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P70 S6 kinase mediates tau phosphorylation and synthesis
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Abstract Currently, we found that the 70-kDa p70 S6 kinase
(p70S6K) directly phosphorylates tau at S262, S214, and T212
sites in vitro. By immunoprecipitation, p-p70S6K (T421/S424)
showed a close association with p-tau (S262 and S396/404).
Zinc-induced p70S6K activation could only upregulate transla-
tion of total S6 and tau but not global proteins in SH-SY5Y
cells. The requirement of p70S6K activation was confirmed in
the SH-SY5Y cells that overexpress wild-type htau40. Level of
p-p70S6K (T421/S424) was only significantly correlated with
p-tau at S262, S214, and T212, but not T212/S214, in Alzhei-
mer�s disease (AD) brains. These suggested that p70S6K might
contribute to tau related pathologies in AD brains.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The cytoplasmic isoform of ribosomal S6 kinase 1 (RSK1),

the 70-kDa S6 kinase (p70S6K), is a Ser/Thr (S/T)-directed ki-

nase that regulates the phosphorylation of the 40S ribosomal

protein S6 [1]. The nuclear isoform of RSK1, the 85-kDa S6

kinase (p85S6K), is docked to the nucleus by an additional

23-amino-acid sequence at its amino-terminus [1,2]. Both

p70S6K and p85S6K are translated from the same transcript

by two different start codons. So far, more is known about

p70S6K. Through phosphorylation of S6 that directly regu-

lates translation of mRNAs with 5 0-terminal oligopyrimidine

tracts (5 0TOP) that generally encode ribosomal proteins and
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elongation factors, p70S6K activation plays a crucial role in

cell growth, cell differentiation, and cell cycle control [3,4].

p70S6K contains acidic, catalytic, regulatory, and autoin-

hibitory domains (Fig. 1). Phosphoinositide-dependent protein

kinase 1 (PDK1) is constitutively active regardless of extracel-

lular stimulation. It is known that PDK1 activation can phos-

phorylate T229 of the catalytic domain of p70S6K [5,6],

mammalian target of rapamycin (mTOR) [6,7], PDK1 [8],

and Never in Mitosis gene A related kinases (NEK6/7) [9]

can phosphorylate T389 of the regulatory domain, and tau

protein kinases such as extracellular signal-regulated protein

kinase 1/2 (ERK1/2) and c-jun amino-terminal kinase (JNK)

1/2 can phosphorylate S411, S418, T421, S424, S429, and

T427 of the autoinhibitory domain [10–12]. Our previous stud-

ies indicated that both phosphoinositol 3-kinase (PI3K) and

mitogen-activated protein kinase (MAPK) pathways are aber-

rantly regulated in tau-associated pathologies such as Alzhei-

mer�s disease (AD) [13–19]. This prompted us to investigate

the role of p70S6K in the pathogenesis of AD. Sequential

phosphorylation and activation of p70S6K were suggested to

be mediated by the PI3K pathway [20]. Most recently, we

found that phosphorylation and activation of p70S6K are

preferentially regulated by the PI3K pathway, together with

the MAPK pathway [21].

The major tau related abnormalities in AD are hyper-

phosphorylation, accumulation, assembly into paired helical

filaments (PHFs) and neurofibrillary tangle (NFT) formation,

accompanied by microtubule disruption. In support of the

involvement of p70S6K in tau related pathogenesis in AD,

we previously reported a concurrent occurrence of phosphory-

lated (p)/activated p70S6K with the progression of tau associ-

ated pathologies in brains staged according to Braak and

Braak criteria [22], a colocalization of p-p70S6K with PHF-

tau in neurons bearing NFTs and pretangles, and a significant

correlation between p-p70S6K (T421/S424) and levels of total

and abnormally hyperphosphorylated taus [17]. p70S6K acti-

vation and tau hyperphosphorylation were induced by

100 lM zinc in SH-SY5Y cells and primary cultured neurons

[17,21], as well as by a selective protein phosphatase (PP)-2A

inhibition in rat brain slices [18]. Tau is known to be associated

with the phosphatase of the p70S6K upstream kinase mTOR:

PP-2A [23–25], which was also found to be associated with

p70S6K [26]. Taken together with data obtained in AD brain

of the localization of p70S6K and hyperphosphorylated tau,
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Diagram of p70 S6 kinase domains. ERK1/2 and JNK1/2 phosphorylate the S411, S418, T421, S424, S429, T447 sites of the autoinhibitory
domain of p70 S6 kinase. Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates T229 site of the catalytic domain. mTOR, PDK1 and
NEK6/7 phosphorylate T389 and additional uncharacterized kinase(s) phosphorylate S404 of the regulatory domain.
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the spatial overlap of p70S6K and tau may provide a ground

for tau to be phosphorylated by p70S6K, and this process

may be involved in pathogenesis of tau related abnormalities

in AD. It is also hypothesized that aberrant p70S6K activation

might, at least in part, contribute to the continuous production

of tau in degenerating neurons in AD brains, so that a large

amount of tau including a significant amount of normal tau

is accumulated in NFT-bearing neurons [21,27].

To address whether or not p70S6K mediates tau phosphor-

ylation and synthesis, in vitro phosphorylation of tau by

p70S6K was carried out in the present study. The possible

underlying mechanism of the significant correlation between

p70S6K (T421/S424) and PHF-1/tau found in AD brains [17]

was clarified by immunoprecipitation of the lysates of SH-

SY5Y cells treated with 100 lM zinc, and role of p70S6K in

tau synthesis was investigated both in SH-SY5Y cells treated

with 100 lM zinc and in SH-SY5Y cells overexpressing wild-

type human tau. We found firstly that active p70S6K can directly

phosphorylate tau at S262, S214 and T212 sites. Secondly,

only p-tau at S396/404 or S262 could be co-immunoprecipi-

tated with p-p70S6K (T421/S424). Thirdly, the synthesis of

tau was found to be upregulated by zinc-induced p70S6K acti-

vation in SH-SY5Y cells, and in SH-SY5Y cells that overex-

press wild-type human tau, levels of both p-p70S6K (T421/

S424) and total S6 protein were dramatically increased. Final-

ly, the level of p-p70S6K showed a significant correlation with

p-tau at Ser262, S214, and T212 sites in AD brains.
2. Materials and methods

2.1. Antibodies and reagents
Polyclonal rabbit antibodies against tau phosphorylated at S262,

T212, and S214, were from Biosource Nordic (Stockholm, Sweden);
and polyclonal rabbit antibodies against p70S6K phosphorylated at
T389 and at T421/S424, and total p70S6K were purchased from Cell
Signalling Technology (Beberly, MA). Mouse monoclonal antibody
(mAb) AT100 was from Innogenetics (anti-human PHF-tau, Zwujndr-
echt, Belgium). Rabbit antiserum R134d specific for the longest iso-
form of recombinant human tau was a gift from Drs. Khalid and
Inge Grundke-Iqbal, New York State for Basic Research in Develop-
mental Disabilities, NY, USA. mAb PHF-1 was a gift from Dr. Peter
Davies, Albert Einstein College of Medicine (Bronx, NY) and mAb
Tau-1 from Dr. L. Binder, North Western University (Chicago, IL).
Zinc sulfate were from Sigma–Aldrich (St. Louis, MO).
2.2. In vitro tau phosphorylation by p70 S6 kinase
0.1 lg/ll recombinant full-length human tau (Invitrogen AB,

Stockholm, Sweden) and 1 ng/ll recombinant active p70S6K
(T412E) (Upstate, Lake Placid, NY) were incubated in the presence
of 2.5 mM ATP in 25 mM Tris–HCl buffer (pH 7.5), containing
5 mM b-glycerophosphate, 2 mM DTT, 0.1 mM sodium vanadate,
10 mM MgCl2, 0.1 mg/ml heparin at 30 �C for 0, 30 min, 2 h or
4 h. The reaction was terminated by adding an equal amount of 2·
electrophoresis sample buffer containing 125 mM Tris–HCl (pH
6.8), 4% SDS, 10% glycerol, 0.006% bromophenol blue, 1.8% b-
mercaptoethanol, and heated at 95–100 �C for 5 min. Tau phosphor-
ylation was monitored using phospho-site-specific antibodies to tau.
Anti-p-tau (S262), 1:2000; Anti-p-tau (S214), 1:10000; Anti-p-tau
(T212), 1:2000; AT100 (T212/S214), 1:100; PHF-1 (S396/404),
1:100; R134d, 1:5000.

2.3. Cell culture and preparation of cellular extracts
SH-SY5Y human neuroblastoma cells were cultured and treated

with zinc as described [21], and the harvested cell lysates were then kept
at �80 �C. Protein concentration was determined by BCA kit from
Pierce (Pierce Chemical, Rockford, IL). The mock and wild-type tau
overexpressing SH-SY5Y cells [28] were cultivated in DMEM/F12
(1:1) with 2 mM LL-glutamine, 10% FBS, 5% horse serum, 1% P/S at
37 �C/5% CO2/95% humidity.
2.4. Immunoprecipitation
The cell lysates of SH-SY5Y cells treated with 100 lM zinc for

30 min or 4 h were harvested as described [21]. The cell lysates were
briefly sonicated, kept on ice for a further 30 min, and then centrifuged
at 10000 · g at 4 �C. The protein concentrations in the supernatants
were determined by the BCA kit (Pierce Chemical). Supernatants with
equal amounts of protein (1 lg/ml) were aliquoted into three vials per
group. Protein A-sepharose beads (50 ll/ml) were then added, followed
by incubation at 4 �C for 3 h with shaking. After spinning down the
beads, the supernatants were transferred to a new tube, and incubated
with primary polyclonal antibodies directed against p-p70S6K (T389
or T421/S424) at 4 �C overnight with shaking. The complexes were
precipitated by incubating with protein A-sepharose beads (50 ll/ml).
After washing with cell lysis buffer 3 times, the beads were resuspended
in 80 ll cell lysis buffer and 80 ll of 2· electrophoresis sample buffer,
and boiled at 95 �C for 5 min. After removing the beads by centrifuga-
tion, the supernatants were collected and kept at �20 �C for Western
blotting.
2.5. Western blotting
Samples derived from in vitro tau phosphorylation assays with

p70S6K, immunoprecipitation, and cell lysates from SH-SY5Y cells
treated with zinc, with mocking transfection or htau40 transfection
were subjected to 10% or 12% SDS–polyacrylamide gel electrophore-
sis, as described [21].
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2.6. Measurement of protein content per cell
Protein content per cell was determined as described [29]. Briefly,

after treatment with 100 lM zinc for 4 h, SH-SY5Y cells were detached
with trypsin-EDTA (Invitrogen AB). The rounded cells were prepared
into a single cell suspension using a pipette. 50 ll of a single cell sus-
pension were used for cell counting after fixation with 10% formalin.
The remaining cells were pelleted by centrifugation at 1000 · g, and
protein concentrations were measured by BCA kit (Pierce Chemical).
Protein content per cell was determined by dividing the total amount
of protein by the total number of cells in each sample. The relative lev-
els of total p70S6K, S6, and tau were quantified by Western blotting in
the same groups of samples with or without zinc treatment.

2.7. Dot blotting and indirect enzyme-linked immunosorbent assay
Tissue blocks of the medial temporal cortex from 10 controls and

22 AD patients were homogenized as described [17]. Dot blotting
was performed as described [30]. The membranes with dotted sam-
ples (3 lg/dot in triplicate) were incubated with phospho-site-specific
antibodies (1:5000 for S262, 1:1000 for S214, 1:2500 for T212; 1:500
for T212/S214) directed against S262, S214, S212, and S214/212 sites
at 4 �C overnight, followed by secondary antibody linked with
horseradish peroxidase (Amersham Biosciences AB, Uppsala, Swe-
den) at room temperature for 1 h. Immunoreactive proteins were de-
tected according to the enhanced chemiluminescence protocol
(Amersham Biosciences AB). Intensities of dots were quantified with
Quantity One 4.3.0 software (Bio-Rad Laboratories Inc., Hercules,
CA). Levels of p70S6K in AD and control cases were previously
measured by indirect enzyme-linked immunosorbent assay (ELISA)
[17].

2.8. Statistics
Level of global proteins (lg protein/1000000 cells) and levels of total

p70S6K, S6 and tau between treated and untreated groups, and levels
of p70S6K and different antibodies to p-tau in brain homogenates be-
Fig. 2. Phosphorylation of tau by p70 S6 kinase. (A) Alignment of tau seque
(p70S6K) (R/KXR/KXXS\/T\). Possible phosphorylation sites such as T135
S235 (�) and S236 (**) on S6 are well-known phosphorylation sites of p70S6
p70S6K with tau in the presence of ATP, samples (20 ll/lane) were subjected
tau phosphorylated at S262, Anti-p-tau (S262); S214, Anti-p-tau (S214); T21
R134d recognizes total tau. (C) Quantification of the relative density of each
tween AD and control groups were compared with Student�s indepen-
dent t test. The Pearson correlation analysis was used to estimate the
correlation between p70 S6 kinase and tau levels.
3. Results

3.1. Tau phosphorylation is mediated by p70 S6 kinase

It is well established that S6 can be phosphorylated at S235

and S236 sites by p70S6K. Taking S6 as the substrate, the con-

sensus motif (R/KXR/KXXS\/T\) of p70S6K was determined

using the NetPhos2.0program (http://www.cbs.dtu.dk/services/

NetPhos/). To investigate whether or not p70S6K can directly

phosphorylate tau, the sequences of full-length human tau

(Genbank: NP_005901) and S6 (Genbank: CAA47719) were

firstly compared with the consensus motif (R/KXR/KXXS\/

T\) of p70S6K [31]. We predicted that the T135, T153, S214,

T245, S262, and S352 phosphorylation sites of tau might be di-

rectly phosphorylated by p70S6K. Of these sites, the S262 site

that lies in the KXGS motif (circled by dot-box) is located in

the microtubule-binding repeat domain of tau (Fig. 2A).

Following incubation of tau with active p70S6K in the pres-

ence of ATP, the predicted phosphorylation sites S262 and

S214 of tau were confirmed using phospho-site-specific anti-

bodies directed against tau (Fig. 2B). Furthermore, tau phos-

phorylation at S262 and S214 sites was time-dependent,

especially the S262 site (Fig. 2B and C). However, T212 not

predicted to be a substrate of p70S6K was also rapidly phos-

phorylated by p70S6K, reaching a plateau after 30 min
nce (Genbank: NP_005901) with the consensus motif of p70 S6 kinase
, T153, S214, T245, S262, and S352 on tau by p70S6K are indicated.
K. (B) In vitro phosphorylation of tau by p70S6K. After incubation of
to Western blotting, and monitored using different antibodies against
2, Anti-p-tau (T212); T212/S214, AT-100; and S396/404 sites, PHF-1.
band shown in B.

http://www.cbs.dtu.dk/services/NetPhos/
http://www.cbs.dtu.dk/services/NetPhos/
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(Fig. 2B and C), whereas the unpredicted S396/404 epitope rec-

ognized by antibody PHF-1 could not be phosphorylated by

p70S6K (Fig. 2B). Although both T212 and S214 sites could

be phosphorylated by p70S6K, respectively, no detectable sig-

nals were found with phospho-specific antibody against phos-

phorylated tau at T212/S214 (AT100).

3.2. Interaction between p70 S6 kinase and tau

Previously, we found a significant correlation between levels

of p-p70S6K (T421/S424) and tau phosphorylated at S396/404

sites (PHF-1/tau) in AD brain homogenates [17]. Here, we

wanted to investigate whether or not the phosphorylation sites

of p-p70S6Kand that of tau interact. Based on previous findings

that p70S6K can induce phosphorylation at T389 and T421/

S424 sites in SH-SY5Y cells treated with zinc [21], we treated

the cells with 100 lM zinc for 30 min and 4 h, respectively,

and obtained cell lysates, which were then immunoprecipitated

with antibodies against p-p70S6K (T389) or p-p70S6K (T421/

S424), and then reacted with antibodies specific for tau. We

found that PHF-1/tau could be co-immunoprecipitated with

p-p70S6K (T421/S424), but not with p-p70S6K (T389)

(Fig. 3A). In contrast, unphosphorylated tau (Tau-1/tau) could

not be pulled downwith p70S6Kphosphorylated at either T421/

S424 or T389. Tau phosphorylated at S262 could be pulled

down with p-p70S6K (T421/S424), but not p-p70S6K (T389)

(not shown). A tendency of step-wise increase of both PHF-1/

tau andAnti-p-Tau (S262) immunosignals was seen in cells trea-

ted with 100 lMzinc. Furthermore, p-tau at T212/S214 labelled

by AT100 and at T231 labelled by AT180 (data not shown)

could not be co-immunoprecipitated with p-p70S6K (T421/

S424). Taken together, p-p70S6K at T421/S424, not at T389,

is associated with PHF-1/tau or p-tau at S262.

3.3. Tau synthesis requires p70 S6 kinase activation

Surprisingly, when the 5 0 terminus was compared among

several human mRNAs including p70S6K, S6, tau, nucleolin,

and amyloid precursor protein (APP), all of which are aber-

rantly changed in AD brains [17], a 5 0TOP-like sequence sim-

ilar to S6 mRNA was found in the 5 0 untranslated region

(5 0UTR) of human tau mRNA (Fig. 4A). However, p70S6K

mRNA or APP mRNA does not contain this kind of sequence.

To estimate whether or not there is a relative selectivity of total

tau increase after p70S6K activation, production of overall

proteins per one million cells was measured, and relative levels
Fig. 3. Interaction between p70 S6 kinase and tau. Association between ph
100 lM zinc for 30 min or 4 h. The cell extracts were immunoprecipitated
subjected to 10% SDS gel electrophoresis (20 ll/lane) and membranes reacte
S262 sites, and tau unphosphorylated at S198/199/202/T205 sites (Tau-1/tau
primary antibody during immunoprecipitation, lane b), immunoprecipitated
of total p70S6K, S6, and tau were examined in SH-SY5Y cells

treated with 100 M zinc for 4 h. Production of overall proteins

per one million cells showed no change as compared with un-

treated control (Con) (Fig. 4B). However, the relative levels of

total S6 and tau, not p70S6K were significantly increased in

the cells treated with 100 lM zinc for 4 h (Fig. 4C). These re-

sults indicated that zinc-induced p70S6K activation could

selectively increase translation of some proteins including

tau, which contain a 5 0TOP motif in the 5 0UTR of their

mRNAs. In SH-SY5Y cells that overexpress wild-type htau40,

a dramatic increase of p-p70S6K (T421/S424) and total S6 was

seen, indicating that the overexpression of stably transfected

htau40 requires continuous p70S6K upregulation (Fig. 4D).

3.4. Correlation of p-p70 S6 kinase (T421/S424) with tau

phosphorylated at S262, S214, and T212 sites

Since p70S6K could directly phosphorylate tau at S262,

S214 and T212 sites, levels of tau phosphorylated at these sites

were investigated in homogenates obtained from the medial

temporal cortex of AD and control brains, and compared with

p-p70S6K (T421/S424). It was found that levels of p-tau at all

of these sites (S262, S214, and T212) were significantly in-

creased in AD compared to controls (Fig. 5A). Levels of p-

p70S6K (T421/S424) showed a strong correlation with tau

phosphorylated at the S262 (P < 0.05, Fig. 5B), S214

(P < 0.001, Fig. 5C), and T212 (P < 0.01, Fig. 5D) in AD

cases. Although levels of tau phosphorylated at both T212/

S214 (AT100) showed a significant increase in AD as com-

pared with controls (Fig. 5A), its increase did not show a sig-

nificant correlation with p-p70S6K (T421/S424) (Fig. 5E). An

elevated level of p-p70S6K (T421/S424) might contribute to

the phosphorylation of tau at S262, S214 and T212 sites in

AD brain. In controls, no significant correlation was found be-

tween p-p70S6K (T421/S424) and tau phosphorylated at these

sites (P > 0.05).
4. Discussion

Our in vitro experiments indicated that phosphorylation of

tau at S262 (microtubule-binding repeat domain), S214 and

T212 (flanking domain) sites, but not at S396/404 and T212/

S214, is favored by p70S6K. While phosphorylation of tau

at the S214 site compromised its binding ability to microtu-
osphorylated (p) p70S6K and p-tau. SH-SY5Y cells were treated with
with antibodies against p-p70S6K (T389) or p-p70S6K (T421/S424),
d with antibodies to tau phosphorylated at S396/404 (PHF-1/tau) and
). Cell extract from untreated cells (lane a), negative control (without
samples (lane c).



Fig. 4. Tau protein translation mediated by p70 S6 kinase. (A) Comparison of the 5 0 terminus sequence of p70S6K, S6, tau, nucleolin, and amyloid
precursor protein (APP) mRNAs. 5 0UTR of human tau mRNA contains a sequence similar to the 5 0TOP of S6. (B) No changes of global proteins in
SH-SY5Y cells treated with 100 lM zinc for 4 h. Protein concentrations were measured with the BCA kit. Protein content per 1 million cells was
determined by dividing the total amount of protein by total cell numbers. (C) Changes of total levels of p70S6K, S6, and tau determined by Western
blotting for the same group as in B. (D) Increased expression of p-p70S6K (T421/S424) and total S6 in SH-SY5Y cells overexpressing wild-type
htau40 (10 lg protein/lane). The results suggested that overexpression of stably transfected htau40 requires upregulation of p70S6K activation.
*P < 0.05.
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bules [32], tau phosphorylated at the S262 site could abolish

the ability to promote microtubule assembly and stability

[33]. Although the T212 site appeared to have a relatively min-

or effect on microtubule assembly, prephosphorylation at this

site has been shown to enhance S214 phosphorylation [34]. It is

possible that microtubule disruption as seen in AD brains is

synergistically caused by phosphorylase kinase [35], calcium/

calmodulin-dependent protein kinase II (CaMKII) [36–38],

microtubule-affinity regulating kinase (MARK) [33,39], pro-

tein kinase A [36], and finally p70S6K, all of which are capable

of phosphorylating tau at the S262 site.
In SH-SY5Y cells and rat brain primary cultured neurons,

100 lM zinc was able to induce increased tau phosphoryla-

tion at S396/404 (PHF-1) sites, and this increase could be

dramatically inhibited by the mTOR inhibitor rapamycin

[17,21]. In metabolically active rat brain slices, selective PP-

2A inhibition by okadaic acid could induce increased tau

phosphorylation at S396/404 (PHF-1), S422 (R145d), and

S262/356 (12E8) sites. Among these sites, inhibition of

ERK1/2 with U0126 did not affect tau phosphorylation at

PHF-1 sites, but increased tau unphosphorylation level

at Tau-1 sites (S198/199/202/T205), and decreased tau
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phosphorylation at S422 and 12E8 sites [18]. In transgenic

mice with chronically reduced PP2A activity by expressing

a dominant-negative mutant form of the PP2A catalytic sub-

unit, endogenous tau was phosphorylated at the epitopes

S202/T205 (AT8) and S422, accompanied by ERK1/2 activa-

tion [40]. This suggested that tau phosphorylation state at

Tau-1, 12E8, AT8, and S422 sites might be favored by

ERK1/2. In contrast, tau phosphorylation at PHF-1 sites

might be more favored by kinases other than ERK1/2, and

that the activity of the kinase(s) regulating tau phosphoryla-

tion at PHF-1 sites could be blocked by rapamycin.

Tau protein at a high concentration is capable of self-aggre-

gating in vitro even when present in an unmodified form [41].

However, when tau is phosphorylated at the S262 site in the
microtubule-binding repeat domain it can be detached from

the microtubules, and may thus be protective in preventing

tau aggregation into AD-like PHFs [39]. In contrast, phos-

phorylation of tau at S214 and T212 sites in the flanking do-

main may neutralize the basic charge, and thus neutralize the

inhibitory effect of S262 phosphorylation and cause tau to

self-assemble into filaments [42]. Levels of tau phosphorylated

at these sites were dramatically elevated in AD as compared to

control (current study). The significant correlation as seen be-

tween p-p70S6K (T421/S424), and p-tau at S262, S214, and

T212, but not T212/S214 suggested that p70S6K activation

might act on the S262 site, and in a similar manner to PKB

[34] on the S214 or T212 site, but not T212/S214 sites in

AD. Thus, p70S6K activation might play a significant role in
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tau hyperphosphorylation at these sites, which might cause

microtubule disruption and inhibition of PHF formation in

degenerating neurons in AD.

Here, we have found that tau phosphorylated at S396/404

(PHF-1) sites or the S262 site (not Tau-1/tau dephosphorylated

at S198/199/202/T205) could only be co-precipitated with p-

p70S6K (T421/S424) and not p-p70S6K (T389). Thus, it is rea-

sonable to speculate that after binding of p-p70S6K (T421/

S424) with S396/404 or S262, by facilitating site-specific phos-

phorylation on regulatory (T389) and catalytic (T229) do-

mains, p70S6K activity may be enhanced, which in turn may

phosphorylate tau at S262, T212, and S214 sites. As a sticky

protein, tau was found to bind to a number of proteins [43]

such as actin [44], PP-1 and PP-2A [23,45], a-synuclein [46],

and phospholipase C [47,48], and glycogen synthase kinase-

3b [49]. The significance of the interactions among these pro-

teins in pathogenesis of tau related abnormalities in AD is

not understood.

Comparative analysis of the first 20 nucleotides of mRNAs

encoding proteins such as p70S6K, S6 and tau revealed that

the 5 0UTR of tau mRNA has a 5 0TOP-like structure similar

to that of S6 mRNA. In the present study, global protein

translation was not altered in zinc-treated SH-SY5Y cells, con-

sistent with the concept that p70S6K regulates the translation

of a set of 5 0TOP-containing mRNAs rather than overall pro-

tein synthesis. We found a dramatic increase of levels of total

tau and S6, but not total p70S6K, both in zinc-treated SH-

SY5Y cells (current study) and in AD brains [17]. These data

together suggested that p70S6K activation upregulates transla-

tion of a group of proteins including tau. The requirement of

p70S6K activation in tau translation was confirmed in SH-

SY5Y cells, as when tau was overexpressed, level of total S6

was also increased, together with a dramatic increase of p-

p70S6K (T421/S424) levels. Thus, the 5 0TOP-like structure

might enable tau mRNA to be preferentially translated into

protein in response to p70S6K activation similar to S6 5 0TOP

mRNA. Although tau mRNA level was elevated in the brains

of Down syndrome patients [50], it was unchanged in AD

brains [51–53]. This indicates that in AD brains a sufficient

amount of tau mRNA is available for synthesizing new tau

protein.

Aberrant activation of p70S6K in AD brains might be due

to dys-regulation of PP-2A activity and the PI3K and MAPK

signalling pathways [17,18,21,40]. Our present study suggests

that p70S6K mediates both tau phosphorylation and synthesis.

To fully understand the role of p70S6K in formation of tau re-

lated abnormalities, further studies are needed to identify

whether or not the type of self-assembled non-PHF filaments

exists in AD brain and other tauopathies.
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