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SUMMARY

The regulation of bone remodeling by an adipo-
cyte-derived hormone implies that bone may
exert a feedback control of energy homeosta-
sis. To test this hypothesis we looked for genes
expressed in osteoblasts, encoding signaling
molecules and affecting energy metabolism.
We show here that mice lacking the protein ty-
rosine phosphatase OST-PTP are hypoglyce-
mic and are protected from obesity and glucose
intolerance because of an increase in b-cell
proliferation, insulin secretion, and insulin
sensitivity. In contrast, mice lacking the osteo-
blast-secreted molecule osteocalcin display
decreased b-cell proliferation, glucose intoler-
ance, and insulin resistance. Removing one
Osteocalcin allele from OST-PTP-deficient
mice corrects their metabolic phenotype. Ex
vivo, osteocalcin can stimulate CyclinD1 and
Insulin expression in b-cells and Adiponectin,
an insulin-sensitizing adipokine, in adipocytes;
in vivo osteocalcin can improve glucose toler-
ance. By revealing that the skeleton exerts an
endocrine regulation of sugar homeostasis
this study expands the biological importance
of this organ and our understanding of energy
metabolism.

INTRODUCTION

The prevailing paradigm in skeletal biology is that differen-

tiation and functions of the two bone-specific cell types,
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osteoblasts and osteoclasts, are determined by secreted

molecules that can either be cytokines acting locally or

hormones acting systemically (Harada and Rodan, 2003;

Teitelbaum and Ross, 2003). A remarkable feature of

most hormonal regulations is that they are controlled by

feedback loops such that a cell type affected by a hormone

sends signals influencing the hormone-producing cell.

When applied to skeletal biology the concept of feedback

regulation suggests that bone cells may exert an endo-

crine function.

Bone remodeling, the process whereby bones renew

themselves, is regulated by multiple hormones. That

obesity protects mammals from osteoporosis led us to

propose that bone remodeling and energy metabolism

could be regulated by the same hormone(s) (Ducy et al.,

2000a). Verifying this hypothesis we showed that leptin,

an adipocyte-derived hormone that appears during evolu-

tion with bony skeleton, is a major regulator of bone

remodeling by acting on osteoblasts through two different

neural pathways (Karsenty, 2006). Regardless of the

molecular complexity of this novel neuroendocrine regula-

tion, if indeed bone cells determine the level of activity of

hormone-producing cells, then osteoblasts should affect

energy metabolism.

Osteocalcin, one of the very few osteoblast-specific

proteins, has several features of a hormone. It is, for in-

stance, a cell-specific molecule, synthesized as a prepro-

molecule and secreted in the general circulation

(Hauschka et al., 1989; Price, 1989). Because of their ex-

quisite cell-specific expression the Osteocalcin genes

have been intensively studied to identify osteoblast-spe-

cific transcription factors and to define molecular bases

of bone physiology (Harada and Rodan, 2003). In the

course of the latter study we generated Osteocalcin�/�

mice (Ducy et al., 1996). While analyzing these mutant

mice we noticed that they had an abnormal amount of
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visceral fat (P.D. and G.K., unpublished data). This was the

first evidence suggesting that skeleton may regulate en-

ergy metabolism.

Osteocalcin undergoes an unusual posttranslational

modification whereby glutamic acid residues are carbox-

ylated to form g-carboxyglutamic acid (Gla) residues—

hence its other name, bone Gla protein (Hauschka et al.,

1989). Gla residues usually confer to proteins high affinity

for mineral ions, yet loss- and gain-of-function experi-

ments have failed to identify a function for osteocalcin in

extracellular matrix mineralization in vivo (Ducy et al.,

1996; Murshed et al., 2004). Thus at the present time the

biological role, if any, of osteocalcin g-carboxylation re-

mains unknown.

A characteristic of osteoblasts is their paucity of cell-

specific gene expression. We took advantage of this prop-

erty and, with the goal of identifying osteoblast-enriched

genes affecting energy metabolism, generated mutant

mouse strains lacking genes encoding signaling mole-

cules expressed only or preferentially in osteoblasts.

Through this effort we inactivated, via classical means

and in an osteoblast-specific manner, Esp (also known

as Ptprv), a gene expressed in osteoblasts and Sertoli

cells that encodes a receptor-like protein tyrosine phos-

phatase termed OST-PTP (Mauro et al., 1994). Remark-

ably, mice lacking Esp in osteoblasts only display an

increase in b-cell proliferation, insulin secretion, and

sensitivity that protects them from induced obesity and

diabetes; all these phenotypes are corrected by deleting

one allele of Osteocalcin. Accordingly, Osteocalcin�/�

mice are glucose intolerant and fat; genetic and cell-

based assays show that osteocalcin can favor prolifera-

tion of pancreatic b-cells, Insulin, and Adiponectin expres-

sion in b-cells and adipocytes. To our knowledge this

study provides the first in vivo evidence that skeleton

exerts an endocrine regulation of energy metabolism

and thereby may contribute to the onset and severity of

metabolic disorders.

RESULTS

Generation and Perinatal Lethality of Esp�/� Mouse

Models

We further established that Esp expression was re-

stricted to bone and testes by making use of a LacZ al-

lele knocked into the Esp locus and performing in situ

hybridization and real time PCR studies. All analyses ver-

ified that Esp is expressed in osteoblasts but not in

b-cells of the pancreas or in adipocytes (Figures 1A, 1B,

and S5A).

Esp was disrupted in a classical way (Esp-nLacZ;

Dacquin et al., 2004) and in an osteoblast-specific manner

(Esposb
�/�) by deleting exons encoding the phosphatase

domain, using the LoxP/Cre recombinase technology

(Figure S1A). Mice harboring Esp floxed alleles were

crossed with a1(1) collagen-Cre mice (Dacquin et al.,

2002) to generate osteoblast-specific Esp-deficient mice

(Esposb
�/�; Figure S1B). Recombination occurred at high
frequency at the Esp locus in osteoblasts. Accordingly,

Esp expression was reduced nearly 90% in Esposb
�/� os-

teoblasts and unaffected in testes (Figures 1C and 1D).

For the sake of clarity we will refer in the rest of the text

to Esp�/� mice when both Esp-nLacZ and Esposb
�/�

mice were studied.

When analyzed at weaning, intercrosses of Esp+/�mice

never yielded more than 20% of Esp�/� pups although

they were of normal appearance (Figures 1E, S1C, and

S1D). Analysis of skeletal preparations of newborn wild-

type (WT) and Esp�/� pups failed to detect any abnormal-

ity of skeletogenesis that could explain a perinatal lethality

(Figures S1E and S1F). Thus, we asked whether Esp�/�

pups’ lethality could be due to a humoral abnormality. In

that case mutant pups born from homozygous mutant

mothers should die at a higher frequency than those

born from heterozygous mothers. While lethality of Esp�/�

pups born from Esp+/�mothers never reached 15%, up to

35% of Esp�/� pups born from Esp�/� mothers died

before weaning (Figure 1F), indicating that Esp�/� pups’

lethality was caused, at least in part, by a humoral

abnormality.

Increased b-Cell Proliferation and Insulin Secretion

in Esp�/� Mice

Regardless of genetic background, sex, and type of dele-

tion performed, the only humoral abnormality observed in

Esp�/� pups was a 3-fold reduction of blood glucose

levels at birth before milk ingestion (Figure 1G). In some

mutant pups this level was even too low to be detected.

Blood glucose level remained abnormally low in adult

Esp�/� mice after feeding (Figure 1G). Explaining this hy-

poglycemia there was a marked hyperinsulinemia in new-

born and adult Esp�/� mice (Figure 1H). Serum level of

C-peptide was also increased in Esp�/�mice (Figure S2A),

while pancreas content and serum level of glucagon,

a hormone secreted by pancreatic a-cells in response to

hypoglycemia, was normal in Esp�/� mice (Figure S2B).

Esp�/� mice display a severe hyperinsulinemia, a feature

that is known to inhibit glucagons secretion (Maruyama

et al., 1984; Raju and Cryer, 2005) and that in all likelihood

antagonized the increase in glucagon secretion that

should have been triggered by their hypoglycemia. Serum

levels of IGF-1 and PYY were similar in WT and Esp�/�

mice. Surprisingly, serum levels of amylin, a protein syn-

thesized by b-cells, was decreased 25% in mutant mice

(Figures S2C–S2E).

The existence of an increase in insulin secretion in

Esp�/�mice was demonstrated by intraperitoneal (IP) glu-

cose-stimulated insulin secretion tests (GSIS, Figure 1I).

To assess how this increase in insulin secretion affects

the ability of the mice to dispose of a glucose load, we per-

formed glucose tolerance tests following IP injection of

glucose (2 g/kg of body weight) after an overnight fast

(GTT). These tests revealed that Esp�/�mice had a signif-

icantly higher tolerance to glucose than WT mice

(Figure 1J). Histological and immunochemical analyses

showed an increase in pancreas insulin content, number
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Figure 1. Increased Insulin Secretion and b-Cell Proliferation in Esp�/� Mice

(A) LacZ-stained tissues from newborn Esp�/� mice demonstrating Esp locus activity in bone and testis but not in pancreas or fat pads.

(B) Expression of Esp in osteoblasts, adipocytes, and pancreatic islets by real-time PCR in 1-month-old mice.

(C) Southern blot analysis showing efficient recombination at the Esp locus in osteoblasts of Esposb
�/� mice.

(D) Using real-time PCR Esp expression is 90% decreased in osteoblasts but not altered in testis of Esposb
�/� mice.

(E) Decreased percentage at weaning of Esp�/� pups born from crosses between Esp+/� mice.

(F) Lower survival at birth and at weaning of Esp�/� pups born from Esp+/� and Esp�/� mothers.

(G and H) Blood glucose levels (G) and serum insulin levels (H) in WT and Esp�/� newborn before feeding (P0) or after random feeding at indicated

ages.

(I–J) GSIS (I) and GTT (J) test in 1-month-old WT and Esp�/� mice.

(K) H&E staining, insulin immunostaining, and insulin/Ki67 double immunostaining showing larger islets and increased b-cell proliferation in pancreas

of WT and 1-month-old Esp�/� mice. Arrowheads indicate islets, and arrows point at Ki67-positive cells. Scale bars are 100 mm except in upper

panels, where they are 800 mm. Histomorphometric comparisons of islet number, size, and b-cell mass between 1-month-old WT and Esp�/�

mice (lowest panel).

(L) Pancreas insulin content in 1-month-old WT and Esp�/� mice.

(M) Quantification of the number of Ki67-immunoreactive cells in pancreatic islets of P5 and 1-month-old WT and Esp�/� mice. All panels except (I)

and (J), �p < 0.05 and *p < 0.01 versus WT (Student’s t test). (I and J) �p < 0.05 versus WT and *p % 0.001 versus WT (ANOVA followed by post hoc

analysis).
of islets, islet size, and b-cell mass in Esp�/� pancreas

(Figures 1K and 1L). While TUNEL assay failed to detect

any abnormal apoptosis, Ki67 immunostaining showed

that b-cell proliferation was increased 60%–300% in

5-day-old (P5) and 1-month-old Esp�/� mice (data not

shown; Figure 1M).
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Increased Insulin Sensitivity in Esp�/� Mice

To determine whether the enhanced ability of Esp�/�mice

to dispose of a glucose load was also caused by an in-

crease in insulin sensitivity, we performed insulin toler-

ance tests (ITT). Despite their hyperinsulinemia insulin

sensitivity was significantly increased in Esp�/� compared



Figure 2. Increased Insulin Sensitivity and Adiponectin Expression in Esp�/� Mice

All experiments compare 1-month-old mice WT and Esp�/� unless otherwise indicated.

(A) ITT.

(B) Glucose infusion rate during hyperinsulinemic-euglycemic clamp.

(C) Expression of markers of insulin sensitivity in skeletal muscle measured by real-time PCR.

(D) Electron microscopy images (upper panel, 20,0003) and corresponding quantification (lower panel) of mitochondrial area in gastrocnemius mus-

cle. Scale bars are 1 mm.

(E) Decreased number of lipid droplets on Oil red O stained liver sections (upper panel) and modified expression of insulin target genes by real-time

PCR (lower panel) in Esposb
�/� mice. Scale bars are 50 mm.

(F) Fat pad mass (fat pad weight over body weight).

(G) Energy expenditure.

(H) Serum triglyceride levels after an overnight fast.

(I) H&E staining of adipose tissues of WT and Esp�/� mice (upper panel) and respective distribution of diameters for 100 measured adipocytes per

slide (lower panel). Scale bars are 50 mm.

(J) Expression of markers of adipogenesis, lipogenesis, fat uptake, and lipolysis in fat.

(K) Serum free fatty acid (FFA) in fed and overnight-fasted mice.

(L) Expression of Leptin, Resistin, and Adiponectin in fat.

(M) Serum levels of adiponectin in newborn mice before feeding (P0) and after random feeding at other indicated ages.

(N) Expression of adiponectin target genes in tissues of WT and Esp�/� mice.

In (A), �p < 0.05 versus WT and *p % 0.001 versus WT (ANOVA followed by post hoc analysis); in (B)–(N), *p < 0.01 versus WT (Student’s t test).
to WT mice (Figure 2A). Hyperinsulinemic euglycemic

clamps analysis verified the existence of an increase in

insulin sensitivity by showing that steady-state glucose

infusion rates were increased more than 50% in Esp�/�

mice compared to WT littermates (Figure 2B). This was

due to an increase in insulin-stimulated glucose uptake

in muscle, brown and white fat, and in liver (Table S1).
We also performed molecular and morphological analyses

in skeletal muscle and liver. Expression of Pgc1a, a target

gene of insulin, and of Nrf1 and Mcad, two target genes

of Pgc1a, was significantly increased in Esp�/� compared

to WT muscles (Figure 2C). These results suggested

that mitochondrial activity was enhanced in absence of

Esp. Consistent with this hypothesis mitochondrial area
Cell 130, 456–469, August 10, 2007 ª2007 Elsevier Inc. 459



was larger in Esp�/� than in WT muscles, while muscle

mass over body mass ratio was normal (Figures 2D and

S2F). In liver, expression of Foxa2 was increased, while

Pepck expression was decreased; fat content was

also decreased in Esp�/� liver, a feature consistent

with an increase in insulin sensitivity (Figure 2E). In all anal-

yses Esp+/� mice behaved like WT littermates (data not

shown).

Adult Esp�/� mice displayed another phenotype: their

gonadal fat pads were significantly lighter than the ones

of WT littermates despite being hyperinsulinemic

(Figure 2F). This decrease in fat mass was restricted to

visceral fat (Figure S2G). Contributing to explaining this

phenotype, energy expenditure was increased in Esp�/�

mice, while food intake was not affected (Figures 2G

and S2H). Serum triglyceride levels were also lower in

Esp�/� than in WT mice (Figure 2H). Although there

were fewer adipocytes in Esp�/� than in WT mice (WT,

93.2 ± 10.7 3 103 adipocytes/fat pad [n = 5]; Esp�/�,

37 ± 5.1 3 103 adipocytes/fat pad [n = 3]) they were larger

(Figure 2I). To understand this phenotype we studied

expression of multiple molecular markers. C/EBPa,

Srebp1c, Fatty acid synthase (Fas), and Lipoprotein lipase

(LPL) were similarly expressed in Esp�/� and WT adipo-

cytes, suggesting that adipogenesis, lipogenesis, and fat

uptake were not affected by the mutation (Figure 2J). In

contrast, expression of Perilipin and Triglyceride lipase

(Tgl), two lipolytic genes whose expression is inhibited

by insulin, was markedly decreased in Esp�/� adipocytes

(Figure 2J), indicating that lipolysis is inhibited in Esp�/�

mice. Accordingly, serum level of free fatty acid did not

increase following an overnight fast in Esp�/� mice as it

did in WT littermates (Figure 2K). There was no inflamma-

tion in fat since Tnfa and IL-6 expression and serum levels

were low in Esp�/� mice (Figures S2I and S2J).

Increased Adiponectin Expression in Esp�/� Mice

To uncover the mechanism leading to an increase in insu-

lin sensitivity in Esp�/� mice we studied various adipo-

kines. Expression and serum levels of resistin, an adipo-

kine mediating insulin resistance, were virtually not

affected by Esp deletion; the same was true for leptin,

an insulin-sensitizing hormone (Friedman and Halaas,

1998; Steppan et al., 2001; Figures 2L and S2K). On the

other hand, expression and serum level of adiponectin,

an adipokine enhancing insulin sensitivity (Yamauchi

et al., 2001), were respectively increased 3- and 2-fold in

Esp�/�mice (Figures 2L and 2M). Accordingly, expression

of the adiponectin target genes Acyl-CoA Oxidase, Ppara,

and Ucp2 was increased in Esp�/�mice (Figure 2N; Kado-

waki and Yamauchi, 2005).

In summary, Esp inactivation causes hypoglycemia with

decreased adiposity as a result of increased pancreatic

b-cell proliferation, enhanced insulin secretion, and

improved insulin sensitivity. That these abnormalities

were observed both in Esp-nLacZ�/� and Esposb
�/�

mice demonstrates that osteoblasts regulate glucose

homeostasis.
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Esp�/� Mice Are Protected from Obesity

and Glucose Intolerance

The increase in insulin secretion and sensitivity character-

izing Esp�/� mice raised the prospect that these mutant

mice could be protected from obesity and diabetes.

Because Esp-nLacZ�/� and Esposb
�/� show identical

metabolic and molecular abnormalities, we tested this

hypothesis in Esp-nLacZ�/� mice only. Three different

assays were used.

First, we injected gold thioglucose (GTG) in 1-month-old

mice to lesion the ventromedial hypothalamus (Brecher

et al., 1965). GTG induced ventromedial hypothalamic le-

sions (Figure S3) and hyperphagia (Figure 3A) in both WT

and Esp�/�mice. When analyzed 3 months after injection

GTG-treated WT mice were obese, glucose intolerant, and

insulin resistant, and their serum triglyceride levels were

also significantly increased (Figures 3B–3F). In contrast,

GTG-treated Esp�/� mice remained lean, had fat pad

mass and serum triglyceride levels similar to the ones of

PBS-treated WT mice, and displayed no evidence of glu-

cose intolerance or of insulin insensitivity (Figures 3B–3F).

Second, we fed WT and Esp�/�mice a high fat diet (HFD)

for 6 weeks. As shown in Figures 3G–3I, Esp�/� fed a HFD

gained significantly less weight than WT mice and did not

develop glucose intolerance or insulin resistance as WT

mice did. Third, we asked whether the increase in insulin

sensitivity could protect Esp�/� mice from pancreatic

b-cell failure. To that end we injected mice with streptozo-

tocin (STZ) to provoke oxidative stress in b-cells and cell

death (Le May et al., 2006). STZ markedly decreased

pancreas insulin content and insulin serum level in both

genotypes (Figures 3J and 3K). Eight days after STZ injec-

tion three of the seven STZ-treated WT mice had died, and

all the surviving ones had serum glucose levels above

500 mg/dl (Figures 3L and 3M). On the other hand, only

one STZ-treated Esp�/� mouse died during this period,

and blood glucose level of the surviving ones did not ex-

ceed 250 mg/dl. Unlike what was the case for STZ-treated

WT mice, glucose could not be detected in urine of STZ-

injected Esp�/� mice (Figure 3N). Since both STZ-treated

WT and Esp�/�mice had a similar decrease in islets’ insu-

lin content the absence of an overt diabetic phenotype in

STZ-treated Esp�/� mice suggests that their increase in

insulin sensitivity protected them from diabetes. Results

of these three experiments establish that Esp function is

required for the development of obesity and glucose

intolerance in mice.

Esp Influences the Bioactivity of Osteoblast-

Secreted Molecule(s)

To further establish that it is through its osteoblastic ex-

pression that Esp regulates glucose metabolism we next

relied on gain-of-function experiments. Transgenic mice

overexpressing full-length Esp cDNA selectively in osteo-

blasts (a1(I)-Esp mice) displayed decreased b-cell prolifer-

ation, lower b-cell mass, and hypoinsulinemia in the fed

state and showed impaired insulin secretion in response

to glucose (Figures 4A–4C). They also showed lower



Figure 3. Esp�/� Mice Are Protected from Obesity and Glucose Intolerance

(A–F) Food intake per day (A), body weight curve (B), fat pad mass (C), serum triglyceride levels (D), GTT (E), and ITT (F) in 4-month-old WT and Esp�/�

mice 3 months after GTG or vehicle injection.

(G–I) Body weight curve (G), GTT (H), and ITT (I) in 3 month-old WT and Esp�/� mice fed a high fat diet for 6 weeks.

(J and K) Serum insulin levels (J) and pancreatic insulin content (K) in 1-month-old WT and Esp�/� mice 8 days after STZ or vehicle injection.

(L and M) Survival of mice (L) and change of blood glucose levels (M) in 1-month-old WT and Esp�/�mice during the 8 days following STZ injection.

(N) Urinary glucose assays in 1-month-old WT and Esp�/� mice 8 days after STZ injection.

In (A)–(F), (J), and (K): a, WT versus Esp�/�; b, WT + GTG (or STZ) versus WT + vehicle; c, WT + GTG (or STZ) versus Esp�/� + GTG (or STZ); d, Esp�/� +

GTG (or STZ) versus Esp�/� + vehicle. In (G)–(I) and (M), *p < 0.05 WT versus Esp�/�. In (A), (C), (D), (J), and (K), Student’s t test, p < 0.05 for a–d; in (B),

(E)–(I), (L), and (M), ANOVA followed by post hoc analysis when number of groups > 2, p % 0.001 for a–d.
adiponectin serum concentrations (Figure 4B). As a result,

a1(I)-Esp mice on a regular chow developed hyperglyce-

mia, glucose intolerance, and insulin resistance (Figures

4B, 4D, and 4E). That it is observed in mice overexpress-

ing Esp in osteoblasts supports the notion that OST-PTP

regulates the bioactivity of an osteoblast-derived secreted

molecule regulating glucose homeostasis. That it is only

observed in transgenic mice overexpressing full-length

Esp suggests that the phosphatase activity of OST-PTP

is required to affect glucose homeostasis.

Next we cocultured osteoblasts, which are adherent

cells, with either pancreatic islets or adipocytes, which

are not adherent. Coculture of differentiated WT osteo-

blasts with islets isolated from WT mice increased Insulin

expression 40% (Figure 4F). This enhancement of Insulin

expression by osteoblasts was specific since fibroblasts
did not have this ability. In agreement with the increase

in insulin secretion observed in Esp�/�mice, Esp�/� oste-

oblasts enhanced Insulin expression to a higher extent

than WT osteoblasts (Figure 4F). Expression of Glucagon,

a gene expressed in a different cell type in the islets, was

not affected by osteoblasts (Figure 4F), further suggesting

that Glucacon expression is not affected by Esp inactiva-

tion. We also cocultured osteoblasts or fibroblasts with

adipocytes. WT osteoblasts, but not fibroblasts, in-

creased expression of Adiponectin, and Esp�/� osteo-

blasts were 2-fold more potent in this action; Adiponectin

was the only tested adipokine whose expression was af-

fected (Figure 4G). Control experiments using WT osteo-

blasts cocultured with Esp�/� islets or adipocytes showed

the same increase in Insulin and Adiponectin expression

than when using WT islets or adipocytes (Figure 4H).
Cell 130, 456–469, August 10, 2007 ª2007 Elsevier Inc. 461



Figure 4. Osteoblasts Secrete a Factor Regulating Insulin and Adiponectin Expression

(A–E) All experiments compare 1-month-old WT and a1(I)-Esp mice. (A) Insulin immunostaining (upper panel) and histomorphometric comparisons of

islet number, size, b-cell mass, and Ki67-immunoreactive cells in pancreas (lower panel). Scale bars are 100 mm. (B) Blood glucose and serum insulin/

adiponectin levels. (C) GSIS test. (D) GTT. (E) ITT.

(F) Expression of Insulin and Glucagon in WT islets cocultured with fibroblasts or osteoblasts.

(G) Expression of Adiponectin and Leptin in WT adipocytes cocultured with fibroblasts or osteoblasts.

(H) Expression of Insulin and Adiponectin in Esp�/� indicated cells cocultured with fibroblasts or osteoblasts.

(I and J) Expression of Insulin (I) and Adiponectin (J) in WT indicated cells cocultured with or without osteoblasts in presence of a filter preventing

cell-cell contact or in presence of conditioned medium (CM) collected from osteoblast cultures. (A, B, and F–J) *p < 0.05 versus WT (Student’s

t test); (C–E) �p < 0.05 versus WT and *p % 0.001 versus WT (ANOVA).
Study of Leptin and Adiponectin expression in osteoblasts

and of osteoblast markers in adipocytes did not detect

misexpression of any of these genes at the end of this ex-

periment and thus excluded a transdifferentiation event

(Figures S4A–S4D).

To establish that the regulation of Insulin and Adiponec-

tin expression by osteoblasts occurs via the release of

secreted molecule(s) we first cocultured osteoblasts with

either islets or adipocytes using a filter preventing cell-

cell contact. Second, islets and adipocytes were cultured

in the presence of supernatant of osteoblast cultures. In

both cases we observed a significant increase in Insulin

and Adiponectin expression (Figures 4I and 4J).
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The Osteoblast-Secreted Molecule Osteocalcin

Favors b-Cell Proliferation, Insulin Secretion,

and Sensitivity

In search of osteoblast-specific secreted molecule(s) reg-

ulating glucose homeostasis under the control of Esp we

focused our attention on mice lacking osteocalcin

(Ocn�/� mice) since we noticed upon their generation

that they were abnormally fat.

Ocn�/� mice had higher blood glucose level and lower

insulin serum level than WT mice (Figures 5A and 5B). In-

sulin secretion and sensitivity as well as glucose tolerance

analyzed by GSIS, GTT, ITT, and hyperinsulinemic eugly-

cemic clamps were all decreased in Ocn�/�mice, as was



energy expenditure (Figures 5C–5G; Table S1). Expres-

sion of insulin target genes was decreased in skeletal

muscle and liver, while Pepck expression was increased

(Figure 5H). Islets’ size and number, b-cell mass, pancreas

insulin content, and insulin immunoreactivity were all

markedly decreased in Ocn�/�mice (Figure 5I). b-cell pro-

liferation measured by Ki67 immunostaining was de-

creased 2-fold in Ocn�/� pancreas (Figure 5I). There was

also in Ocn�/� mice an increase in fat mass, adipocytes

number (WT, 93.2 ± 10.7 3 103 adipocytes/fat pad [n =

5], Ocn�/�, 125.6 ± 10.6 3 103 adipocytes/fat pad [n =

3]), and serum triglyceride levels (Figures 5J and 5K).

Adiponectin expression and serum levels were signifi-

cantly lower in Ocn�/� than in WT mice, while expression

of other adipokines was not affected (Figures 5L and 5M).

Expression of molecular targets of adiponectin action was

decreased in Ocn�/� mice (Figure 5N). Ocn+/� mice were

indistinguishable from WT littermates (Figures 7A–7G). All

these abnormalities were observed in mice fed a normal

diet. We verified that Osteocalcin was not expressed in

islets or adipocytes (Figures S5A and S5B).

In coculture assays, Ocn�/� osteoblasts could not en-

hance expression of Insulin and Adiponectin (Figures 5O

and 5P). Likewise, WT immature osteoblasts that do not

express Osteocalcin (Ducy et al., 2000b) could not induce

Insulin or Adiponectin expression (Figure 5R). In contrast,

forced expression of Osteocalcin in COS cells allowed

these cells to enhance Insulin and Adiponectin expression

(Figure 5Q). We also added bacterially produced recombi-

nant osteocalcin (3 ng/ml, Figure S6C) to a coculture of

WT fibroblasts and b-cells and observed an induction of

Insulin expression, a phenomenon that fibroblasts could

not trigger otherwise (Figure 5R).

To add further credence to these cell-based results we

tested whether recombinant osteocalcin could affect glu-

cose metabolism in vivo. To that end Ocn�/� mice were

subjected to a GTT in which half the mice received glucose

alone while the other half received glucose and recombinant

osteocalcin (20 ng). Osteocalcin significantly decreased

blood glucose levels at the 30, 60, and 120 min time points

of this assay (Figure 5S). Osteocalcin also increased insulin

secretion in Ocn�/�mice in a GSIS test setting (Figure 5T).

These experiments are consistent with the notion that

osteocalcin is a molecule secreted by osteoblasts that

can increase Insulin and Adiponectin expression.

Osteocalcin Regulates Insulin Sensitivity through

Adiponectin

To determine whether insulin and adiponectin both con-

tribute to the metabolic phenotype of the Ocn�/� mice

we asked two related questions. Does osteocalcin regu-

late Adiponectin expression independently of its action

on insulin secretion? And if it is the case, does the de-

crease in Adiponectin expression noted in Ocn�/� mice

explain their decrease in insulin sensitivity? To address

these questions we generated compound heterozygote

Ocn+/�;Adiponectin(Adipo)+/� mice. Insulin sensitivity

was markedly decreased in these mice, while blood glu-
cose levels, insulin serum levels, and insulin secretion as

determined by GSIS remained within the normal range

(Figures 6A–6D). Adiponectin serum levels were also sig-

nificantly decreased in Ocn+/�;Adipo+/� compared to

WT or single heterozygote mice (Figure 6E). These obser-

vations are consistent with the hypothesis that osteocalcin

regulates insulin sensitivity independently of its effect on

insulin secretion and that this regulation of insulin sensitiv-

ity occurs, at least in part, through adiponectin.

OST-PTP Regulates Osteocalcin Bioactivity

The metabolic phenotype of Ocn�/�mice is the mirror im-

age of the one observed in Esp�/�mice, suggesting that in

the latter there is a gain of osteocalcin activity. If this is the

case then metabolic abnormalities of Esp�/� mice should

be corrected by reducing Osteocalcin expression. Indeed,

Esp�/�mice lacking one allele of Osteocalcin showed a re-

markable reversal of all their metabolic abnormalities (Fig-

ures 7A–7F). In addition, Ki67 staining showed that b-cell

proliferation was also reduced in these mutant mice

(Figure 7G). Osteocalcin expression and serum levels

were normal in Esp�/� mice, thus ruling out that OST-

PTP regulates Osteocalcin expression (Figures S6A and

S6B). These results provide genetic evidence that Esp

and Osteocalcin lie in the same regulatory pathway and

infer that Esp�/� mice metabolic phenotype is caused by

a gain-of-activity of this hormone.

Is the level of g-carboxylation, the main posttranslational

modification of osteocalcin, different in WT and Esp�/�

mice? Carboxylated osteocalcin has a higher affinity for

hydroxyapatite (HA) than uncarboxylated osteocalcin

(Hauschka et al., 1989; Price, 1989). As shown in Figure 7H

following a 15 min incubation period, 90% of osteocalcin

present in the serum of WT mice was bound to HA,

whereas only 74% was present using serum from Esp�/�

mice. This experiment suggested that OST-PTP influences

osteocalcin function by regulating its degree of g-carbox-

ylation and that it was the uncarboxylated form of osteo-

calcin that regulates glucose homeostasis. To test this lat-

ter hypothesis we performed two additional experiments.

First, WT osteoblasts were treated with warfarin, an inhib-

itor of g-carboxylation (Berkner, 2005) prior to and during

coculture assays. This treatment resulted in a marked de-

crease in the percentage of osteocalcin bound to HA

(Figure 7J), and warfarin-treated osteoblasts induced Adi-

ponectin expression to a significantly higher extent than

vehicle-treated osteoblasts (Figure 7K). Second, we used

carboxylated osteocalcin and bacterially produced, and

therefore uncarboxylated, osteocalcin (Figure S6C) in

cell-based assays. Only uncarboxylated osteocalcin could

induce expression of Adiponectin in adipocytes, and of

Insulin and CyclinD1, a molecular marker of cell prolifera-

tion, in islets (Kushner et al., 2005; Figures 7K and 7L).

DISCUSSION

The results presented in this study uncover a novel path-

way taking place in osteoblasts and resulting in the
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Figure 5. Osteocalcin Regulates b-Cell Proliferation, Insulin Secretion, and Insulin Sensitivity

All experiments compare 3-month-old WT and Ocn�/� mice unless otherwise indicated.

(A) Blood glucose levels after random feeding.

(B) Insulin levels.

(C) GSIS test.

(D) GTT.

(E) ITT.

(F) Glucose infusion rate during hyperinsulinemic-euglycemic clamp.

(G) Energy expenditure.

(H) Expression of insulin target genes by real-time PCR.

(I) Histomorphometric comparisons of islet numbers, islet size, b-cell mass, insulin content in pancreas, and Ki67 immunoreactive cells in pancreatic

islets. P5, 5-day-old pups; 3M, 3-month-old mice.
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Figure 6. Osteocalcin Regulates Insulin

Sensitivity via Adiponectin

(A–E) Comparison between 6-week-old WT,

Adiponectin+/� (Adipo+/�), Osteocalcin+/�

(Ocn+/�), and Ocn+/�; Adipo+/� mice. (A) ITT.

(B) Insulin serum levels. (C) Blood glucose

levels. (D) GSIS test. (E) Adiponectin serum

levels. In (A) and (D), *p % 0.001 versus WT

(ANOVA followed by post hoc analysis); in (B),

(C), and (E), *p < 0.05 versus WT (Student’s t

test).
secretion of a hormone improving glucose homeostasis.

Our results expand the spectrum of functions of skeleton,

add further credence to the concept that bone and energy

metabolisms regulate each other (Ducy et al., 2000a), and

also suggest that the pathogenesis of some degenerative

diseases of energy metabolism may be more complex

than anticipated.

Mouse Genetic to Reveal Novel Crosstalk

between Organs

Genetic manipulation in mice has been a powerful tool to

reach a better understanding of vertebrate physiology. It

has been shown repeatedly for instance that organs not

known to exert any regulatory influences were in fact fulfill-

ing important endocrine functions. This is the case for

instance of fat through the secretion of adipokines, of liver

through bile acids, and of vascular smooth muscle cells

through synthesis of Emilin, a regulator of blood pressure

(Spiegelman and Flier, 2001; Watanabe et al., 2006; Zac-

chigna et al., 2006). This genetic approach to whole animal

physiology had unforeseen consequences. For instance,

it linked together organs not thought previously to affect

each other and also showed that we do not know all the

functions of most major organs. This is the case for

skeleton.
Osteoblasts’ Regulation of b-Cell and Adipocyte

Biology

That adipocytes regulate bone mass by acting on osteo-

blasts suggested that osteoblasts may affect adipocyte

biology (Ducy et al., 2000a). Several observations

reported here demonstrate that, indeed, osteoblasts se-

crete hormones influencing energy metabolism, albeit in

unanticipated, yet important, manners. For instance, Esp

deletion in osteoblasts results in an increase in b-cell

proliferation; given the current emphasis on the stimula-

tion of b-cell proliferation this function of osteoblasts is

of great potential from a therapeutic point of view. WT

and even more so Esp�/� osteoblasts can enhance Insulin

expression within a short time in isolated islets, indicating

that this function occurs independently of their ability to

promote cell proliferation. Paradoxically given their effect

on insulin secretion, WT and even more so Esp�/� osteo-

blasts enhance expression in adipocytes of Adiponectin,

an adipokine whose overexpression enhances Insulin

sensitivity (Otabe et al., 2007). This in turn explains why

Esp�/� mice have an increase in insulin sensitivity. Thus,

all metabolic functions of the osteoblasts described here

tend to improve glucose handling in vivo. It has been pro-

posed that Esp is a pseudogene in human (Cousin et al.,

2004). However, two close homologs of Esp are
(J) Fat pad mass (fat pad weight over body weight).

(K) Serum triglyceride levels after an overnight fast.

(L and M) serum levels (L) and gene expression (M) of adiponectin.

(N) Expression of adiponectin target genes by real-time PCR.

(O) Expression of Insulin and Glucagon in WT pancreatic islets cocultured with osteoblasts of indicated genotypes.

(P) Expression of Adiponectin and Leptin in WT adipocytes cocultured with osteoblasts of indicated genotypes.

(Q) Expression of Insulin and Adiponectin in WT indicated cells cultured in presence of conditioned media from COS cells transfected with an Osteo-

calcin expression vector or its empty counterpart.

(R) Expression of Insulin and Adiponectin in WT islets and adipocytes cocultured with fibroblasts in presence of recombinant osteocalcin (0.3 ng/ml) or

vehicle or with osteoblasts expressing (5 days) or not (1 day) Osteocalcin.

(S and T) Dynamic of glucose (S) and insulin levels (T) in Ocn�/�mice injected simultaneously with glucose and 20 ng of recombinant osteocalcin or

vehicle. (A, B, and F–R) *p < 0.05 versus WT (Student’s t test); (C–E, S, and T) �p % 0.01 versus WT and *p % 0.001 versus WT (ANOVA).
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Figure 7. Esp�/� Mice Are a Model of Increased Osteocalcin Bioactivity

(A–G) Comparison between 6-week-old WT, Esp�/, Ocn+/�, and Esp�/�;Ocn+/� mice. (A) Blood glucose levels. (B) Serum insulin levels. (C) Serum

adiponectin levels. (D) GTT. (E) ITT. (F) GSIS test. (G) Quantification of the number of Ki67-immunoreactive cells in pancreatic islets.

(H and I) Quantification of the percentage of osteocalcin bound to hydroxyapatite (HA) resin after a 15 min incubation of serum of 1-month-old mice of

indicated genotypes (H) or of conditioned medium from osteoblast cultures treated with warfarin or vehicle (I).

(J) Expression of Adiponectin in WT adipocytes cocultured with osteoblasts treated with warfarin or vehicle.

(K) Expression of Adiponectin in WT adipocytes cultured in presence of vehicle or of 1 ng/ml of commercially available carboxylated osteocalcin (Im-

munotopics) or bacterially produced uncarboxylated osteocalcin.

(L) Expression of Insulin and CyclinD1 in WT islets cultured in presence of 0.3 ng/ml of bacterially produced uncarboxylated osteocalcin or vehicle. In

(A)–(C) and (G)–(L): *p < 0.05 versus WT (Student’s t test); in (D)–(F), �p < 0.05 versus WT and *p % 0.001 versus WT (ANOVA followed by post hoc

analysis).
expressed in human osteoblasts, suggesting that they

may fulfill its function (data not shown).

Mediation of Osteoblasts’ Metabolic Functions

What are the genetic and molecular bases of osteoblasts’

metabolic functions? Coculture assays using filters sepa-

rating each cell type demonstrated that it is through the

release of one or several hormones that these functions

are achieved. Mice lacking the osteoblast-specific

secreted molecule osteocalcin develop a series of pheno-

typic abnormalities such as decreased insulin secretion,

decreased b-cell proliferation, insulin resistance,

increased adiposity, and serum triglyceride levels that mir-

ror those observed in Esp�/�mice. Removing one allele of

Osteocalcin corrects Esp�/� mice metabolic abnormali-
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ties. In cell culture osteocalcin stimulates CyclinD1 ex-

pression in b-cells and replicates the effect of osteoblasts

on Insulin and Adiponectin expression. Reintroducing

purified osteocalcin in Osteocalcin�/� mice corrects their

glucose intolerance and enhances insulin secretion.

When considered collectively these observations suggest

that osteocalcin is a bone-derived hormone involved in the

regulation of energy metabolism. This does not exclude

the possibility that osteoblasts may secrete additional

hormones regulating energy metabolism. Other cell types,

such as adipocytes, also secrete multiple hormones regu-

lating energy metabolism (Spiegelman and Flier, 2001).

The evidence provided suggests that uncarboxylated

osteocalcin is mediating the metabolic functions of this

hormone. The mechanisms whereby OST-PTP affects



this posttranslational modification remain unknown. It

should be emphasized that most circulating hormones as-

sociate with a regulatory protein and are inactive. Thus,

that only 10% of osteocalcin is bioactive is in line with this

general rule in endocrinology (DeGroot and Jameson,

2001). Furthermore, at least one other g-carboxylated pro-

tein, prothrombin, becomes active, as thrombin, when the

carboxylated residues are removed (Furie and Furie, 1988).

Skeleton and Regulation of Energy Metabolism

Our results add further credence to the concept that bone

and energy metabolisms exert reciprocal regulations. In-

deed, the resistance of Esp�/� mice to obesity, glucose

intolerance, and insulin resistance together with the

osteoblast-specific expression of osteocalcin identify the

skeleton as a rheostat regulating glucose metabolism.

They also raise the possibility that skeleton may contribute

to the development of the metabolic syndrome since

Esp�/� mice do not develop obesity or diabetes. Clinical

observations showing that serum osteocalcin levels are

significantly lower in type 2 diabetic patients and become

normal following improvement of glycemic control are also

consistent with this idea (Rosato et al., 1998).

Lastly, our results raise teleological questions. For in-

stance, why would a bone-specific hormone regulate en-

ergy metabolism? What is the need for a hormone favoring

b-cell proliferation and insulin secretion? In both cases we

can only speculate. For the first question, given the large

surface it covered, skeleton is an excellent site of hormone

synthesis. Along this line it is possible that other hormones

remain to be identified in osteoblasts. Alternatively, osteo-

calcin and possibly other hormones may have been

recruited to skeleton through tinkering during evolution.

As for the second question, it is conceivable that the pro-

proliferation function of osteoblast-secreted hormones

may have been required during evolution to maintain the

constant size of the islets in periods of food deprivation.

EXPERIMENTAL PROCEDURES

Mice Generation

Generation of Esp-nLacZ and Osteocalcin�/� mice was previously re-

ported (Dacquin et al., 2004; Ducy et al., 1996). To generate osteo-

blast-specific Esp-deficient (Esposb�/�) mice a targeting vector harbor-

ing LoxP sites within introns 23 and 35 as well as a floxed neomycin

resistance cassette were electroporated into ES cells. Targeted ES

cells were injected in 129Sv/EV blastocysts to generate chimeric

mice harboring the floxed allele (Espflox). Espflox/+ mice were crossed

with a1(I)collagen-Cre mice to generate Esposb-/+ mice, and their prog-

eny was intercrossed to obtain Esposb�/� mice. Adiponectin+/� mice

were generated according to a previously described strategy (Maeda

et al., 2002). Transgenic a1(I)-Esp mice were generated by pronuclei

injection of a construct fusing full-length Esp cDNA with the osteo-

blast-specific fragment of the mouse type I collagen promoter (Dac-

quin et al., 2002). All procedures involving animals were approved by

the IACUC and conform to the relevant regulatory standards.

Metabolic Studies

For glucose tolerance test (GTT) glucose (2 g/kg body weight [BW])

was injected intraperitoneally (IP) after an overnight fast, and blood
glucose was monitored using blood glucose strips and the Accu-

Check glucometer (Roche) at indicated times. For glucose-stimulated

insulin secretion test (GSIS) glucose (3 g/kg BW) was injected IP after

an overnight fast; sera were collected from tails and insulin measured

as described (Mauvais-Jarvis et al., 2000). For insulin tolerance test

(ITT) mice were fasted for 6 hr, injected IP with insulin (0.2 U/kg BW),

and blood glucose levels were measured at indicated times as de-

scribed (Mauvais-Jarvis et al., 2002). ITT data are presented as per-

centage of initial blood glucose concentration. Hyperinsulinemic-

euglycemic clamps were performed at Penn State Mouse Metabolic

Phenotyping Center. Briefly, Esp�/�, Ocn�/�, and WT littermates (n =

�4–8 for each group) were fasted overnight, and a 2 hr hyperinsuline-

mic (2.5 mU/kg/min)-euglycemic clamp was performed following intra-

venous administration of [3-3H] glucose and 2-deoxy-D-[1-14C]

glucose as previously described (Kim et al., 2004). Gold thioglucose

(600 mg/kg BW, USP) was injected IP, and mice were sacrificed

3 months later for analysis. High fat diet (HFD) studies were performed

as described (Elefteriou et al., 2006). Body weight was measured every

3 weeks after HFD; GTT and ITT were performed in mice fed a HFD for

6 weeks. Streptozotocin (150 mg/kg single injection) was injected IP

and blood glucose measured as described above every 2 days there-

after. After 8 days pancreas was isolated to measure insulin content as

previously described (Mauvais-Jarvis et al., 2000). Food intake was

measured using metabolic cages as the daily change of food weight.

Energy expenditure was measured using metabolic cages connected

to a calorimeter. Heat values (Kcal/hr) were recorded over 2 days and

reported to each mouse BW.

Laboratory Measurements

Blood was collected by heart puncture of isoflurane-anesthetized mice

in the fed and fasted states. Colorimetric assays were used to measure

serum levels of free fatty acids and of triglycerides (Sigma). Serum

levels of insulin and leptin (Crystal Chem Inc. kit); adiponectin, Resistin,

Amylin, and PYY (Linco kit); C-peptide (Gentaur kit); and IGF-1 (DSL

kit) were quantified by ELISA. Human and mouse osteocalcin levels

were quantified by IRMA (Immunotopics kit).

Mouse Islets and Primary Cells Isolation and Culture

Islets were isolated on Histopaque gradient. In brief, after clamping the

common bile duct at its entrance to the duodenum, 1 mg/ml collage-

naseP in M199 medium was injected into the duct. The swollen pan-

creas was surgically removed and incubated at 37�C for 17 min.

Digested pancreata were dispersed by pipetting, rinsed twice, filtered

through a Spectra-mesh (400 mm), resuspended in Histopaque, and

overlaid with M199 medium. Islets were collected following centrifuga-

tion at 1,700 g for 20 min, washed twice with cold M199 medium, re-

suspended in M199/1%NCS or aMEM/1%FBS medium, and cultured

at 37�C in 5% CO2.

Primary adipocytes were isolated from epididymal fat pads by colla-

genase digestion. Briefly, minced adipose tissue was digested by

1 mg/ml collagenaseP in KRP Buffer (20 mM HEPES, 120 mM NaCl,

6 mM KCl, 1.2 mM MgSO4, 1 mM CaCl2, 0.6 mM Na2HPO4, 0.4 mM

NaH2PO4, 2.5 mM D-glucose, 2%BSA, pH 7.4) for 1 hr at 37�C. The

isolated cells were washed twice with KRP Buffer before being cul-

tured in aMEM/1%FBS at 37�C in 5% CO2.

Primary osteoblasts were prepared from calvaria of 5-day-old pups

as previously described (Ducy et al., 2000a) and were cultured in

aMEM/10% FBS in the presence of 100 mg/ml ascorbic acid and

5 mM b-glycerophosphate for 5 days. Skin fibroblasts were isolated

by collagenase digestion (0.5 mg/ml) and were cultured in aMEM/

10% FBS. Twenty-four hours before addition of primary islets (or adi-

pocytes) osteoblasts (or fibroblasts) were placed in aMEM/1%FBS.

For warfarin treatment primary osteoblasts were maintained in

aMEM/F12/10%FBS until being supplemented with 50 mM warfarin

or vehicle in aMEM/F12/1%FBS for 48 hr prior to coculture with adipo-

cytes. After 4 hr of coculture either in the presence or absence of (1 mm)
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culture inserts (Falcon) islets (or adipocytes) were collected for RNA

isolation using TRIZOL.

Gene Expression Analyses

Real-time PCR was performed on DNaseI-treated total RNA converted

to cDNA using primers were from SuperArray and the Taq SYBR Green

Supermix with ROX on an MX3000 instrument; b-actin amplification

was used as an internal reference for each sample except in

Figure 7L, where Glucagon expression was used. X-gal staining was

carried out as described (Dacquin et al., 2004).

Histology

Livers were cryoembedded, sectioned at 5 mm, and stained with Oil

red O. Fat and pancreatic tissues were fixed in 10% neutral formalin,

embedded in paraffin, and sectioned at 5 mm; sections were stained

with hematoxylin and eosin (H&E). Immunohistochemistry was per-

formed using rabbit anti-insulin (SantaCruz, 1:100) and mouse anti-

Ki67 (Vector, 1:100) antibodies and ABC Elite kits (Vector). To evaluate

cell sizes or numbers, five to ten sections (each 50 mm apart) were an-

alyzed using a 403 objective on a Leica microscope outfitted with

a CCD camera (SONY) and using the Osteomeasure software. b-cell

area represents the surface positive for insulin immunostaining divided

by the total pancreatic surface. b-cell mass was calculated as b-cell

area multiplied by pancreatic weight. At least three mice were analyzed

per condition. Tibias anterior muscles were fixed in 4% PFA/2% glutar-

aldehyde/0.1 M sodium cacodylate pH 7.3, postfixed in 1% osmium

tetraoxide, and embedded in epoxy resin (Epon). Ultrathin sections

were stained in 4% aqueous Uranyl Acetate and for 2 min in Reynolds’

Lead Citrate and then were examined with a JEOL 2000FX. Ten elec-

tron micrographs per mouse were digitized, and the area of each

clearly distinguishable mitochondria was analyzed using ImageJ soft-

ware. Fifteen to 25 individual mitochondria were measured in four mice

of each genotype.

Osteocalcin Production and Hydroxyapatite-Binding Assay

GST-osteocalcin fusion protein was bacterially produced and purified

on glutathione beads according to standard procedures. Osteocalcin

was then cleaved out from the GST subunit using thrombin, and its pu-

rity was assessed by SDS-PAGE.

Sera from 1-month-old mice or supernatant from warfarin-treated

osteoblast cultures was added to hydroxyapatite (HA) slurry to achieve

a final concentration of 25 mg slurry/ml. After 15 min HA beads were

pelleted by centrifugation, and HA-bound osteocalcin was eluted

with 0.5 M sodium phosphate buffer, pH 8.0. Osteocalcin present in el-

uates and initial samples was measured by IRMA. Values represent

percentage of HA-bound osteocalcin over initial osteocalcin content.

Statistics

Results are given as means ± standard deviations except in Figures 2B

and 5F, where means ± standard errors of the mean are shown. Statis-

tical analyses were performed using unpaired, two-tailed Student’s t or

ANOVA tests followed by post hoc tests.

Supplemental Data

Supplemental Data include six figures and one table and can be found

with this article online at http://www.cell.com/cgi/content/full/130/3/

456/DC1/.
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