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Abstract

It is well known that if an inverse M-matrix has a 0 entry, then it must be reducible and thus
have many more 0 entries. This property is actually a special case of a deeper phenomenon that
might be loosely described as relations among vanishing almost principal minors in an inverse
M-matrix. This phenomenon encompasses both minors of nested dimension (a certain loose
monotonicity) and minors of the same size in loosely related positions. This phenomenon is
limited to almost principal minors and, where possible, converses and examples are given to
show the limit of the extent of this phenomenon. It is also shown that if one almost principle
minor is contained in another, then the magnitude of the former is larger than that of the latter.
© 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

By an M-matrix, we mean an n-by-n matrix A with nonpositive off-diagonal
entries that is invertible and has an entry-wise nonnegative inverse; this is equivalent
to A being of the form αI − B, in which B is entry-wise nonnegative and α > ρ(B),
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the spectral radius of B. A nonnegative matrix that occurs as the inverse of an M-
matrix is called an inverse M-matrix; we denote the M-matrices by M and the inverse
M-matrices by IM . Much is known about both important classes [2,4,7,8]. For any
m-by-n matrix A, we denote the submatrix lying in rows α and columns β byA[α, β],
where α ⊆ M = {1, 2, . . . , m} and β ⊆ N = {1, 2, . . . , n}. Ifm = n and α = β, the
principal submatrixA[α, α] is abbreviatedA[α]. If A is square andA[α] is invertible,
the Schur complement A/A[α] is defined as A[αc] − A[αc, α]A[α]−1A[α, αc] in
which αc denotes the complement of α inM = N . It is known that both M and IM
are closed under extractions of principal submatrices or of Schur complements [8].
We let |α| denote the cardinality of α.

We shall make use of the Schur complement form of the inverse [6] given in the
following form. Let the square matrix A be partitioned as

A =
[
A[α] A[α, αc]
A[αc, α] A[αc]

]
, (1.1)

in which A, A[α], and A[αc] are all invertible. Then

A−1 =
[

(A/A[αc])−1 −A[α]−1A[α, αc](A/A[α])−1

−(A/A[α])−1A[αc, α]A[α]−1 (A/A[α])−1

]

=
[

(A/A[αc])−1 −(A/A[αc])−1A[α, αc]A[αc]−1

−A[αc]−1A[αc, α](A/A[αc])−1 (A/A[α])−1

]
.

(1.2)

From (1.2) we see that if A ∈ IM , then

A[αc]−1A[αc, α], A[αc, α]A[α]−1,

(A/A[αc])−1A[α, αc], A[α, αc](A/A[α])−1 � 0,

a fact we will use later.
We will also need a special case of Sylvester’s identity for determinants (see [6]).

Let A be an n-by-n matrix, α ⊆ N , and suppose |α| = k. Define the (n− k)-by-
(n− k) matrix B = (bij ), with i, j ∈ αc, by setting bij = detA[α + i, α + j ], for
every i, j ∈ αc. Then Sylvester’s identity states that for each δ, γ ⊆ αc, with |δ| =
|γ | = m,

detB[δ, γ ] = (detA[α])m−1 detA[α ∪ δ, α ∪ γ ]. (1.3)

A special case that we use is the following. Let A be an n-by-n matrix partitioned as
follows:

A =

a11 aT

12 a13
a21 A22 a23

a31 aT
32 a33


 , (1.4)
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in which A22 is (n− 2)-by-(n− 2) and a11, a33 are scalars. Define the matrices

B =
[
a11 aT

12
a21 A22

]
, C =

[
aT

12 a13
A22 a23

]
,

D =
[
a21 A22

a31 aT
32

]
, E =

[
A22 a23

aT
32 a33

]
.

If we let b = detB, c = detC, d = detD, and e = detE, then by (1.3) it follows
that

det

[
b c

d e

]
= detA22 detA.

Hence, provided detA22 /= 0, we have

detA = detB detE − detC detD

detA22
. (1.5)

Square submatrices that are defined by index sets differing in only one index, or the
minors that are their determinants, are called almost principal. For simplicity we
abbreviate “almost principal minor” (“principal minor”) to APM (PM). APMs are
special for a variety of reasons including that, in the co-factor form of the inverse,
they are exactly the numerators of off-diagonal entries of inverses of principal sub-
matrices. So, if A ∈ M or A ∈ IM , an APM is 0 if and only if an off-diagonal
entry of the inverse of a principal submatrix equals 0. Using the informal nota-
tion α + i (α − i) to denote the augmentation of the set α by i ∈ α (deletion of
i ∈ α from α), almost principal submatrices are of the formA[α + i, α + j ], i, j ∈ α
(A[α − i, α − j ], i, j ∈ α), i /= j . All PMs in A ∈ M or A ∈ IM are positive. Be-
cause of inheritance (of the property IM under extraction of principal submatrices
[8]) the sign of every nonzero APM in A ∈ M or A ∈ IM is determined entirely
by its position. Specifically, if α ⊆ N and i, j ∈ α, sgn(detA[α − i, α − j ]) equals
(−1)r+s if A ∈ M and (−1)r+s+1 if A ∈ IM in which r (respectively, s) is the
number of indices in α less than or equal to i (respectively, j). An analogous statement
can be made concerning detA[α + i, α + j ].

Our purpose here is to present more subtle information about APMs of an IM
matrix: certain inequalities, and relations among those that may be 0. To clarify our
interest, consider the following example.

Example 1.1. Consider the IM matrix

A =




1 0.5 0.4 0.2
0.8 1 0.8 0.4
0.6 0.5 1 0.4
0.2 0.2 0.25 1


 .

Notice that the only vanishing APMs are the determinants of A[{1, 2}, {2, 3}],
A[{1, 2}, {2, 4}], A[{1, 2, 3}, {2, 3, 4}], and A[{1, 2, 4}, {2, 3, 4}]. Thus, the (1, 3)
entry of each ofA[{1, 2, 3}]−1 andA[{1, 2, 4}]−1 is 0 while both the (1, 3) and (1, 4)
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entries of A−1 are 0 and these are the only entries that vanish in the inverse of any
principal submatrix.

The above example leads to three questions.
(1) If the inverse of a proper principal submatrix of an IM matrix contains a block

of 0’s, does this imply that the inverse of the matrix itself has a larger block of
0’s (and, somehow, in related positions)?

(2) If the inverse of an IM matrix contains a block of 0’s, does this imply that
there is a block of 0’s in the inverse of some other principal submatrix?

(3) If the inverse of a proper principal submatrix of an IM matrix contains a 0,
does this imply that the inverse of some other proper principal submatrix of the
same size must also contain a 0?

(1) and (3) are certainly not true for invertible matrices in general.

Example 1.2. Consider the invertible matrix

A =




1 2 4 3
3 1 2 1
2 3 4 1
4 3 2 5


 .

The (3, 1) minor of A[{1, 2, 3}] is 0, but no other minor of A is 0. In fact, no other
minor of any principal submatrix of A is 0.

Of course, there may be “isolated” 0’s in the inverse of an IM matrix, and ex-
amples are easily found in which there is a single 0 entry in its inverse. All three
questions will be answered affirmatively in Section 4, with precise descriptions of
these phenomena. Moreover, (2) will be answered for invertible matrices in general.

Because of Jacobi’s determinantal identity, there are often analogous statements
about matrices in M. It should be noted that besides PMs and APMs no other minors
have deterministic signs throughout M or throughout IM; analogously, there seem
to be no results like those we present beyond PMs and APMs.

2. Inverses and principal submatrices

The two operations of inverting and extracting a principal submatrix do not, of
course, in general commute when applied to a given matrix (for which both are
defined). There are, however, several interesting, elementary, entry-wise inequalit-
ies when these operations are applied to A ∈ M or A ∈ IM (for which they are
always defined) in various orders. We record these here for reference and reflection.
(Compare to inequalities in the positive semidefinite ordering for positive definite
matrices [6, p. 474].) Throughout � or < should be interpreted entry-wise.

Theorem 2.1. If A ∈ M or A ∈ IM and ∅ /= α ⊆ N, then
(i) (A−1[α])−1 � A[α]; and

(ii) A[α]−1 � A−1[α].
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Proof. Notice that (i) holds for A ∈ M since

(A−1[α])−1 = A/A[αc] = A[α] − A[α, αc]A[αc]−1A[αc, α] � A[α].
(The latter inequality holds because A[αc]−1 � 0.) (i) holds for A ∈ IM by the
same argument since A[αc]−1A[αc, α] � 0. (The former fact has been noted pre-
viously [1], while the latter fact does not seem to have appeared in the literature.)
Since (ii) for A ∈ M (A ∈ IM) is just a restatement of (i) for A ∈ IM (A ∈ M),
the theorem holds. �

It follows from (Theorem 2.1(ii)) that if there are some 0 off-diagonal entries in
A[α]−1, A ∈ IM , then there are 0 entries in A−1 in the corresponding positions.
In particular, if a certain APM in A[α] vanishes, then a larger (i.e., more rows and
columns) APM in a corresponding position vanishes in A. Actually, more can be
said, as we shall see later. A hint of this is the following. An entry of a square matrix
is, itself, an APM; if an entry of A ∈ IM is 0, it is known that A must be reducible
[8] and thus, if n > 2, other entries (i.e., other APM’s of the same size) must be 0.

3. Principal and almost principal minor inequalities

It follows specifically from the observations of the last section that if A ∈ IM ,
α ⊆ β ⊆ N , and the APM

detA[α + i, α + j ] = 0,

then

detA[β + i, β + j ] = 0,

i, j ∈ β. Thus, a “smaller” vanishing APM implies that any “larger” one containing
it also vanishes. This suggests that there may, in general, be inequalities between
such minors. We note, in advance, that Theorem 2.1(ii) gives some inequalities, but
we give additional ones here.

We call A = (aij ) normalized if aii = 1, i = 1, 2, . . . , n. We first give inequalit-
ies for the normalized case that may be paraphrased as saying that “larger” minors
are smaller. The first inequality is a special case of Fischer’s inequality while the
second is new.

Theorem 3.1. If A ∈ IM is normalized and ∅ /= α ⊆ β ⊆ N − i − j, then
(i) detA[β] � detA[α]; and

(ii) | detA[β + i, β + j ]| � | detA[α + i, α + j ]|.

Proof. Noting that the determinantal inequalities of Fischer and Hadamard hold
for inverse M-matrices [7, p. 127], we have detA[β] � detA[β − α] detA[α] �
detA[α] which establishes (i).
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Now assume that i /= j , B = A[β + i + j ], and γ = α + i + j . Then B ∈ IM
also, and, from Theorem 2.1(ii), we have |(B−1)ij | � |(B[γ ]−1)ij | or equivalently,∣∣∣∣detB[β + i, β + j ]

detB

∣∣∣∣ �
∣∣∣∣detB[α + i, α + j ]

detB[γ ]
∣∣∣∣ .

Thus,

|detB[β + i, β + j ]| � detB

detB[γ ] |detB[α + i, α + j ]|
� (detB[β + i + j − γ ]) |detB[α + i, α + j ]|

(by Fischer)

� |detB[α + i, α + j ]| (by Hadamard).

Since B is a principal submatrix of A, (ii) follows. �

Since A = (aij ) ∈ IM may be normalized via multiplication by D = diag(a11,

. . . , ann)
−1, we may easily obtain nonnormalized inequalities from Theorem 3.1.

Corollary 3.2. If A = (aij ) ∈ IM and ∅ /= α ⊆ β ⊆ N − i − j, then
(i) detA[β] � detA[α] ∏

i∈β−α aii; and
(ii) | detA[β + i, β + j ]| � | detA[α + i, α + j ]| ∏i∈β−α aii .

4. Vanishing almost principal minors

From prior discussion we know that, for A ∈ IM , if an entry of A[α]−1 is 0,
then a corresponding entry of A−1 is 0. However, if α ⊆ N properly, one quickly
finds that, unlike for general matrices, it is problematic to construct an example in
which an entry of A[α]−1 is 0 and just one entry of A−1 (the corresponding one) is
0. We present here two results that show there is a good reason for this. In one, it is
shown that any block of 0’s in A[α]−1 implies a “larger” block of 0’s in A−1, and in
the other it is shown that any 0 entry in A[α]−1 implies 0’s in certain other matrices
A[β]−1 when |β| = |α| < n. Both results lead to interpretations in terms of rank of
submatrices of inverse M-matrices rather like the row/column inclusion results for
positive semidefinite and other matrices, noted in [3].

Since a 0 entry in A ∈ IM implies that A is reducible and thus has other 0 entries
(if n > 2), it follows that if A ∈ IM and A[α]−1 has a 0 entry, |α| = 2, then A−1

is reducible and the 0 entry is actually part of a 0 block in A−1. This generalizes
substantially even when A ∈ IM is positive and answers question (1).

Theorem 4.1. Suppose that A ∈ IM and that γ = N − i for some i ∈ N . Then, if
A[γ ]−1 has a p-by-q 0 submatrix, A−1 has either a p-by-(q + 1) or a (p + 1)-by-q
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0 submatrix. Specifically, if A[γ ]−1[α, β] = 0 in which |α| = p and |β| = q, then
either A−1[α, β + i] = 0 or A−1[α + i, β] = 0.

Proof. Let A ∈ IM and γ = N − i for some i ∈ N . Without loss of generality,
assume that A has the partitioned form

A =
[
A11 A12
A21 A22

]
(4.1)

in which A11 = aii for some i, 1 � i � n, and A22 = A[γ ]. If an invertible matrix A
is partitioned as in (4.1) with A22 invertible, then

A−1 =
[
s−1 −s−1uT

−s−1v A−1
22 + s−1vuT

]
(4.2)

in which s = A/A22, uT = A12A
−1
22 , and v = A−1

22 A21. Thus, if A22 ∈ IM , it is
easily seen (and was first noticed in [8, Theorem 8]) that A ∈ IM if and only if
(i) s > 0, (ii) uT � 0, (iii) v � 0, and (iv) A−1

22 � −s−1vuT, except for diagonal
entries. Now A−1

22 ∈ M and hence is in Z. Assume that A−1
22 has a p-by-q submatrix

of 0’s, say A−1
22 [α, β] = 0 in which |α| = p and |β| = q. If vr = 0 for all r ∈ α,

then A−1[α, β + i] is a p-by-(q + 1) 0 submatrix of A−1. On the other hand, if
vr /= 0 for some r ∈ α, then it follows from (iv) that us = 0 for all s ∈ β and hence
A−1[α + i, β] is a p-by-(q + 1) 0 submatrix of A−1. This completes the proof. �

In regard to Example 1.1 we see that for γ = {1, 2, 3} or {1, 2, 4}, a 1-by-1 block
of 0’s inA[γ ]−1 leads to a 1-by-2 block of 0’s inA−1. It is easy to construct examples
such that both possibilities for the 0 block of A−1 occur and also such that exactly
one of the possibilities occurs.

Let the measure of irreducibilitym(A) of an invertible n-by-n matrix A be defined
as

m(A) = max(p,q)∈S(p + q)
in which S = {(p, q) | A contains a p-by-q off-diagonal zero submatrix}. Thus, an
n-by-n matrix A is reducible if and only ifm(A) = n. Moreover, in Theorem 4.1, we
have shown that if B is an (n− 1)-by-(n− 1) principal submatrix of A ∈ IM , then
m(A−1) � m(B−1)+ 1. In general, if B is a k-by-k principal submatrix of A ∈ IM ,
then m(A−1) � m(B−1)+ n− k. (Note that the latter statement implies that if B
is a reducible principal submatrix of A ∈ IM , then A is reducible also. And, in
particular, if A ∈ IM has a 0 entry, then A is reducible, a fact noted previously.)
The question is: when are these inequalities in fact equalities?

In order to establish a converse to Theorem 4.1 we will need the following result
on “complementary nullities”. This fact has origins in [5] and has been refined, for
example in [9]. Let Null(A) denote the (right) null space of a matrix A, nullity(A)
denote the dimension of Null(A), and r(A) denote the rank of A.
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Theorem 4.2 (Complementary nullities). Let A be an n-by-n invertible matrix and
∅ /= α, β ⊆ N with α ∩ β = ∅. Then, null(A−1[α, β]) = null(A[βc, αc]).

We use Theorem 4.4 to prove a general result on 0 patterns of inverses. We let
Mn(S) denote the n-by-n matrices with entries from a set S.

Theorem 4.3. Let ∅ /= α, β ⊆ N with α ∩ β = ∅, and let A ∈ Mn(F), where F
is an arbitrary field. If A−1[α, β] = 0, then, for any γ ⊆ N such that α ∩ γ /= ∅,
β ∩ γ /= ∅, (α ∪ β)c ⊆ γ, and A[γ ] is invertible, we have A[γ ]−1[α ∩ γ, β ∩ γ ] =
0.

Proof. Suppose that A ∈ Mn(F) and A−1[α, β] = 0 in which ∅ /= α, β ⊆ N with
α ∩ β = ∅. Then nullity(A−1[α, β]) = |β|; hence, by complementary nullity, nullity
(A[βc, αc]) = |β|. Therefore, r(A[βc, αc]) = |αc| − |β| = n− |α| − |β| = |(α∪
β)c|. Further, suppose that γ ⊆ N satisfies α ∩ γ /= ∅, β ∩ γ /= ∅, (α ∪ β)c ⊆ γ ,
and A[γ ] is invertible. Since γ − α ∩ γ = γ ∩ αc and γ − β ∩ γ = γ ∩ βc, r(A[γ ]
[γ − β ∩ γ, γ − α ∩ γ ]) � r(A[βc, αc]) = |(α ∪ β)c|. Thus, nullity (A[γ ][γ − β ∩
γ, γ − α ∩ γ ]) � |γ − α ∩ γ | − |(α ∪ β)c| = |β ∩ γ | + |(α ∪ β)c| − |(α ∪ β)c| =
|β ∩ γ |. Hence, by complementary nullity, nullity(A[γ ]−1[α ∩ γ, β ∩ γ ])� |β ∩ γ |.
This last inequality must be an equality, i.e., A[γ ]−1[α ∩ γ, β ∩ γ ] = 0 which com-
pletes the proof. �

We can make similar statements concerning the minors of A and A[γ ] even if A
is singular.

It is easy to show that the condition (α ∪ β)c ⊆ γ is necessary. For instance, in
Example 1.1, A−1[α, β] = 0 in which α = {1} and β = {3, 4}. But if γ = α ∪ β
(and thus α ∩ γ /= ∅ and β ∩ γ /= ∅ while it is not the case that (α ∪ β)c ⊆ γ ), then
A[γ ]−1 has no 0 entries.

We are now able to answer question (2).

Corollary 4.4. Let A ∈ IM with m(A−1) = p + q, say A−1[α, β] = 0 in which
∅ /= α, β ⊆ N with |α| = p and |β| = q. Further, let γ = N − i for some i ∈ N,
and assume that α ∩ γ /= ∅ and β ∩ γ /= ∅. Then, A[γ ]−1[α ∩ γ, β ∩ γ ] = 0 if and
only if (α ∪ β)c ⊆ γ .

Proof. Assume the hypothesis holds and observe that α ∩ β = ∅ since A ∈ IM .
Firstly, suppose that A[γ ]−1[α ∩ γ, β ∩ γ ] = 0. Thenm(A−1) � |α ∩ γ | + |β ∩

γ |. By the remarks after Theorem 4.1,

m(A−1) � m(A[γ ]−1)+ n− |γ |
and so

|α| + |β| � |α ∩ γ | + |β ∩ γ | + n− |γ |.
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Rearranging, we have

(|α| − |α ∩ γ |)+ (|β| − |β ∩ γ |)+ |γ | � n
or equivalently,

|α − γ | + |β − γ | + |γ | � n.
The latter holds (and with equality) if and only if (α ∪ β)c ⊆ γ .

The converse follows from Theorem 4.3 since all principal submatrices of A are
invertible. �

In regard to Example 1.1, A−1[α, β] = 0 in which α = {1} and β = {3, 4}. For
γ = {1, 2, 3} or {1, 2, 4}, we have α ∩ γ /= ∅, β ∩ γ /= ∅, and (α ∪ β)c ⊆ γ . In each
case A[γ ]−1[α ∩ γ, β ∩ γ ] = 0. On the other hand, for γ = {1, 3, 4}, we have α ∩
γ /= ∅, β ∩ γ /= ∅, but (α ∪ β)c ⊆ γ does not hold and A[γ ]−1[α ∩ γ, β ∩ γ ] /= 0.

So we see that the inequality m(A−1) � m(B−1)+ 1, where B is an (n− 1-by-
(n− 1) principal submatrix of A (noted in the discussion after Theorem 4.1) is an
equality as long as B = A[γ ] in which α ∩ γ /= ∅, β ∩ γ /= ∅, and (α ∪ β)c ⊆ γ .
And Example 1.1 (with γ = {2, 3, 4}) shows that, otherwise, the inequality may be
strict.

We next discuss vanishing APMs and in response to question (3) establish the fact
that they imply that other APMs, of the same size, vanish. We will use the following
lemma.

Lemma 4.5. LetA = (aij ) be an n-by-n IM matrix (n � 3) and j ∈ N . If ai1j , ai2j ,
. . . , ait j = 0, then, for all k ∈ {j, i1, . . . , it }, either akj = 0 or ai1k, ai2k, . . . , ait k =
0.

Proof. This follows from the fact [8,12] that if A is an n-by-n IM matrix (n � 3),
then for all i, j, k ∈ N , aikakj � aij akk . �

Theorem 4.6. Let A = (aij ) be an n-by-n IM matrix (n � 3); i, j, k be distinct
indices in N, and let δ be a subset ofN − i − j − k. Then, if detA[δ + i, δ + j ] = 0,

(i) detA[δ + i, δ + k] = 0 or
(ii) detA[δ + k, δ + j ]| = 0.

Proof. Let A = (aij ) be an n-by-n IM matrix (n � 3); i, j, k be distinct indices in
N, let δ be a subset ofN − i − j − k, and assume that detA[δ + i, δ + j ] = 0. If δ =
∅, the result follows since A[{i, j, k}] must be reducible. So assume δ /= ∅. By per-
mutation similarity we may assume that i = i1, δ = {i2, . . . , ip−1}, and j = ip. Let
A1 = A[{i1, . . . , ip}]. Since 0 = detA[δ + i, δ + j ] = detB, whereB = A[{i1, . . . ,
ip−1}, {i2, . . . , ip}], we see that the (ip, i1) minor of A1 is 0. Further, since A[δ] is
a (p − 2)-by-(p − 2) principal submatrix of A lying in the lower left corner of B =
[b1, . . . , bp−1], {b1, . . . , bp−2} is linearly independent and thus bp−1 = ∑p−2

i=1 βibi .
If bp−1 = 0, then, by Lemma 4.5, either akip = akj = 0 or ai1k, ai2k, . . . , aip−1k = 0.
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The former case implies detA[δ + k, δ + j ] = 0 while the latter implies detA[δ +
i, δ + k] = 0. So assume bp−1 > 0. Then βi /= 0 for some i, 1 � i � p − 2. By
simultaneous permutation of rows and columns indexed by δ, we may assume β1 /=
0.

Let k = ip+1 and consider the submatrix A2 = A[{i1, . . . , ip+1}] of A. Since A1
is a principal submatrix of A2, the (ip, i1) minor of A2 is 0 also, i.e.,

0 = detA[{i1, . . . , ip−1, ip+1}, {i2, . . . , ip+1}] = detA3.

Now the (p − 1)-by-(p − 1) submatrix lying in the upper left corner of A3 is B and
detB = 0. Therefore, applying Sylvester’s identity for determinants to detA3, we
see that either
(1) detA[{i1, . . . , ip−1}, {i3, . . . , ip+1}] = 0 or
(2) detA[{i2, . . . , ip−1, ip+1}, {i2, . . . , ip}] = 0.

Case I. Suppose (1) holds. Then

0 = detA[{i1, . . . , ip−1}, {i3, . . . , ip+1}]
= det [b2, . . . , bp−2, bp−1, bp]

= det


b2, . . . , bp−2,

p−2∑
i=1

βibi, bp




= det [b2, . . . , bp−2, β1b1, bp]
= (−1)p−3β1 det[b1, b2, . . . , bp−2, bp].

Since β1 /= 0,

0 = det [b1, b2, . . . , bp−2, bp]
= detA[{i1, . . . , ip−1}, {i2, . . . , ip−1, ip+1}]
= detA[δ + i, δ + k].

This establishes (i).

Case II. Suppose (2) holds. Then

0 = detA[{i2, . . . , ip−1, ip+1}, {i3, . . . , ip+1}]
= detA[δ + k, δ + j ].

This establishes (ii) and completes the proof. �

We can also prove Theorem 4.6 using Theorems 4.1 and 4.3 as follows. Let
ρ = δ + i + j and τ = ρ + k. Since detA[δ + i, δ + j ] = 0, A[ρ]−1[i, j ] = 0. So,
by Theorem 4.1, either A[τ ]−1[i, j + k] = 0 or A[τ ]−1[i + k, j ] = 0. Suppose that
A[τ ]−1[i, j + k] = A[τ ]−1[α, β] = 0. Let γ = δ + i + k = τ − j . Then, in A[δ +
i + j + k], we have α ∩ γ /= ∅, β ∩ γ /= ∅, and (α ∪ β)c = δ ⊆ γ . Thus, by The-
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orem 4.3, A[τ ]−1[α ∩ γ, β ∩ γ ] = A[γ ]−1[i, k] = 0 which implies that detA[δ +
i, δ + k] = 0. Similarly, it can be shown that ifA[γ ]−1[i + k, j ] = 0, then detA[δ +
k, δ + j ] = 0.

In regard to Example 1.1 the {1, 2},{2, 3} minor of A vanishes. Hence, by Theorem
4.6, either the {1, 2},{2, 4} minor or the {2, 4},{2, 3} minor must vanish. The former
was true.

M-matrices and inverse M-matrices are known for their similarities with the pos-
itive definite matrices and these results are no exception. In the positive definite
matrices Theorem 4.6 has an obvious analog (namely that the δ + i, δ + j minor
is 0 if and only if the δ + j, δ + i minor is 0) while the implication of Corollary 4.4
that follows from Theorem 4.3 has an identical analog. Less obvious is an analog to
Theorem 4.1, yet there is one.

Recall that positive semidefinite matrices have an interesting property that may
be called “row and column inclusion” [3]. If A is an n-by-n positive semidefinite
matrix, then, for any index set α ⊆ N and any index i ∈ N − α, the row A[i, α] (and
thus the column A[α, i]) lies in the row space of A[α] (column space of A[α]). Of
course, this is interesting only in the event that A[α] is singular, and, so, there is no
complete analog for IM matrices, in which every principal submatrix is necessarily
invertible. However, just as there are slightly weakened analogs in the case of totally
nonnegative matrices (“row or column inclusion” [3]), Theorem 4.1 implies certain
analogs for IM matrices; now the role of principal submatrices is replaced by almost
principal submatrices. We will need the following lemma. Here Row(A) (Col(A))
denotes the row (column) space of a matrix A.

Lemma 4.7. Let the n-by-n matrix B have the partitioned form

B =
[
C d

eT f

]

in which f is a scalar and r(C) = n− 2. Then, if d ∈ Col(C) and eT ∈ Row(C), B
is invertible.

Proof. Since d ∈ Col(C), r
([
C d

]) = n− 1 and since eT ∈ Row(C),
[
eT f

] ∈
Row

([
C d

])
. This implies r(B) = n, i.e., B is invertible. �

Corollary 4.8. Let A be an n-by-n IM matrix, α ⊆ N, and i, j ∈ N − α. Then,
for each k ∈ α + i + j, either A[k, α + j ] lies in the row space of A[α + i, α + j ]
or A[α + i, k] lies in the column space of A[α + i, α + j ].

Proof. The corollary certainly holds if A[α + i, α + j ] is invertible. So assume not.
Then detA[α + i, α + j ] = 0 and r(A[α + i, α + j ]) = |α|. Thus, A[α + i + j ]−1

has a 0 in the (i, j) position and if k ∈ α + i + j , it follows from Theorem 4.1 that
A[α + i + j + k]−1 also has a 0 in the (i, j) position. Hence, detA[α + i + k, α +
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j + k] = 0. With B = A[α + i + k, α + j + k] and C = A[α + i, α + j ], we see
that the result follows upon applying Lemma 4.7. �

We note that in the statement of Corollary 4.8 the almost principal submatrix
A[α + i, α + j ] could be replaced byA[α, α + j ] in the row case and byA[α + i, α]
in the column case to yield a stronger, but less symmetric, statement.

In the row or column inclusion results for totally nonnegative matrices, a bit
more is true, the either/or statement is validated either always by rows or always
by columns (or both), and this is (trivially) also so in the positive semidefinite case.
Thus, it is worth noting that such phenomenon does not carry over to the almost
principal IM case.

Example 4.9. Consider the IM matrix

A =




14 4 1 1 4
6 16 4 4 6
6 6 14 4 6
6 6 4 14 6
4 4 1 1 14


 .

The hypothesis of the corollary is satisfied with α = {2}, i = 1, and j = 3 and the
conclusion is satisfied for k = 4 by columns and not rows and for k = 5 by rows and
not columns.

Examples in which satisfaction is always via columns or always via rows are
easily constructed.
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