with a uni-
fied query interface to access these data [25]. The traditional data
integration methods include data warehouse and database federa-
tion. Besides these two traditional methods, the ontology-based
data integration has attracted attention because of its ability to ad-
dress the semantic heterogeneity problem.

1.4.1. Data warehouse and database federation
A data warehouse is a repository of an organization’s electron-

ically stored data [26]. Data are extracted, transformed, and loaded
(ETL) into a central repository from different sources. Besides the
data itself, the data warehouse contains methods to retrieve and
analyze data, to extract, transform and load data, and to manage
it. The advantages of the data warehouse include improving users’
ability to access a wide variety of data sources and increasing the
data consistency. The data warehouse has a very high reliability
and faster query response time since all data are located in the cen-
tral data repository. It also has several disadvantages. The initial
cost for the data warehouse is high since all data sources need to
be transformed and copied into the central repository. The data
warehouse needs to be refreshed periodically (e.g., daily or weekly)
since it can be outdated relatively quickly.

A federated database system is considered as a meta-database
management system that transparently integrates multiple auton-
omous database systems into a single conceptual view of the inte-
grated database. The data sources are considered ‘‘federated”
because the data is not copied into a central repository, rather,
the federation server maintains indices or links to the relevant re-
cords or data of interest in the source systems [27]. The data
sources are interconnected via a computer network, and may be
geographically decentralized. In essence then, the database federa-
tion works as a virtual data warehouse [28,29]. In addition to the
benefits of the data warehouse, the database federation provides
accessibility to the live data and functions. The cost for construct-
ing and maintaining a database federation is lower than that of a
data warehouse since there is no need to gather information into
a central repository. Security is sometimes considered enhanced,
as the original data owners maintain control over authorization
to the data contained in their systems. However, the query perfor-
mance for the database federation is limited by a number of fac-
tors: network configuration and performance, schema design,
and the availability of the source database systems.

1.4.2. Ontology-based data integration
The ontology-based data integration involves the use of ontol-

ogy to effectively combine the data and/or information from the
multiple heterogeneous sources. It provides a semantic layer on
the top of the underlying data. The primary goal of the ontology
is to provide a set of mechanisms for solving the semantic hetero-
geneity problems.

Ontology-based data integration has unique advantages [3]. It
has a stable conceptual interface to the database systems because
the ontology provides a rich and predefined vocabulary. The con-
ceptual interface is independent of the database schemas. The
knowledge represented by the ontology can be utilized to translate
the relevant data sources into a common frame of the reference.
The ontology-based data integration supports consistent manage-
ment and recognition of the inconsistent data. It also provides a
mechanism to define queries based on the concepts of the ontology
and present the query results in a unified and structured form. The
ontology-based data integration also brings the challenges for do-
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main experts and computer scientists. Domain experts need to
construct, merge, and maintain the domain ontologies. Each data-
set needs to be registered (linked) to the ontology. Computer scien-
tists have to build an integrated system based on the ontological
registered datasets.

In ontology-based data integration, it requires a mediator sys-
tem to represent all objects in the domain of the interest. Queries
are then directed against the mediator, which in turn deals with
the details of querying the source systems. This model of data inte-
gration is classified as a Local-as-View [30], to denote that queries
on the local (source) databases are reformulated in terms of the
global mediation. While other models are possible, Local-as-View
models have been shown to scale better and be easier to maintain.

Variant approaches have been developed for the ontology-
based data integration. They can be classified into ontology-based
data warehouse or ontology-based database federation. Though,
ontology is utilized in both approaches, each approach is distin-
guished by the data location and ontology construction. The
CoryneRegNet [31] is one of the examples for the ontology-based
data warehouse. The CoryneRegNet is designed to facilitate the
genome-wide reconstruction of transcriptional regulatory net-
works of corynebacteria and Escherichia coli. The data related to
transcriptional regulation from different sources are first imported
into a single data repository. Then, the data model of the data
repository is converted to ontology-based data structure. The
ontology-based database federation has been applied to integrate
two neuroscience databases (NeuronDB and CoCoDat) [32]. The
D2RQ [33] is applied to translate the schema of each database into
the corresponding OWL ontology. The two ontologies are merged
by the ‘‘SameAs” construct in OWL which relates the equivalent
concepts of the two ontologies.

As a proof of concept, we present a web-based Prostate Cancer
Information System (PCIS). PCIS is applied to demonstrate the
ontology-based data integration approach for the integration of
two prostate cancer related databases at FCCC. The ontology is con-
structed based on the domain knowledge rather than the database
schemas in PCIS. It demonstrates the necessary to introduce the
properties of the concepts to meet the requirements from the
ontology-based data integration. The data stored in the database
systems are mapped into the corresponding concept and its prop-
erties of the global ontology. The drawback of this approach is that
the ontology construction does not utilize the knowledge existing
inside database schemas. It also needs external resources (such
as domain experts, etc.) and greater effort to construct the
ontology.
2. Methods

The detailed ontology-based data integration methods are pre-
sented in this section. These methods are utilized to integrate a
series of the observations for the prostate cancer data from the
FCCC radiation therapy outcome database, as well as the Tumor
Registry. The system architecture of PCIS is presented in subsection
2.1. The data contents are described in subsection 2.2. The Prostate
Cancer Ontology, the mappings between the ontology and the
database systems, and the semantic web query are presented in
the rest of the subsections sequentially.
2.1. System architecture of PCIS

The architecture of PCIS is presented in Fig. 1. Based on the
functionalities, the system is divided into three subsystems: (1)
Data storage, (2) Mapping, and (3) Data query.

The data storage subsystem consists of several independent
database systems. As a proof of concept, PCIS only contains two
database systems, Prostate Cancer Database and Tumor Registry.
They are designed independently from each other, and are used
for different tasks by independent groups of the users. The data
are collected, stored, and maintained in each database system sep-
arately. Each database system contains the information of the pros-
tate cancer patients. Since they serve the users from the different
departments, the contents of each database system may be up-
dated simultaneously and independently.

The mapping subsystem contains the mapping server to per-
form the functionalities of the mediator system. The mapping ser-
ver stores the mappings and the genetic conversation functions
between the ontology and the database systems. It also publishes
the contents of the database systems on the Semantic Web. The
declarative language D2RQ [33] is applied to describe the map-
pings between the relational database schemas and the OWL/RDFS
ontologies. It generates the mapping file from table structures of
the database systems in PCIS. Then, the mapping file is customized
by replacing the auto-generated terms with the terms of the Pros-
tate Cancer Ontology (PCO). The D2R server [34] serves as the map-
ping server in PCIS. It applies the mapping file to publish the
contents of the relational database systems on the Semantic
Web. The D2R server provides the functionalities to browse and
search the RDF. Since RDF is the representation of the database sys-
tems, the D2R server can be applied to browse and search these
systems.

The data query subsystem consists of the SPARQL (a query lan-
guage for RDF [35]) interface which allows users to submit the
queries. The interface enables users to search and query the data-
base systems using the SPARQL query language over the SPARQL
protocol. The web application provides a user friendly interface.
The detailed description of each component in PCIS will be pre-
sented in the following subsections.

2.2. Data sources

There are several database systems that contain the prostate
cancer information at FCCC. Two of them are selected as the data
sources for PCIS. The first one is the Prostate Cancer Database
which is operated and maintained by the radiation oncology
department at FCCC. Currently, it has approximately 5000 records
for prostate cancer patients who are treated at the radiation oncol-
ogy department. The second one is FCCC’s Tumor Registry system
that maintains demography, cancer specific treatments, and fol-
low-up for the patients with a reportable neoplasm. There are
about 3000 records for the prostate cancer patients in the Tumor
Registry. The Prostate Cancer Database focuses on the detailed
treatment information while the Tumor Registry focuses on the
summary of the patients. The contents overlap in some degree be-
tween the two database systems such as demography, medical his-
tory, and diagnosis.

2.3. Prostate Cancer Ontology (PCO)

OWL-DL is utilized to construct PCO for PCIS using the ontology
editor tool, Protégé 3.3 [36]. PCO provides the common, shared,
and formal description of the important concepts, relationships,
and properties/attributes for prostate cancer. PCO is developed
by merging the concepts from two commonly used vocabularies
and ontologies, NCI Thesaurus and FMA. PCO inherits the concepts
of prostate cancer from NCI Thesaurus. It also inherits the concepts
of prostate anatomical structure from FMA. The new concepts
identified from the database systems are added into PCO if they
are not covered in either NCI Thesaurus or FMA. For example, the
CNTO-328 is a monoclonal antibody to IL-6 used in one of the pros-
tate cancer clinical trials at FCCC. It is added as one of the children
for the concept ‘‘Drug in Clinical Trial” in PCO. The properties for
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each concept are introduced to PCO too. These properties are deter-
mined by the database systems. They are applied to annotate the
data from the database systems.

2.4. Mappings between database schemas and ontology

In the mapping subsystem, D2R server follows the mapping file
to browse and search the data. The mapping file contains the map-
pings between the database schemas and the ontology. The map-
ping process links each component (table, column, and
constraint) of the Prostate Cancer Database and the Tumor Registry
to its corresponding component (concept, property, or relation-
ship) of PCO.

A portion of the mappings between PCO and two database sche-
mas is presented in Fig. 2. The hierarchical structure of PCO is pre-
sented in the rectangle A on the top of the figure. The hierarchical
(is-a) relationship among the concepts of PCO are shown as the ar-
rows in the figure. The is-a relationship connects a more specific
concept (child concept) to a more general concept (a parent). It
serves as the ontology’s backbone and supports the property inher-
itance. The small solid rectangle inside the rectangle A represents
the concept of PCO. The properties for each concept are presented
as ovals connected to each concept in the figure too. The properties
are inherited from the parent to its children along the is-a hierar-
chy. New properties are also introduced by the concepts. For exam-
ple, patient inherits properties such as name, sex and age from its
parent Person. It also introduces a new property, MRN (Medical Re-
cord Number), which is patient specific (see Fig. 2).

The sample tables of the two database systems are presented in
rectangle B and rectangle C. In rectangle B, V_DEMOP_PRCA_RA-
DONC and BX are two tables of the Prostate Cancer Database. These
tables contain patient’s demography and biopsy information,
respectively. In rectangle C, ORA_PT and ORA_DG are two tables
of the Tumor Registry. They describe the information about pa-
tient’s demography and diagnosis, respectively. The mappings are
built between the tables of these two database systems and the
concepts of PCO (shown as bold dotted double-headed arrows in
the figure). For example, the table BX in the Prostate Cancer Data-
base is mapped to its corresponding concept Biopsy of PCO. The ta-
bles containing the same information are mapped to the same
concept even if they may have different names. For example, V_DE-
MOP_PRCA_RADONC in the Prostate Cancer Database and the OR-
A_PT in the Tumor Registry are mapped to the same concept
Patient. The data in the relational database systems are mapped
to the semantic layer through these mappings. These data are
linked together thus, allowing PCIS to provide the integrative
services.

Several software tools (such as DataMaster [37], R2O [38],
RDB2Onto [39], and D2RQ) are available to perform the mapping
tasks. They can automatically generate the mapping file from the
table structures of the database systems to their corresponding
ontological structures. The D2RQ tool is selected to create the
mapping file for PCIS. The mapping file is customized by replac-
ing the auto-generated terms with those of PCO. A sample of the
customized mapping file is presented in Fig. 3. It shows the
mappings between the V_DEMOP_PRCA_RADONC table and its
corresponding concept Patient of PCO. The mappings between
database tables and their corresponding concepts are created
by using the command d2rq:ClassMap. The command d2rq:Prop-
ertyBridge maps the table columns to their corresponding prop-
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erties of the PCO concept. For example, column MR is mapped to
the MRN property of the Patient concept. The MRN is an impor-
tant property in PCO. It links the data together from different
database systems. The Prostate Specific Antigen (PSA) is an
important biomarker for prostate cancer. It is used in early
detection, diagnosis, and staging of the disease, as well as the
patients following radiation therapy and/or surgery and while
on chemotherapy. Therefore, it is important to know the pa-
tient’s PSA value change. The patient and PSA values are stored
in two tables (i.e., the V_DEMOP_PRCA_RADONC and the PSA)
in the database, respectively. It is important to retrieve the pa-
tient’s PSA information by joining these two tables based on
the MRN. This example is shown in the third paragraph of Fig. 3.
2.5. Publishing and querying integrated data on semantic web

The D2R server is applied to publish the contents of Prostate
Cancer Database and Tumor Registry on the Semantic Web. A
web interface allows the users to compose the SPARQL queries
and display the results of PCIS. It allows the users to retrieve the
data from Prostate Cancer Database and Tumor Registry in an inte-
grated fashion.

3. Results

The results of PCIS are presented in this section. First, we pres-
ent PCO that is utilized by PCIS to integrate two database systems.
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Then, we present the mapping file that links the database schemas
to the concepts of PCO. The problems needed to be addressed dur-
ing the mapping are also discussed. Finally, we present the results
of the query formation for the integrated system.

3.1. Prostate Cancer Ontology (PCO)

As described in Section 2.3, PCO was developed by merging the
prostate cancer related concepts from NCI Thesaurus and FMA. The
concepts of PCO are connected by the is-a relationships that form a
Directed Acyclic Graph (DAG) structure. PCO contains 412 concepts
that are organized in nine layers of the hierarchy. Twelve concepts
are introduced from the domain knowledge or the requirements.
Neither NCI Thesaurus nor FMA contains these concepts. Twenty-
one concepts are inherited from the FMA. The rest of the concepts
are inherited from the NCI Thesaurus. A sample hierarchical struc-
ture for PCO is presented in Fig. 4. The treatment options for pros-
tate cancer include chemotherapy, radiation therapy, hormone
therapy, watchful waiting, surgery, and cryotherapy. They are the
children of the therapeutic procedure (see first level of Fig. 4).

Besides the hierarchical relationship among the concepts, the
properties/attributes of the concepts are introduced as the exten-
sion of PCO. The properties are derived from the Prostate Cancer
Database and Tumor Registry as the traits of the concepts. For
example, the properties of the Patient contain MRN, name, age,
sex, and address (see Fig. 2). The properties of the Patient, Surgical
Pathology Report, and Biopsy Report of PCO are presented in Table
1. The properties provide the framework for the mappings between
PCO concepts and the data in the database systems.
3.2. Mappings between ontology and database systems

The most important part in PCIS is to build up the mappings be-
tween PCO and two database systems, Prostate Cancer Database
and Tumor Registry. The mapping between each database compo-
nent and its corresponding ontology component is not a simple one
to one mapping. It may require specifying some necessary
transformations.

There are three types of the mappings: (1) One database table is
mapped to one concept of the ontology. For example, the table BX
in the Prostate Cancer Database is mapped to the concept Biopsy of
PCO (see Fig. 2). The columns of the table BX such as biopsy date,
type, and site, are mapped to the properties of the Biopsy. (2)
One database table is mapped to more than one concept of the
ontology. In other words, different columns may be mapped to dif-
ferent concepts. The Tumor Registry consists of the case abstracts
of the medical records for neoplasm patients. It contains the sum-
mary reports for the treatments and the diagnosis information for
the patients who are treated at FCCC. For example, the diagnosis
table ORA_DG in the Tumor Registry includes clinical stage, patho-
logic stage, surgical margins, histology type, primary site, distant
metastasis site, tumor size, tumor markers and etc. They are
mapped to several concepts of PCO such as Diagnosis, Pathology
Report, and Tumor Marker and so on. For example, the columns
such as DG_GRADE, DG_HISTOLOGY, DG_PATH_T, DG_PATH_N,
and DG_PATH_M in the table ORA_DG which contains the informa-
tion regarding tumor grade, histology type, pathological stages,
respectively. They are mapped to the properties of concept Pathol-
ogy Report. As shown in Fig. 5, the column DG_PATH_M in the ta-
ble ORA_DG is mapped to the property TNM_PATH_M of the
Pathology Report. The other columns such as DG_SRG_MARGIN
(Surgical Margins), DG_SRG_SUM (Surgery of Primary Site Sum-
mary), and DG_SRG_SUM_DT (Surgery Primary Site Summary
Date) in the same table are mapped to another concept Surgical
Pathology Report. (3) Multiple tables are mapped to one concept
of the ontology. For example, the patient’s surgical pathological
information is stored in the SURG_PATH and the STAGE tables in
the Prostate Cancer Database. The data from these tables are
merged and mapped to the same concept Surgical Pathology
Report.

Several semantic heterogeneity problems are identified during
the integration process. One such problem is the synonym problem
in which the different database systems may use different names
to represent the identical meaning. For example, the name of the
patient table is called V_DEMOP_PRCA_RADONC in the Prostate
Cancer Database and the ORA_PT in the Tumor Registry. The syno-
nym problem can be solved by mapping the different names to the
same concept of the ontology. In this case, the two names are
mapped to the same concept Patient of PCO (as shown in Fig. 2).
The homonym problem is another semantic heterogeneity prob-
lem. The homonym problem is that the same name denotes differ-
ent meanings in different systems. For example, there are different
meanings for the date in the different tables in the two database
systems. The date indicates the biopsy date in the table BX of the
Prostate Cancer Database. However, the date means the diagnosis
date in the table ORA_DG of the Tumor Registry. The homonym
problem can be solved by mapping the term to different concepts
or properties of the ontology. The date in the table BX is mapped to
the Biopsy Date and the date in the table ORA_DG is mapped to the
Diagnosis Date.



Fig. 4. Hierarchical structure for therapeutic procedure in PCO.

Table 1
Attributes for the concepts of PCO.

Concept Attribute

Surgical pathology report Specimen number
Block number
Slide number
Highest Gleason Grade 1
Highest Gleason Grade 2
Highest Gleason sum
Global Gleason Grade 1
Global Gleason Grade 2
Global Gleason sum
Negative margin
Positive margin
Lymph node examined
Lymph node positive
TNM Path T
TNM Path N
TNM Path M
Date

Biopsy report Specimen number
Block number
Slide number
Biopsy type
Highest Gleason Grade 1
Highest Gleason Grade 2
Highest Gleason sum
Global Gleason Grade 1
Global Gleason Grade 2
Global Gleason sum
Systematic biopsy
Old number of biopsy
Old number positive
TNM Path T
TNM Path N
TNM Path M
Date

Patient MRN
Name
Age
Sex
Birth country
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3.3. Query formulation

In PCIS, PCO provides the conceptual level information for the
data in the database systems. The mappings between the ontology
and database systems enable the users to seek the low-level data
fields without the detailed information of the database systems.
Since PCO represents the domain knowledge of prostate cancer,
the mapping also enables the users to query the data across data-
base systems by utilizing their domain knowledge.

The web-based user interface is developed in PCIS. The web
interface allows the users to compose the SPARQL queries and dis-
play the query results. The query formulation procedure is pre-
sented in the following example.

Query: Retrieve all patients in the system with tumor stage M1.
The data for this query are located in the table ORA_DG of the

Tumor Registry and the table Stage of the Prostate Cancer Database
(see Fig. 5). The column M in the first table and the DG_Path_M in
the second table are linked to the same property TNM_Path_M of
the concept Pathological Report. In order to retrieve the patients
with stage M1, we need to query this property TNM_Path_M with
the value ‘‘M1”. The SPARQL query for this example is as follows:

SELECT ?patient ?stage WHERE {
?diag pc:TNM_Path_M ?stage FILTER(?stage = ‘‘M1”).
?diag pc:Patient ?patient.
}
This query example demonstrates another semantic problem.

Different tumor staging systems are used in each database system.
The 1992 AJCC staging system [23] is used in the Tumor Registry.
The FIGO staging system [24] is used in the Prostate Cancer Data-
base. Since AJCC stage is applied to code the tumor stage in PCIS, an
axiom is needed in the mapping file to transform the FIGO to the
AJCC. The translation axiom for the tumor stage M between two
coding systems is presented in Fig. 6. The mapping is performed
when the users want to query the tumor staging in PCIS. Therefore,
PCIS uses the translation axiom to query and retrieve the data
across different database systems.

The results of the sample Query are presented in Fig. 7. PCIS re-
turns the patients with the tumor stage M1 from both database
systems and displays the results in the SPARQL result window
(see bottom window in Fig. 7). The first record in the window
comes from the Prostate Cancer Database (PCD) and the rest of re-
cords are retrieved from the Tumor Registry. In the result window,
the medical record number is erased in order to block out the sen-
sitive data of the patients.



Fig. 5. A mapping example for tumor staging.

Fig. 6. Translation axioms between the AJCC and the FIGO staging system.
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4. Discussion

As presented in the previous section, PCO has been applied to
integrate and retrieve the data from two independent database
systems successfully. There are several issues that arise from the
implementation of PCIS. They may be common for the ontology-
based data integration too.

4.1. The properties for the concepts of PCO

The demographic information for each patient is important for
prostate cancer risk factor studies. The important risk factors for
prostate caner are age, ethnicity, genetic factors, and possibly die-
tary factors. Age is one of the most important risk factors. The inci-
dence of prostate cancer rises rapidly after the age of 40 [40].
Prostate cancer is more common among African-American than
White or Hispanic men, perhaps related to a combination of die-
tary and/or genetic factors [40–42]. In addition to higher incidence,
the age of onset in African-American men is earlier than any other
ethnic group. African-American men also have higher serum PSA
levels, higher Gleason scores (signifying more pathologically
aggressive disease), and more advanced stage of disease at the time
of diagnosis [43].

PCIS provides the demographic information of the patients such
as age, race, ethnic, religion, and birth country, etc. They are the
properties of the concept Patient. Though, the concept level of
ontology (i.e., NCI Thesaurus and FMA) can represent biomedical
knowledge very well, it does not meet the requirements of some
ontology applications (such as data integration). The properties
of the concepts can enhance the capability of the ontology. They
provide a framework for the ontology-based data integration and
query formulation. There are 497 properties introduced for the
concepts of PCO.

The properties of the concepts play an important role in the
applications of ontology, and formal mechanisms are needed to de-
fine them. Two methods have been utilized to define the properties
of the concepts in PCO: (1) Knowledge based: properties of this
type are defined based on the understanding of the concepts. This
kind of definition is intuitive and easily understandable. They are
the components for the knowledge of the concepts. The prime
challenge requires expertise of the concepts. For example, tumor
stage, histology grade, histology type, and margins are properties



Fig. 7. Sample SPARQL query results for the prostate cancer information system.
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for the Pathology Report. (2) Requirement based: some of the prop-
erties are derived from the requirements of the applications. These
properties come from the integration process. For example, the
date may have different meanings in tables or database systems.
It is challenging to determine which concept the property belongs
to. Although, this type of properties is not very sensitive to concept,
the location of these properties affects the query formulation and
quality of the query results.

Attributes and values have been abandoned for most ontologies
in favor of a single hierarchy of qualities. Though it may emphasize
the hierarchical relationships among the domain knowledge, it
may not meet the requirements from the applications. Ontology
constructers have already paid attention to this issue. The system
of attributes and values has been built up for some ontologies.
The Phenotypic Attribute Trait Ontology (PATO) is one example
which is designed to be used in conjunction with ontologies of
‘‘quality-bearing entities” [44]. The Cancer Common Ontologic
Representation Environment (caCORE) [45,46] utilizes a model dri-
ven architecture with concepts derived from an underlying con-
trolled terminology provided in this case by the Enterprise
Vocabulary Services. The classes or attributes of the model (i.e.,
UML model) are registered in a metadata repository (caDSR). ca-
CORE provides the standard descriptions for the attributes using
the registered metadata repository. caCORE enhances the semantic
interoperability by encouraging its users to reuse the standard
Common Data Elements (CDE). PCO merges the concepts from
NCI Thesaurus and FMA. NCI Thesaurus is one of the caBIG certifi-
cated controlled terminologies. The attributes for the concepts are
generated by incorporating the hierarchy structure of the domain
knowledge and the requirements from the applications. It may
provide a systematic way to generate and reuse the Common Data
Elements. In PCIS, the database schemas are mapped to PCO which
means the data model is constructed based on the ontology.
caCORE, on the other hand, annotates the information models with
concepts from NCI Thesaurus. PCO (concepts with their properties)
serves as the information model in PCIS. It allows users to form the
semantic queries utilizing concepts and properties of PCO without
knowing the details of the information or data models. By contrast,
caCORE requires that users have knowledge about the information
models for query formulation since the ontology is not embedded
in the information models. Consequently, unlike caCORE, PCIS pro-
vides ontology-directed query formulation and execution. This ap-
proach could be applied in conjunction with caCORE to enhance
query services and relieve the end users of the need to have de-
tailed knowledge of the information models of the source systems
when constructing queries.

4.2. Advantages of ontology-based data integration

Although, ontology and database schemas are closely related,
there are some differences between them. Ontology focuses on
the representation of the domain knowledge. Database schemas fo-
cus on the data representation in a specific application. So, the
wide range of the applications makes the database schemas diver-
sified. The domain knowledge is relatively stable. The ontology is
independent of any particular application, i.e., it consists of generic
knowledge. The database schema has little impact on the structure
of the ontology if the ontology is constructed from the domain
knowledge. Ontology provides a rich, predefined vocabulary that
serves as a stable conceptual interface to the database systems.

The conceptual interface provided by the ontology has the
advantages of the scalability for the data integration. The individ-
ual database system is integrated into the system by mapping its
contents to the corresponding components of the ontology. It is
relatively straightforward to integrate the new database systems
into PCIS since the conceptual framework already exists (i.e.,
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PCO). It only requires updating the mapping file to include the
mappings between the new database systems to PCO. For PCIS,
the contents of each database system (i.e., Prostate Cancer Data-
base or Tumor Registry) are mapped to PCO separately. It makes
the integration of new database system has no impact on PCIS
and the database systems integrated. Actually, either Prostate Can-
cer Database or Tumor Registry is still operating for its daily tasks
independently. The integration of the new database systems has no
impacts on both the Prostate Cancer Database and the Tumor Reg-
istry. The modifications or upgrades to either database system will
not affect PCIS.

The ontology is usually developed by the domain experts. It
provides a valuable resource not only for the individual system,
but also for the integrated system. If the different application sys-
tems have the same domain, the same ontology can be utilized to
increase the semantic interoperability among these systems.

The global query schema can be developed based on the ontol-
ogy for the ontology-based data integration system. The structure
of ontology makes query more intuitive for the users because it
matches the domain knowledge structure. Users can formulate
their queries using the concepts and properties of the ontology
without the intimate knowledge of the database schemas. The
mapping file indicates the location where the exact data should
be retrieved because the mapping file contains the links between
the database schemas and the corresponding concepts of the ontol-
ogy. For example, users only need to know the TNM_Path_M prop-
erty of the concept Pathology Report in PCO to retrieve all patients
with cancer stage M from both database systems (as shown in the
sample Query in Section 3.3). The properties of the concept can be
found by navigating the tree structure through the ontology brow-
ser. PCIS extracts the stage information from the two database sys-
tems that are linked to TNM_Path_M in the mapping file. It also
automatically performs the stage translation between the two
staging systems and returns the patients from both database sys-
tems that satisfied the query criteria to the users.

Besides the prostate cancer related database systems, other do-
main database systems (e.g., lung cancer, breast cancer, ovarian
cancer, and kidney cancer) can also be integrated into PCIS. PCO
can be merged with the other domain ontologies using existing
tools (e.g., Protégé PROMPT [47]). The merged ontology can pro-
vide the framework to integrate the data sources from other types
of cancer.

4.3. Limitations

This work explores the ontology-based data integration meth-
odology in prostate cancer domain. It creates a prototype system
(i.e., PCIS) to integrate two database systems at FCCC. As a proof
of concept, this work lacks the system evaluation. Further investi-
gations on evaluating the system performance need to be con-
duced such as comparing the precision and recall between PCIS
and regular database systems. This pilot project only proves that
PCIS works successfully for the integration of two testing database
systems. The system needs to be evaluated (e.g., system response
time) when it integrates more database systems.
5. Conclusions

As a proof of concept, PCIS successfully demonstrates the proce-
dures of the ontology-based data integration. This project shows:
(1) The ontology developed from knowledge domain can be uti-
lized for data integration. In this project, PCO is constructed by
merging the concepts of prostate cancer from the NCI Thesaurus
and the FMA. (2) The ontology-based data integration requires
properties beyond the concept level hierarchy of the ontology.
(3) The properties of the concepts can be developed based on
knowledge or applications. The properties of the concepts from
knowledge are intuitive. They may not meet the requirements
from the applications completely so that some properties need to
be introduced into the concepts from the requirements of the
applications. (4) PCO serves as a stable conceptual model for data
integration in PCIS. As an integrated data system, PCIS shows the
advantages of the ontology-based data integration (e.g., knowledge
reusing and scalability, etc.). It demonstrates the abilities to solve
the semantic heterogeneity problems of the two prostate cancer
related database systems, the Prostate Cancer Database and the Tu-
mor Registry.

In the absence of the integrated data system, we need to query
and retrieve the data from Prostate Cancer Database and Tumor
Registry separately. PCIS provides us a unified interface to query
and retrieve the data from different database systems. The ontol-
ogy can be utilized to improve the user queries by guiding users
to formulate their queries. The advanced ontology-based query for-
mulation techniques will be applied to PCIS. Since PCIS integrates
the Tumor Registry at FCCC, it provides a foundation to integrate
data from Tumor Registry from other institutes.
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