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1. Introduction

Let A/k be an abelian variety over a number field k. We denote the completion of k at a prime v
by kv . The Galois cohomology group H1(k, A) is known as the Weil–Châtelet group. The elements in
this group can be interpreted as isomorphism classes of k-torsors under A. Such a torsor is trivial
if and only if it contains a k-rational point. Since any torsor under the connected group A is locally
solvable at all but finitely many primes, the image of the restriction map

res : H1(k, A) →
∏

v

H1(kv , A)

is contained in the direct sum. The Tate–Shafarevich group of A/k, denoted X(A/k), is defined as
the kernel of this restriction map. As such, a torsor represents an element of the Tate–Shafarevich
group if and only if it is everywhere locally solvable. Thus, nontrivial elements in this group are
counterexamples to the Hasse principle.
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Conjecturally the Tate–Shafarevich group is finite. Nevertheless there are a number of results in
the literature which show that this group can be arbitrarily large. The first results in this direction
were due to Cassels [2] who showed that one can arrange for the 3-torsion subgroup of X(E/Q) to
be as large as one likes by choosing a suitable CM elliptic curve E defined over Q. Similar results
have been obtained for all p � 7 and p = 13 (see [1,8,9,12,14]). These results exploit the existence
of elliptic curves admitting p-isogenies and, for p = 5,7,13, make use of the fact that the modular
curve X0(p) parametrizing such curves has genus 0 and infinitely many Q-points. Kloosterman and
Schaefer [10,11] have employed similar techniques when the modular curve X0(p) is of higher genus
to show that the order of the p-torsion in X(E/k) is unbounded as E/k ranges over elliptic curves
defined over number fields of degree bounded by some polynomial in p.

These latter results require that both the elliptic curve and the base field be allowed to vary.
Matsuno showed [15] that if k is a cyclic extension of Q of degree p, then the p-rank of the Tate–
Shafarevich group over k of elliptic curves defined over Q can be arbitrarily large. In a different
direction, results of Clark and Sharif explore the p-torsion in X(A/�) for a fixed abelian variety A
over a number field k as the extension �/k is allowed to vary. Their results actually concern the
subgroup

Xk(A/�) := res�/k
(
H1(k, A)

) ∩ X(A/�),

which we call the potential X of A/k in �.
In [3] Clark showed that the potential p-torsion in X of an elliptic curve E/k with full level p

structure is unbounded as � ranges over extensions of degree p. In [6] Clark and Sharif removed
the assumption of full level p structure, thus showing that the potential p-torsion of X of any
elliptic curve is unbounded as � ranges over extensions of degree p. Clark has generalized the orig-
inal result (i.e. under the assumption of full level p structure) to all strongly principally polarized
abelian varieties for which the absolute Galois group Gk of k acts trivially on the Néron–Severi
group [4, Theorem 9] (recall that a polarization is strong if it is given by a k-rational divisor). The main
result of this paper is to remove the assumption of full level p structure in the higher-dimensional
case as well.

Theorem 1.1. Let A/k be a strongly principally polarized abelian variety over a number field k such that the
Gk-action on the Néron–Severi group is trivial. For any prime p and any integer N, there exists a degree p
extension � of k for which

#X(A/�)[p] � #Xk(A/�)[p] > N.

As Clark has noted (see [4, Corollary 10]), any principally polarized abelian variety of dimension g
can be made to satisfy the conditions of Theorem 1.1 by passing to an extension of degree at most
2g ·# GL4g2 (F3). As this does not depend on p, we see that the p-torsion in the Tate–Shafarevich group
of any principally polarized abelian variety A/k becomes arbitrarily large as � ranges over extensions
of degree O(p), the implied constant depending only on the dimension of the abelian variety.

Our approach to Theorem 1.1 is based on the method utilized in [3,4,6] which relates potential X
to the period-index problem for torsors under abelian varieties. Recall that the period of a torsor
under A/k is its order in the Weil–Châtelet group while its index is the greatest common divisor of
the degrees of extensions over which the torsor contains a rational point. Using weak approximation
together with a result of Lang and Tate regarding period and index over local fields (Theorem 2.12)
one can often arrange that a torsor of degree n become everywhere locally solvable after a sufficiently
ramified extension �/k of degree n. If the index of such a torsor exceeds n, then it will represent a
nontrivial element of X(A/�)[n]. Of course the difficulty lies in constructing sufficiently many such
torsors and ensuring that they remain pairwise nonisomorphic over �. We give a new construction of
such period-index discrepancies which simultaneously generalizes [4, Theorem 8] and [6, Theorem 2].

Theorem 1.2. Let n � 2 and A/k be a strongly principally polarized abelian variety over a number field k such
that the Gk-action on the Néron–Severi group is trivial. Then there exist infinitely many elements of H1(k, A)
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of period n which cannot be split by any extension of degree n. If n is a prime power, then these torsors have
index strictly larger than n.

For the statement of the next two results, let A/k be a principally polarized abelian variety over a
number field k, and let p be a prime number. Let S denote the set of primes of k that are either of bad
reduction for A or lie above p, and let T = {v /∈ S: A(kv)[p] �= 0}. Matsuno showed [15, Corollary 4.5]
that for an elliptic curve E/Q and a cyclic extension �/Q of degree p,

#X(E/�)[p] · #

(
E(�)

pE(�)

)
� pt−4,

where t denotes the number of primes in T which are totally ramified in �. Our approach yields
similar results on the potential p-torsion in terms of the ramification of the extension.

Theorem 1.3. Assume A is strongly principally polarized and that the Gk-action on the Néron–Severi group is
trivial. Let {�i} be any sequence of degree p extensions of k such that for every prime v in T , there exists an
integer n such that for every i � n, v is totally ramified in �i . Then limi→∞ #Xk(A/�i)[p] = ∞.

Theorem 1.4. Let �/k be any extension of degree p. Let t be the number of primes in T which are totally
ramified in �. Then

#Xk(A/�)
[

p∞]
� #X(A/k)

[
p∞] · pg[k:Q]+2g(t+#S).

Remark. The reader will note that Theorem 1.4 makes no assumptions on either the principal polar-
ization or the Gk-module structure of the Néron–Severi group. The proofs of Theorems 1.1–1.3 rely on
a result of Clark [4, Theorem 22] whose proof does require such assumptions.

The existence of an upper bound as in Theorem 1.4 was alluded to by Clark and Sharif in [6, Sec-
tion 3.8]. They also ask if the size of X(E/�)[p] necessarily approaches infinity with the number of
primes ramifying in �. Theorems 1.3 and 1.4 show that for the potential X it is only the ramification
in T that plays any role. In a sense this is quite natural. One can show that every torsor V /k of
p-powered period is locally solvable at all primes outside S ∪ T .

2. The obstruction map for abelian varieties

Here we collect various results related to the obstruction map utilized by Clark to study the period-
index problem for abelian varieties in [4]. We are indebted to him for having laid a comfortable
foundation for forays in this direction. His results generalize those of O’Neil who developed the
obstruction map for elliptic curves [20]. The only possibly new material here is contained in Propo-
sitions 2.4 and 2.9. The first relates the obstruction map to the Tate pairing. The second uses this to
compute the image of the obstruction map over p-adic fields. These results were to be expected, if
not already well known.

Let (A, L) be a polarized abelian variety over a field K . Recall that the polarization is given by
a line bundle L ∈ Pic( Ā) that is ample, base point free and algebraically equivalent to each of its
Galois conjugates. The last condition means that L gives rise to a G K -invariant class in the Néron–
Severi group. One says that the polarization is strong if L ∈ Pic(A) (i.e. if L can be represented by a
K -rational divisor on A). One says that L is symmetric if L � [−1]∗L. Corresponding to L is an isogeny
ϕL : A → A∨ , given by ϕL(x) = τ ∗

x L ⊗ L−1, where τx denotes translation by x on A. We denote the
kernel of ϕL by A[ϕL] and let n be the exponent of A[ϕL]. We assume that n is not divisible by the
characteristic of K .
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2.1. The result of Zarkhin

Let GL denote the theta group associated to L (e.g. [18], [4, Section 5.1], [25, Chapter 8]). This is a
central extension of A[ϕL],

1 → Gm → GL → A[ϕL] → 0, (1)

which gives rise to a nondegenerate symplectic form

eL : A[ϕL] × A[ϕL] → Gm. (2)

For Q , R ∈ A[ϕL] the pairing is given by taking the commutator of any choice of lifts of Q and R
to GL . Since the possible lifts differ only by central elements the pairing is well defined. Since A[ϕL]
is commutative, the pairing takes values in the center of GL . The fact that Gm is the center of GL

implies that the pairing is nondegenerate.
The pairing may be composed with the cup product to obtain a pairing

∪eL : H1(K , A[ϕL]
) × H1(K , A[ϕL]

) ∪−→ H2(K , A[ϕL] ⊗ A[ϕL]
) eL−→ H2(K ,Gm).

On the other hand, the central extension (1) leads to an exact sequence (of pointed sets) coming from
nonabelian Galois cohomology. The following relation between the connecting map

�L : H1(K , A[ϕL]
) → H2(K ,Gm) = Br(K ) (3)

and the cup product pairing was established by Zarkhin in [26].

Theorem 2.1 (Zarkhin). For any ξ,η ∈ H1(K , A[ϕL]) one has

ξ ∪eL η = �L(ξ + η) − �L(ξ) − �L(η).

If L is symmetric, then in addition �L(aξ) = a2�L(ξ) for any integer a. In particular, �L is quadratic and is
a quadratic form if L is symmetric.

We record here the following elementary lemma for later use.

Lemma 2.2. Let m be an odd number, V a Z/mZ-module and Q : V → Z/mZ a quadratic form whose as-
sociated bilinear form B is symmetric and nondegenerate. Suppose there exists an isotropic element u ∈ V of
order m (i.e. such that u �= 0 and 2Q (u) = B(u, u) = 0). Then Q (V ) = Z/mZ.

Proof. Let a ∈ Z/mZ. We will show that a ∈ Q (V ). Let u be isotropic and of order m. The map
B(u, ·) : V → Z/mZ is surjective (since u has order m and B is nondegenerate). Thus we can find w
such that B(u, w) = 1/2 ∈ Z/mZ. Set b = a − B(w, w). Consider v = bu + w . We have

2Q (v) = B(bu + w,bu + w)

= 2
(
2bB(u, w) + B(w, w) + b2 B(u, u)

)
= 2

(
a − B(w, w) + B(w, w)

) = 2a.

Since 2 is invertible we have Q (v) = a. �
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2.2. The Weil pairing

Let λ : A → B be an isogeny of abelian varieties. One has the dual isogeny λ∨ : B∨ → A∨ and stan-
dard duality theorems (e.g. [25, Theorem 7.5]) give an isomorphism of group schemes β : B∨[λ∨] �
Hom(A[λ],Gm). The rule (x, y) �→ β(y)(x) defines a pairing

eλ : A[λ] × B∨[
λ∨] → Gm. (4)

In the particular case λ = n : A → A, this gives a pairing

en : A[n] × A∨[n] → μn, (5)

known as the Weil pairing. In the situation considered above, one has an isogeny ϕL : A → A∨ . So
A[ϕL] = A[ϕ∨

L ], and this gives rise to a pairing

eϕL : A[ϕL] × A[ϕL] → Gm. (6)

The following proposition gives the connection between this and the commutator pairing in (2).

Proposition 2.3. eL = eϕL .

Proof. This appears to be well known. It is alluded to in [26] and proven in [25, Theorem 11.20]. �
2.3. The Tate pairing

Together with the cup product, the Weil pairing en induces a symmetric bilinear pairing

Tn : H1(K , A[n]) × H1(K , A∨[n]) → H2(K ,μn) = Br(K )[n]. (7)

Recall that for any n indivisible by the characteristic of K , we have a Kummer sequence

0 → A(K )/nA(K )
δ−→ H1(K , A[n]) → H1(K , A)[n] → 0. (8)

If V ∈ H1(K , A)[n] is a torsor under A of period dividing n, then any lift to H1(K , A[n]) will be called
a Kummer lift of V . Tate has shown (e.g. [17, Section I.3]) that Tn descends to give a symmetric bilinear
pairing

T̃n :
A(K )

nA(K )
× H1(K , A∨)[n] → Br(K )[n], (9)

which is compatible with Tn and the Kummer sequences of A and A∨ . Namely T̃n(R, V ) = Tn(δ(R), Ṽ )

where δ(R) is the image of R in H1(K , A[n]) under the connecting homomorphism and Ṽ is any
Kummer lift of V .
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2.4. The case of a principal polarization

Suppose now that (A, P ) is a principally polarized abelian variety over K , and consider the
isogeny ϕn associated to the line bundle L = nP . Upon identification of A∨[n] and A[n] using the
principal polarization, the isogeny ϕn is multiplication by n. Using the same identification, we can in-
terpret the pairings Tn and T̃n as being defined on H1(K , A[n]) × H1(K , A[n]) and A(K )/nA(K ) ×
H1(K , A)[n], respectively. For simplicity we denote the corresponding connecting map �L in (3)
by �n .

Proposition 2.4. Let A/K be a principally polarized abelian variety over a field K of characteristic not divid-
ing n. Then the bilinear form associated to �n is Tn.

Proof. By Zarkhin’s result we know that the bilinear form associated to �n is the cup product associ-
ated to the commutator pairing enP for the theta group of A[n]. By Proposition 2.3 this coincides with
the pairing eϕnP associated to the isogeny ϕnP . As ϕnP is multiplication by n on A � A∨ , we see that
eϕnP is the Weil pairing en : A[n] × A[n] → μn . The cup product induced by this is equal to Tn . �

For a principally polarized abelian variety, the map

�n : H1(K , A[n]) → Br(K ),

will be referred to as the obstruction map. Clark gives two other equivalent definitions of the obstruc-
tion map which allow him to use �n to study the period-index problem for torsors under A. Rather
than giving details, we encourage the reader to consult [4, Section 5]. The following theorem gives
the crucial connection between this map and the index of a torsor.

Theorem 2.5 (Clark). Let A/K be a strongly principally polarized abelian variety over a field K of characteristic
not dividing n. Assume A has G K -invariant Néron–Severi group and let V ∈ H1(K , A)[n]. If �n(ξ) �= 0 for
every Kummer lift ξ of V , then V cannot be split over any degree n field extension. If n is a prime power, we
have moreover that the index of V exceeds n.

Proof. See [4, Theorem 31]. The proof there uses the assumption that the principal polarization is
strong and that the Néron–Severi group is trivial as a Galois module. �
2.5. Local results

We now specialize to the case that A/k is a principally polarized abelian variety defined over a
number field k. The definition of the obstruction map is functorial in the base field. In particular it
commutes with restriction maps. For a completion kv of k at a prime v , we will use �n,v to denote
the corresponding ‘local obstruction map’ �n,v : H1(kv , A[n]) → Br(kv ). Similarly the local versions of
the Tate pairings Tn and T̃n will be denoted by Tn,v and T̃n,v , respectively.

We recall the following important theorem of Tate (see [17, I.3.4]).

Theorem 2.6 (Tate). For any nonarchimedean prime v, the pairings Tn,v and T̃n,v are nondegenerate.

The Brauer group of kv embeds in Q/Z. Thus these pairings establish Pontryagin duality between
the finite groups appearing in their domains. In the nonarchimedean case, one can determine the size
of these groups by using the fact that A(kv) contains a finite index subgroup isomorphic to dim(A)

copies of the maximal ideal in the ring of integers of kv .

Lemma 2.7. Let v be a nonarchimedean prime of k above the rational prime q, and let n be a positive integer.
Then

#H1(kv , A)[n] = #A(kv)/nA(kv ) = qdim(A)·ordq(n)·[kv :Qq] · #A(kv)[n].
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Proof. The first equality follows from the nondegeneracy of T̃n,v . For the second see [21, Proposi-
tion 3.9]. �

Using the Kummer sequence (8) one easily determines the size of H1(kv , A[n]). The following
lemma is also useful.

Lemma 2.8. Let v be a nonarchimedean prime, and let n be a positive integer. Then the exponent of
H1(kv , A[n]) is equal to the exponent of A(kv )/nA(kv ).

Proof. Let m be the exponent of A(kv )/nA(kv ) and let n′ = n/m. By Tate’s duality theorem m is also
the exponent of H1(kv , A)[n]. Consider the commutative diagram (with exact rows, but non-exact
columns)

0 A(kv )
nA(kv ) H1(kv , A[n])

m∗

H1(kv , A)[n]
m

0

0 A(kv )
n′ A(kv )

δn′

m

H1(kv , A[n′])
i∗

H1(kv , A)[n′] 0

0 A(kv )
nA(kv )

δn
H1(kv , A[n]) H1(kv , A)[n] 0.

Here δn and δn′ denote the connecting homomorphisms in the Kummer sequences for n and n′ , re-

spectively. The maps i∗ and m∗ are induced by A[n′] i
↪→ A[n] and A[n] m−→ A[n′], respectively. The

composition of the middle column gives multiplication by m in the group H1(kv , A[n]). Our assump-
tion is that both maps labelled m in the diagram are the zero map. A diagram chase then shows that
i∗ ◦ m∗ = 0 as well. So H1(kv , A[n]) has exponent dividing m. �
Proposition 2.9. Let v be a nonarchimedean prime and n a positive integer. If A(kv )/nA(kv ) is nontrivial,
then �n,v is not the zero map. If the exponent m of A(kv )/nA(kv ) is odd and the principal polarization is
symmetric, then �n,v(H1(kv , A[n])) = Br(kv )[m].

Applying the Chebotarëv density theorem to the extension k(A[n])/k and using Lemma 2.7, the
first statement yields the following corollary.

Corollary 2.10. Let A/k be a principally polarized abelian variety over a number field and n � 2. There are
infinitely many primes v of k for which �n,v is not the zero map.

Proof. For the first statement recall that the bilinear form associated to �n,v is Tn,v , which by Tate’s
theorem is nondegenerate. The assumption implies that H1(kv , A[n]) �= 0, so the result is clear. For
the second, Lemma 2.8 shows that the exponent of H1(kv , A[n]) is equal to that of A(kv )/nA(kv ). By
Zarkhin’s result, �n,v is a quadratic form on the finite dimensional Z/mZ-module H1(kv , A[n]). Since
m is odd, the image of �n,v is contained in the m-torsion subgroup of Br(kv ) � Q/Z (this is a gen-
eral property of quadratic maps; see [4, Lemma 42]). We are thus in a position to apply Lemma 2.2.
We need to show that H1(kv , A[n]) contains an isotropic element of order m. The compatibility of
Tn,v and T̃n,v shows that the image of any element in A(kv)/nA(kv ) under the connecting homomor-
phism is isotropic with respect to Tn,v . By assumption on the exponent there is such an element of
order m. �
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The (middle third of) the Poitou–Tate exact sequence for A[n] (see [24, Section II.6]) and the
fundamental exact sequence for the Brauer group of k give rise to the following commutative diagram
with exact rows:

H1(k, A[n]) res

�n

∏′ H1(kv , A[n]) φ

∏
�n,v

H1(k, A[n])∗

0 Br(k)
res ⊕

Br(kv)

∑
Q/Z 0.

The product is the restricted product with respect to unramified subgroups. For all but finitely many
primes, the unramified subgroups are exact annihilators with respect to the Tate pairing, so the ver-
tical map in the middle is well defined.

Clark asked [4, Question 45] if �n(H1(k, A[n])) = Br(k)[n] when A/k is a strongly principally polar-
ized abelian variety over a number field. The analysis above shows that this is not the case in general
(or even generically; see the remark below). If there is some σ ∈ Gk which acts on A[n] with no
nontrivial fixed points, then by Chebotarëv’s density theorem there are infinitely many primes v for
which A(kv )/nA(kv ), H1(kv , A)[n] and H1(kv , A[n]) are all trivial (cf. Lemma 2.7). The diagram above
shows that every element in the image of �n must be trivial at these primes. One might still ask the
following.

Question 2.11. Consider an abelian variety A/k over a number field k with a (symmetric) principal
polarization. Let D ∈ Br(k) be such that the local invariant invv (D) has order dividing the exponent of
A(kv )/nA(kv ) for every prime v . Is D in the image of the obstruction map �n?

It seems unlikely that this is the whole story, since exactness of the Poitou–Tate sequence should
place additional restrictions on the image of �n . The results of the next section (e.g. Corollary 3.2)
show at least that, given D as in the question, there exist elements in the image of �n whose local
invariants coincide with D on an arbitrarily large finite sets of primes.

Remark. By a result of Serre [23] (see also [16, Corollary 2.1.7]) there exists an integer d = d(A/k) such
that for any n � 1, all d-th powers in (Z/nZ)× arise as homotheties via the action of Gk on A[n]. In
particular, for any n sufficiently large, there exists σ ∈ Gk which acts on A[n] with no nontrivial fixed
points.

We close this section with the following theorem of Lang and Tate [13, Corollary 1 to Theorem 1,
p. 676] which gives a simple criterion for determining splitting fields of torsors over local fields.

Theorem 2.12 (Lang–Tate). Let v be a prime of k above the rational prime q. Suppose that A has good reduction
at v, that n is prime to q and that V ∈ H1(kv , A)[n] is a torsor under A/kv of exact period n. Then for any finite
field extension K v/kv , V (K v) �= ∅ if and only if n divides the ramification index of K v/kv .

3. Weak approximation

Let A/k be a principally polarized abelian variety over a number field k. Under the assumption
of full level n structure, one has A[n] � (Z/nZ)2g as Gk-modules (where g = dim A) and μn ⊂ k.
Consequently the cohomology group H1(k, A[n]) splits as 2g copies of k×/k×n . The Grunwald–Wang
theorem (or rather a slight variation thereof [19, Theorems 9.1.11, 9.2.3]) implies that the restriction
map in the following diagram is injective and has dense image in the product of the discrete topolo-
gies:
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H1(k, A[n])
res

(k×/k×n)2g

res

∏
v H1(kv , A[n]) ∏

v(k×
v /k×n

v )2g .

(10)

This, together with the fact that one can interpret the obstruction map �n in terms of norm residue
symbols in this case seems to be responsible for ‘most’ of the period-index discrepancies constructed
(see for example, [3, Proposition 7], [6], or [4]).

Another approach used by Clark (e.g. [5, Proof of theorem 1]) is to make use of the fact [17,
Theorem I.6.26(b)] that for any abelian variety A/k over a number field with X(A/k)[p∞] finite,
there is an exact sequence

X(A/k)
[

p∞] → H1(k, A)
[

p∞] res−→
⊕

H1(kv , A)
[

p∞] → A∨(k)∧∗, (11)

the last term being the Pontryagin dual of the pro-p completion of the Mordell–Weil group of the
dual abelian variety. If one is willing to assume that X(A/k) and A(k) are finite, one again gets
very satisfactory control over the restriction map. But at present, this limits us to elliptic curves of
analytic rank zero over Q. When applied to abelian varieties (i.e. taking M = A[n]) the weak weak
approximation theorem below gives a finite level version of (11) which requires no assumption on
either the Mordell–Weil or Tate–Shafarevich groups.

For the statement we need the following notation. For any Gk-module M and any set of primes S
of k, let X1(k, M; S) denote the kernel of the restriction map

H1(k, M) →
∏
v /∈S

H1(kv , M).

This is the subgroup of cocycle classes that are trivial outside S . We use Sc to denote the complement
of S .

Theorem 3.1 (Weak weak approximation). Let M be a finite Gk-module and S the finite set of primes where
M∨ is ramified. Then the map

resSc :X1(k, M; Sc) →
∏
v /∈S

H1(kv , M)

has dense image in the product of the discrete topologies.

Results of this kind are well known. The statement here is a rather simple generalization of [19,
9.2.2–9.2.3] or [17, I.9.8]. As we were unable to locate the specific formulation needed for our present
application in the literature, we offer the reader [7, Theorem 1.6]. We remark that in general it is
necessary to exclude the primes in S . The (now) standard counterexample led to the correct for-
mulation of the Grunwald–Wang theorem; the map H1(Q,Z/8Z) → H1(Q2,Z/8Z) is not surjective.
Applying the theorem to M = A[n] and using the criterion of Néron–Ogg–Shafarevich one obtains
the following corollary (the second result is obtained from the first by use of the Kummer se-
quence).

Corollary 3.2. Let A/k be an abelian variety over a number field, n an integer and S the finite set
of primes containing all primes of bad reduction for A∨ and all primes dividing n. Then the restriction
maps
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X1(k, A[n]; Sc) →
∏
v /∈S

H1(kv , A[n]), and

X1(k, A; Sc)[n] →
∏
v /∈S

H1(kv , A)[n]

have dense images.

4. Proofs of the main theorems

It follows from Theorem 2.12 that any finite collection of torsors of period n that are locally
solvable at all ‘bad primes’ can be turned into a finite collection of elements of X(A/�)[n] over
a sufficiently ramified extension �/k of degree n. The difficulty is in showing that one can choose the
torsors in such a way that they yield distinct, and in particular nontrivial, elements of X(A/�). One
way of achieving this is to rig the torsors (and their differences) to have index strictly larger than n.
This is the motivation behind [6, Theorem 2], which we generalize to the higher-dimensional situation
with the following theorem. This proves Theorem 1.2.

Theorem 4.1. Let n > 1 be an integer, A/k a strongly principally polarized abelian variety over a number field k
whose Néron–Severi group is trivial as a Gk-module and S any finite set of primes. There exists a sequence
{V i}∞i=0 ⊂ H1(k, A)[n] of torsors such that:

1. V 0(k) �= ∅.
2. For all i � 0, V i ∈ X1(k, A; Sc)[n].
3. For all i �= j, V i − V j cannot be split by any extension of degree n.

If n is a prime power, then the sequence may be chosen so that for all i �= j, the index of V i − V j exceeds n.

Proof. By enlarging S if necessary we may assume S contains all primes of bad reduction for A,
all primes dividing n and all archimedean primes. Choose representatives Q 1, . . . , Q R ∈ A(k) for the
finitely many classes in A(k)/nA(k) (Mordell–Weil theorem), and denote their images in H1(k, A[n])
under the connecting homomorphism in the Kummer sequence by q1, . . . ,qR . We will define the
sequence inductively. The base of induction is established by setting V 0 = A. So assume we have tor-
sors V 0, . . . , V N−1 satisfying the three conditions in the theorem, and let {η0, . . . , ηN−1} ⊂ H1(k, A[n])
denote a set of Kummer lifts of the V i .

Corollary 2.10 guarantees that there are infinitely many primes v of k for which the map �n,v :
H1(kv , A[n]) → Br(kv ) is nontrivial. We may choose N · R distinct such primes, none of which lie
in S . Arrange these primes into N sets {vi,r}R

r=1 of size R (so 0 � i < N). For each vi,r , let ξi,r ∈
H1(kvi,r , A[n]) be a class such that �n,vi,r (ξi,r) �= 0.

By Corollary 3.2 there exists a class ηN ∈ X1(k, A[n]; Sc) ⊂ H1(k, A[n]) such that for 0 � i < N
and 1 � r � R , we have resvi,r (ηN ) = ξi,r + resvi,r (ηi − qr). Let V N be the image of ηN in H1(k, A)[n].
Then V N ∈ X1(k, A; Sc)[n]. Let i ∈ {0, . . . , N − 1} and consider V N − V i . Any Kummer lift of V N − V i
is of the form ηN − ηi + qr for some r ∈ {1, . . . , R}. The restriction of this lift at the prime vi,r is
equal to ξi,r . Our choice was such that �n,vi,r (ξi,r) �= 0. Compatibility of the obstruction map with the
restriction maps shows that �n(ηN − ηi + qr) �= 0. This is the case for every Kummer lift of V N − V i ,
so the result follows from Theorem 2.5. �
Remark. The reader will note that it is only in the final application of Theorem 2.5 that we make
use of the assumptions that the polarization is strong and that the Néron–Severi group is trivial as a
Gk-module.

Proof of Theorems 1.1 and 1.3. First note that Theorem 1.3 implies Theorem 1.1. We can deduce The-
orem 1.3 from Theorem 4.1 as follows. Let S be the finite set consisting of all primes of bad reduction
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for A, all primes above p and all archimedean primes. Let T be the set of primes outside S where
A(kv )[p] �= 0, and let {� j} be a sequence of extensions as in the statement of Theorem 1.3. Let N � 1
and let {V i}∞i=0 be the sequence of torsors given by Theorem 4.1 (applied with n = p). By construction
V 0, . . . , V N ∈ X(k, A, Sc)[p] and their differences cannot be split by any extension of degree p. So for
all j � 1, their images in H1(� j, A)[p] are distinct. It is enough to show that when j is sufficiently
large, their images lie in the subgroup X(A/� j)[p].

Let U be the finite set of primes v such that for some i � N , V i(kv ) = ∅. If �/k is any de-
gree p extension totally ramified at all primes of U , then, by Theorem 2.12, V 0, . . . , V N represent
classes in X(A/�)[p]. On the other hand, Lemma 2.7 shows that U ⊂ T . So by assumption the ex-
tension � j/k is totally ramified at all primes of U , whenever j is sufficiently large. This completes the
proof. �
Proof of Theorem 1.4. Let �/k be an extension of degree p and let V /k be an element of H1(k, A).
Assume res�/k(V ) ∈ X(A/�)[p∞]. In other words, res�/k(V ) is an arbitrary element of Xk(A/�)[p∞].
Let S be the set of primes v such that A has bad reduction at v or such that v lies above p, and
set

T = {
v /∈ S: A(kv)[p] �= 0

}
,

U = S ∪ {v ∈ T : v is totally ramified in �}.

Since res�/k(V ) has p-powered period, it also has p-powered index. As �/k is of degree p, we see
that V ∈ H1(k, A)[p∞]. We claim that the image of V under the map

res =
∏

v

resv : H1(k, A)
[

p∞] →
⊕

v

H1(kv , A)
[

p∞]

lands in the subgroup

G :=
∏
v∈U

H1(kv , A)[p] ×
∏
v /∈U

{0}.

To prove the claim first note that for all primes v , the period and the index of resv(V ) divide p (since
V becomes everywhere locally solvable after an extension of degree p). On the other hand, the Lang–
Tate result implies that the period and the index of resv(V ) are equal to 1 at all nonarchimedean
primes v /∈ U . Now suppose v is archimedean and w is a prime of � above v . The only nontrivial
situation is when �w �= kv , which can only occur when v is real and ramified, hence in U . This
establishes the claim.

The bound will be obtained by computing the size of the preimage of G under res. First note that
for the archimedean primes in U we have #H1(R, A)[2] = #π0(A(R)) � #A(R)[2] (see [17, I.3.7]). For
nonarchimedean primes the size of H1(kv , A)[p] is given by Lemma 2.7 and Theorem 2.6. From this
we get

#G =
∏
v∈U

#H1(kv , A)[p]

=
(∏

v|p
#H1(kv , A)[p]

)
·
( ∏

U�v�p

#H1(kv , A)[p]
)

=
(∏

v|p
pg[kv :Qp]#A(kv)[p]

)
·
( ∏

U�v�p

#A(kv)[p]
)
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= pg[k:Q] ·
∏
v∈U

#A(kv)[p]

� pg([k:Q]+2·#U ) = pg[k:Q]+2g(#T +#S).

On the other hand, the kernel of res is the p-primary part of X(A/k). This gives the result. �
5. Examples

We maintain the notation above. Consider the mod p representation Gk → GL(A[p]) � GL2g(Fp)

associated to A/k, where g = dim(A). If σv ∈ GL2g(Fp) denotes the image of the Frobenius element
at some prime v /∈ S , then v ∈ T if and only if σv has 1 as an eigenvalue. It is well known (see
the remark following Question 2.11) that if p is sufficiently large, then the image of the mod p
representation contains nontrivial scalar matrices. When this is the case, Chebotarëv’s density theorem
gives a positive density set of primes outside of T . For elliptic curves without complex multiplication,
an earlier result of Serre gives that the mod p representation is surjective for all but finitely many p.
In this case T has density

#{g ∈ GL2(Fp): 1 is an eigenvalue of g}
# GL2(Fp)

= (p2 − 2)

(p2 − 1)(p − 1)
,

which approaches 0 as p goes to ∞. This is of some interest since Theorems 1.3 and 1.4 are stronger
when T is small. On the other extreme, if A(k)[p] �= ∅, one has that every prime outside S lies in T .

For a concrete example consider the elliptic curve E/Q of conductor 11 with minimal model
y2 + y = x3 − x2 − 10x − 20. For p = 3, the bad primes are S = {3,11}. The mod 3 representation
is surjective so T has density 7/16. The first few primes in T are 29,53,67,71,79,83,89, . . . . One
easily checks that E(Q3)[3] = E(Q11)[3] = 0, so the group G in the proof of Theorem 1.4 reduces to
H1(Q3, E)[3] × ∏

q �=3{0}, which has order 3. A 3-descent (implemented in MAGMA, see [22]) shows
that X(E/Q)[3∞] = 0 (in fact, deeper results prove that X(E/Q) = 0). Thus, there are at most 3 el-
ements in H1(Q, E) which restrict into G . In fact, there are exactly 3; the inverse pair of nontrivial
trivial torsors are represented by the plane cubic

C : −4x3 + 3x2z − 6xy2 − 30xyz − 27xz2 − 11y3 − 9y2z − 12yz2 + 8z3 = 0,

which is locally solvable at all primes q �= 3. It follows that if � is any cubic number field which is not
totally ramified at any primes of T , we have

#XQ(E/�)
[
3∞] =

{
3 if C(�) = ∅, but C(�w) �= ∅ for all w | 3,

1 otherwise.

At the same time, Theorem 1.3 gives that #XQ(E/�)[3] is unbounded as � runs through the fields
Q(

3
√

29 ),Q(
3
√

29 · 53 ),Q(
3
√

29 · 53 · 67 ), . . . .
On the other hand, E(Q) is generated by the 5-torsion point (5,5) ∈ E(Q). So, for p = 5, we have

T = Sc . For cyclic extensions �/Q, Matsuno’s result [15, Corollary 4.5] shows that dimF5 X(E/�)[5] +
rank(E(�)) grows linearly in the number of ramified primes. Our upper bound for dimF5 XQ(E/�)[5]
also grows linearly with the number of totally ramified primes, and one would expect that this is true
of dimF5 XQ(E/�)[5] itself. However, Theorem 1.3 only applies to a sequence of extensions which is
eventually totally ramified at almost every prime of k. This deficiency ultimately traces back to the
use of Theorem 3.1, itself a consequence of Poitou–Tate duality which is ineffective as an existence
theorem.
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