
J. Symbolic Computation (1989) 8, 629-650

Codatatypes in ML

T a t s u y a HAGINO

Data Processing Center, Kyoto University, Kyoto, Japan.

(Received 25 March 1988)

A new data type declaration mechanism of defining codatatypes is introduced
to a functional programming language ML. Codatatypes are dual to datatypes for
which ML already has a mechanism of defining. Sums and finite lists are defined
as datatypes, but their duals, products and infinite lists, could not be defined in
ML. This new facility gives ML the missing half of data types and makes ML
symmetric. Categorical and domain-theoretic characterization of codatatypes
are also given.

1 I n t r o d u c t i o n

ML is a strongly typed mostly functional programming language, which was first devel-
oped at Edinburgh University in conjunction with the famous proof system, Edinburgh
LCF [9]. Even though the principles have not been changed, it has been modified and
extended by Edinburgh researchers as well as others over a decade, and we now have
several versions of ML.

o D E C - 1 0 ML: This is the original version which was developed with Edinburgh
LCF. It ran on DEC-10 but is no longer in use.

o Cardel l i ' s ML: Luca Cardelli rewrote DEC-10 ML and introduced several new
features. It is written in Pascal and runs on UNIX. ML programs are compiled
into an intermediate language called FAM (Functional Abstract Machine). It is
optional to assemble FAM codes into native machine codes [7].

o C A M - M L : Researchers at INRIA have improved the compiler and changed it
to generate CAM codes (Categorical Abstract Machine codes) [19, 20]. CAM is
an abstract machine language based on the categorical work done by Curien [8].

o S t a n d a r d ML: It was designed to consolidate various versions of ML. This was
mainly designed by Edinburgh researchers [14]. It is designed for easy trans-
plantation, so it runs on various UNIX machines. This ML also generates FAM

codes.

0747-7171/89/120629+22 $03.00/0 �9 1989 Academic Press Limhed

630 T. Hagino

ML has mainly been used to write proof systems because it enables elegant implemen-
tation (refer [9] for Edinburgh LCF and [22] for Cambridge LCF). Howeve,-, it has also
been used for education because it has various important features computer science
students must learn. These features are:

1, Functions are treated as first class objects.
2. It employs strong typing principle.
3. It allows polymorphic typing for relaxing the restriction of strong typing and

retaining the flexibility of untyped languages.
4. Users can define their own data types as abstract data types. They can be defined

as solutions of recursively defined data type equations and their representation
is protected from outside.

5. Datatypes are similar to abstract data types except that their representation is
not protected and that they can be defined by listing their constructors which
can be used for pattern matching.

6. ML programs may cause exceptions to exist from deep recursive calls, and excep-
tions may be caught by exception handlers.

7. NIL functions and types may be combined as modules.

Among various features of ML, we are interested in one particular feature, the feature
of datatypes.

As a related work, the author has developed a functional programming language called
CPL (Categorical Programming Language) which is based on category theory [12]. Its
principal features are:

1. It has no base types.
2. Types are defined categorically as left and right adjoints. Products, sums and

function spaces can be defined in this way.
3. Recursive types like natural numbers and lists can also be defined categorically

as initial F-algebras.
4. Dually, final F-coalgebras can be defined.
5. Types are defined with their control structure. For example, boolean is defined

with i f statement control structure.
6. Programs have no variables.
7. Evaluation rules are simple because types are defined uniformly and control struc-

tures are associated with types.

In set theory, dualities of mathematical objects are not so apparent. For example, the
duality between sur]ections and injections can not easily be detected from their set
theoretic definitions. Neither is the duality between products and sums. However, in
category theory, dualities are very important. Sums are products in the dual category
(or opposite cate#oTT) which is the mirror image of the original category.

In CPL, the definition of sums is exactly the same as that of products except that
arrows point to the other direction. CPL classifies types into two classes, right objects
and left objects. Right objects are types which can be characterized as right adjoints
or as final coalgebras, whereas left objects are those which can be characterized as left

Codatypes in ML 631

adjoints or as initial algebras. The following table shows some right objects and some
left ones.

rig.ht ob jec t s left ob jec t s
terminal object

(= one point set)
products
function spaces

(= exponentials)
infinite lists

initial object
(= empty set)

sums (= coproducts)
natural numbers

finite lists
binary trees

In some sense, right objects are infinite, whereas left objects are finite. Right objects
are often pre-defined in programming languages, whereas left objects are open to users
for defining their own data types (natural numbers and lists are usually pre-defined for
efficiency, but it is often the case that they can be re-defined as user-defined types).

ML data types correspond to left objects, but ML does not have the mechanism of
defining their duals, right objects. In this paper, we introduce a new data type dec-
laration mechanism which enables users to define duals of data types, which we call
co-data types.

in section 2, we will look back the type system of DEC-10 ML and that of Standard ML
and find out why we need co-data types. In section 3, we will introduce the codatatype
declaration mechanism with its meaning. In section 4, we will show that codatatypes
can be characterized as final coalgebras in category theory. In section 5, a domain-
theoretic account of codatatypes will be given, and a set-theoretic one will be given in
section 6. In section 7, we will draw some conclusions.

2 Types in NIL

In this section, we will investigate the type system of DEC-10 ML and that of Standard
ML.

2.1 Types in DEC-10 ML

DEC-10 ML had the following built-in base types.

t y p e mean ing
unit type

int inte.gers
bool booleans
token strings

e lement

0
. . . , - 2 , - b o , l, 2 , . . .
true and false

abc, a~aaa~, ...

It also had some other base types for PPLAMBDA (Polymorphic Predicate A-calculus),
but we omit them here. These are base types, and users can create more complex types

632 T. Hagino

by combining them together using the following type constructors:

t y p e c o n s t r u c t o r m e a n i n g e l emen t
* list lists [7,19] : int list

* # ** binary products (3,'abc') : int # token'

�9 * + '** binary sums inl(5)- : int' '# **

* -> ** " functfo'n spaces \x.x+i : int'->" int

where * and ** are type variables. Binary products are associated with the following
two polymorphic functions:

f s t : * # ** -> *
snd : * # ** -> **

whereas binary sums are associated with the following five polymorphic functions:

inl : * -> * + **
inr : ** -> * + **

outl : * + ** -> *
outr : * + ** -> **

isl : * + ** -> bool

Two projections, o u t l and outr , may cause exceptions, that is, they are partial func-
tions.

By looking at those functions, we notice asymmetry between binary products and
binary sums. Categorically they are dual, but this fact is not reflected in DEC-10 ML.
Although elements of binary sums can be constructed by • and inr , there are no
explicit functions to construct elements of binary products. When two elements, say
z and y, of type S and type T are given, we can construct an element of type S # T
by pairing them as (z, y), but (_,_) is not a function in an ordinary sense. Pairing is
implicitly embedded into the language.

The ML type system is largely influenced by domain theory. In domain theory, types
are domains, and domains are often given as solutions of recursive domain equations.
For example, the domain of binary trees whose leaves are integers can be given as the
solution of the following domain equation.

T~Z+TxT

where Z is the domain of integers. Any recursive domain equation involving constant
domains, binary products x, binary sums + and function spaces --~ can be solved [24].
This is a very powerful way of defining new domains from already-existing ones.

DEC-10 ML has a mechanism of defining new types in this fashion. For example, an
NIL type of binary trees can be defined as follows:

absrectype btree = int + (btree # btree)

with leaf n = absbtree(inl n)

and node(tl,t2) = absbtree(inr(tl,t2))

Codatypes in ML 633

and isleaf t = isl(repbtree t)

and leafvalue t = outl(repbtree t)

and left t = fst(outr(repbtree t))

and right t = snd(outr(repbtree t));;

The first line is the recursive equation for the type of binary trees and the other lines
define primitive functions over binary trees. The isomorphism from b t r e e to i n t +
(b t r e e # b t r e e) is given as r e p b t r e e which decomposes binary trees, and the oppo-
site isomorphism from i n t + (b t r e e # b t r e e) to b t r e e is given as a b s b t r e e which
creates binary trees. These isomorphisms are available only inside the a b s r e c t y p e
declaration in order to hide the representation of binary trees.

2.2 Types in Standard ML

In DEC-10 ML, the binary sum type, * # **, is given as a built-in primitive. There
is no way to express the binary sum type in terms of other primitives. Although the
type of integers, • is given as a primitive, it can be defined as an abstract da ta type
(or the solution of the domain equation Z ~- 1 + Z + Z).

In Standard ML, however, this is not the case. The binary sum type can be defined by
the d a t a t y p e declaration mechanism as follows:

datatype 'a + 'b = inl of 'a J inr of 'b;

where ' a and 'b are type variables. The right-hand side of the declaration lists the
constructors of this type with their argument types. The declaration says tha t an
element of ' a + 'b can be obtained by applying i n l to an element of ' a or applying
i n r to an element of 'b . The declaration also says that these are the only ways to get
an element of ' a + ' b.

Constructors can also be used for pa t tern matching for doing case analysis. For exam-
ple, DEC-10 ML's primitive function i s l can now be defined as follows:

fun isl(x) = case x of

inl(y) => true

I inr(z) => false;

When an element of ' a + 'b is one which is given by i n l , then the first case is selected.
Otherwise, the second case is selected. This function can also be given as follows:

fun isl(inl(y)) = true

I isl(inr(z)) -- false;

This looks very much like a Prolog program.

Data type declarations may be recursive, that is, constructors m ay refer itself. In Stan-
dard ML, the old idea of abstract data types is separated into two: solving recursive
equations and hiding representation. The former is captured as the d a t a t y p e declara-
tion mechanism and the lat ter by abs type declaration mechanism. In this paper, we

634 T. Hagino

are only interested in the former. The type of binary trees can be defined in Standard
ML as follows:

datatype btree = leaf of int I node of btree * btree;

exception btree;

Tun isleaT(leaf _) = true

I isleaf(node _) = false;

Tun leafvalue(leaf n) = n

] leafvalue(node _) = raise btree;

fun left(leaf _) = raise btree

I left(node(tl,t2)) = tl;

fun right(leaf _) = raise btree

I right(node(tl,t2)) = t2;

If we ignore constructor names and treat ' l ' as the binary sum type '+', datatype
declarations are just recursive type equations. Roughly speaking, standard ML has
shifted object level '+' into meta level ' I'. Although we got rid of the binary sum type
from primitives, we still need the product type. From a categorical point of view, this
is asymmetric. We will look at the dual of datatypes in the next section.

3 C o d a t a t y p e s

In this section, we introduce the dual notion of datatypes and get rid of the binary
product type fl'om ML. We call this kind of types codatatypes. Remember that the
general form of datatype declarations is

da t a type T = cl of A1 I " " I c~ o~ A~

where T is the type which is going to be defined, c l , . . . , c~ are constructors and
A 1 , . . . , An are domain types of these constructors. T may have some type variables
and A~ may refer T recursively.

Each constructor cl gives a function of the following type.

A~ --* T

When we think this in the dual category where all the arrows go to the opposlte
direction, it gives a function of the following type.

T --* Ai

Codatypes in ML 635

This can be regarded as a destructor of T. It is natural to think that the dual concept
of 'constructor ' is 'destructor' . Therefore, a codatatype can be declared by listing
destructors and their codomains (= dual of domains). The general form is

c o d a t a t y p e S = d~ i s B~ & . . . & d , i s B~.

We use the keyword ' i s ' instead of 'of ' and '&' instead of '['.

It m a y seem that S is just a record type with n components whose types are B1, . . . , B,,,
but , as we will see shortly, it is not the case when the declaration is recursive.

Let us see some examples of codatatypes. First of all, as we claimed, we can define the
b inary product type. In category theory, the binary product functor and the binary
sum functor are the right and left adjoints of the diagonal functor. Therefore, it is very
na tura l that the binary product type is defined exactly in the same way as the binary
sum type except the difference of keywords. Remember that the binary sum type was
defined as follows:

da t a type ' a + 'b = i n l of ~a [i n r of 'b ;

Now, the binary product type can be defined as follows:

codatatype 'a * 'b = fst is 'a ~ snd is 'b;

We can appreciate the symmetry between %' and '*'.

The binary product type is associated with two destructors:

fst: 'a * 'b -> 'a

gives the projection function of the first component, and

snd: 'a * 'b-> 'b

gives the projection function of the second component.

For datatypes, we had case statements as their control structure. They decompose
datatypes. As their dual, for codatatypes, we will have merge statements. They are
the control structure for coda~atypes. They create elements of codatatypes. For a
codata type declared by

eodatatype S=d~ is l?1&"'&d~ is B n

merge statements have the following form.

merge dl ~= e l & . - . & d ~ e = e~

where d l , . . . , d~ are destructors and e l , . . . , e,~ are expressions of type B I , . . . , B,~, re-
spectively.

If we write e: A for e having type A, we have the following typing rules for the co-
da ta type declared above

d~: S ~ Bi

636 T. Ha#no

el:B1 . . . e . :B~
(merge dl r el & . . . &: dn "<=: e,,): S

For the binary product type '*', merge statements just pair elements.

merge f s t r

can be regarded as (x,y). If we got rid of the binary product type from ML, (x, y)
would no longer be in the ML syntax. Therefore, we might take this to be the definition
o~ (x, y).

As an another exan,~,le of codatatypes, let us define the type of infinite lists. Remember
theft the type for finite lists is defined by the following datatype declaration.

datatype 'a list--nil I cons of 'a * 'a list;

Nil and cons are the Hst constructors. List destructors are head and tail functions

defined as follows:

fun head(nil) = raise head
[head(cons(x,l)) = x;

fun tail(nil) = raise tail
I tail(cons(x,l)) -- i;

For codatatypes, constructors and destructors play the opposite roles. We declare the
type of infinite lists by listing the two destructors.

codatatype 'a inflist = head is 'a & tail is 'a

inflist ;

This tells us that an element of 'a inflist has two components, its head is an el-

ement of 'a and its tail is again an dement of 'a inflist. This definition seems

to be recursive without bottom. Unless we obtain an element of 'a inflist out of

somewhere, we cannot make any elements of 'a inflist. In LISP, infinite lists can
be obtained by destructive pointer manipulation using rplaca and rplacd.

/ rplacd(,.) /

This is possible because infinite lists and finite lists are the same and destructive
operations are allowed. Form a theoretical point of view, it is very difl:icult to handle
destructive operations[18]. Therefore, we do not regard this as a proper way of making
infinite lists.

Here, we use merge statements to create infinite lists. For example, the infinite sequence
of 1 can be given as the result of evaluating the following function.

Codatypcs in ML 637

fun iseql() = merge head <-- I

tail <= iseql();

Note that merge statements cannot simply make records after evaluating components

because the above function would never terminate if they did. Therefore, the evaluation
mechanism of merge statements needs to be lazy. Here, we take the following evaluation
strategy: when

merge d l C = e l & " - & : d ~ e ~

is evaluated, it immediately returns a record which has n empty components; when one
of the components, say ith one, is accessed by a destructor dl first time, ei is evaluated
and the result is storcd in the ith component as well as returned as the value of d~; next
time when the same component is accessed by d~, it simply returns the value stored in
the ith component.

Therefore, when i s e q l is evaluated, it returns an infinite list as a record of two com-
ponents. Let this record be s. We cannot see the components of s unless we access
them by head and t a i l . If we t ry to see them, head(s) will be 1 and t a i l (s) will be
another infinite list which is identical to s.

In the above, i s e q l is given as a function, but one may want to write it as follows:

val rec iseql = merge head <= I & tail <= iseql;

Usually we cannot make recursive definitions unless they define functions. Here, we
make recursive definitions for infinite lists. This is allowed because the evaluation
mechanism for merge statements is as lazy as it is for function closures. In fact, function
spaces and codatatypes are closely related. Categorically, they are characterized as
right adjoints (whereas natural numbers and lists are characterized as left objects, and
we cannot make recursive definitions over them).

Let us write some functions over infinite lists.

fun comb(ll,12) = merge head <= head ii

& tail <= comb(12,tail 11);

This function combines two infinite lists together and makes one infinite list by picking
up elements alternately from two infinite lists.

al as a3 ...~

(bl 4 4 ...)

comb-* (al bl a2 b2 a3 b3 . . .)
/

fun nth(1,n) = if n = 0 then head 1

else nth(tail 1,n-l);

nth(l , n) returns the n th element of l.

638 T. Hagino

fun sum(l) =
let fun suml(l,s)

in suml(1,O)

end ;

= merge head <= s

a tail <= sum1(tail l,s+(head i))

sum(l) gives the partial sum sequence of l, that is, the nth element of sum(1) is the sum
of 1st ,-~ (n - 1)th elements of I.

r*-I

(a l a2 a3 . . . a n . , .) ~ sum--~ (0 0,1 a l " ~ a2.,. E a i ' ")
i=1

We can summerize the symmetry between datatypes and codatatypes by the following
table.

d a t a t y p e s c o d a t a t y p e s

d e c l a r a t i o n da t a type T"-- coda ta type S =
cl o f Ax J . . . ! c . of A . dl i s Bx & ' . . &..d~ i s B .

'pl"imifives constructors ci destructors di
con t ro l case statements merge statements

c;: Ai ~ T d~: S ~ B~
e : T

t yp ing

el: Ai --+ B
(case e of

r =~ el

I~. ~ ~.): B

el: B,.
(merge

dl 4= el

& d. <= e.): S

If we look at the typing rules, case statements and merge statements are not exactly
dual. If we want to make them exactly dual, we may use a differen~ form of merge
statements.

e: C el: C ~ 19i

(merge I dx r ~ z . . . ~ d ~ 4 = e . of e) :S

However, merge j can be expressed in terms of merge as follows:

merge' dl 4 = e l ~ ' . ' & d n 4 = e ~ of e

---- let val x ~-- e

in merge dl 4= el(x) Sz... ~z dn 4= en(x)
end

Therefore, we chose the simpler form. This fact that merge statements are simpler than
ca se statements resembles the fact that the natural deduction rule for logical 'and' is
simpler that that of logical 'or'. Categorically, this is just the same thing happening
in different categories.

Codatypes in ML 639

4 Categor i ca l V i e w of C o d a t a t y p e s

In [12], the author developed a functional programming language called CPL which is
based on category theory. The concept of codatatypes arose from this work. Category
theory has developed a powerful concept called adjunctions. It is very simple, yet
it unifies a lot of seemingly unrelated concepts together and reveals true nature of
mathematical objects. The binary product functor and the binary sum functor (or the
binary coproduct functor) are exactly dual. The product functor is the right adjoint
of the diagonal functor whereas the sum functor is the left adjoint of the same functor.

CPL has two kinds of declarations of types (or functors), right objects and left objects.
They are based on right adjoints and left adjoints, respectively, and characterized by
the following concept.

Def ini t ion 4.1: Let C and :D be categories and both F and G be functors from C to

:D. F

C 79

We define an F, G-dialgebras as follows:

G

1. its objects are pairs <A,f> where A is a C object and f is a ~P morphism of
F(A) --+ G(A), and

2. its morphisms h: (A,f> --* (B,.q> are C morphisms h:A --~ B such that the
following diagram commutes.

F(A)- f ~ G(A)

F(h) [0 iBm(h)
F(B)- :V

In the case where 2' or G is contravariant, we have to modify the direction of
some arrows.

It is easy to show that it is a category; let us write DAlg(F, G) for it. 0

This extends the notion of F-algebras which are often used in domain theory [25].

P ropos i t ion 4.2: For an endo-functor F:C --~ C, DAlg(F, I) is the category of fi'-
algebras. Dually, DAlg(I , F) is the category of F-coalgebras. 0

If we parametrize the definition, it also extends the notion of right and left adjoints
(see [12]).

Let us use F, G-dialgebras to explain datatypes and codatatypes. In the fol]owing, le~
C be the category of ML types. If T is a data.type given by

da ta type T : c l of A 1] . . . I c n of As,

640 T. Hagino

T is a type which is an object of C and A~ is a type expression which can be regarded
as an endo-functor of C with respect to T (T may appear in Ai). Let F and G be
functors from C to C '~ (= C x x C) defined as follows:

t%

. . . X F (X) -- {AI(X), ,A,~(X)) G(X) = Q , . . . , X)
r~

<A~(X),. .. ,A~(X)I
' Cx..-xC C

< x , . . . , x >
Then, T and c l , . . . , % can be characterized as the initial object <T, (c~,...,c,>> of
D h l g (F , G). From definition 4.1, (c , , . . . , c~) is a morphism

(c~, . . . , c~): F(T)__=_ <A~(T), ... ,A,,(T)> --, G(T)=__ <T,... ,T>,

that is, each ci is the following morphism.

c~: Ai(T) - Ai --~ T

This coincide with the type of ci in ML.

Next, let us give the meaning to the following case statement.

~ a s ~ e o~ ~ ~ ~ I ' " I ~ ~ ~ (+)

e is an expression of type T, so it can be regarded as a morphlsm from 1 to T (where
1 is the terminal object of C), and el is an expression of type A~ --~ B which can be
regarded as a morphism of the same type.

e : l --~ T e~: A~ ---* B

Then, (ci, ei) o d~(zrl) gives a morphism of

AI(T x B) ~ T x B

where 7rt is the first projection associated with the product T • B.

T

el /

A~(T • B) Ai(~rl) ~ A~(T) (cl, el) ~ T • B

B

Therefore,
(T • B, ((c~, et/o Al(~rl) , . . . , (ca, e~) o A~(~rl))/

is an object of DAlg(F , G). Since (T, (c~ , . . . , c,,)} is the initial object of DAlg(F, G),
there is a unique DAlg(F , G) morphism

(T, r c~)> -~ IT • B, <<cl, ~1> o A1(~1),..., <c~, e~> o A,(~I)/>.

Codatypcs in ML 641

From definition 4.1, this is a g morphism from T to T • B. Let us write it as follows:

~((C1, ~1> 0 A I (~ I) , . . . , (Cn, en) o An(~ l)).

Then, the meaning of the case statement (+) can be given by the following morphlsm.

~ o r el) o A , (~ ,) , . . . , (c,, c~) o A~(~I)) o ~ (++)

where r2 is the second projection of T x B. This morphism goes from 1 to B, which
coincides with the type of the case statement, B.

Let us check whether this morphism really satisfies the desired properties.

P r o p o s i t i o n 4.3: Because r f,~) gives unique morphisms in the category of
F, G-dialgebras, it satisfies the following equations.

{ ~ b (f l , . . . , A) o c~ = f~ o d i (r
~b(cl, . . . , c~) = id

V i (h o c~ = f~ o A i (h)) =r h = r f ,)

P r o p o s i t l o . 4.4: ~ o r ~) o A ~ (~) , . . . , (c~, ~) o A ~ (~)) = i~
P r o o f : Let h be r ~) o A I (~) , . . . , (~ , ~) o d o (~)) . Then, from proposition 4.3,

= e~ o A i (~ l o h).

From proposition 4.3 (the uniqueness of ~b),

7h o h = ~b(Cl,...,c,~) = id.

Now, we have the following proposition.

P r o p o s i t i o n 4 . 5 : ~ 2 o r et) o d ~ (r ~) , . . . , {c~, e~) o A~(u~)) o c~ = e;.
P r oo f :

~1" 2 o ~b((al, el) o A l (T r l) , . . . , (On, en} o An(~l)) o c i

= ~ o (~;, ~) o A;(~I) o d , (r ~) o A ~ (~) , . . . , (~, ~) o d~(~ l)))

= ~ o d ~ (~ o r ~) o d~(~j) , . . . , (~, ~) o d ~ (~)))

el D

Therefore, if e is an element of T which is created by the constructor c;, e is cl o e',
and, from this proposition, (++) is equal to ei o d. Hence,

P r o p o s i t i o n 4.6: If we use [[~ for denoting the meaning of programs,

642 T. Hagino

Next, let us consider codatatypes. Let S be a codatatype given as follows:

codat~type S -- di is Bi ~z ... & d~ is B~

Bi can be regarded an endo-functor of C. We put F and G as follows:

F (X) - (X , . . . , X) a (x) -- (B I (X) , . . . ,B~(X)>
n

Then, (S, (di , . . . ,d ,~)) can be characterized as the final r ,G-dialgebra (or the final
object in DAlg(F , G)). The meaning of merge statements can be given as follows.

D e f i n i t i o n 4.7:

[merge dl <= el & ".. & d~ r e ~

-= o [e l , e d , . . . , o [d , , o

where r gives unique arrows, ul and u2 are injections of S + 1, and [di, el] is the unique
arrow from S + 1 to Ai. [~

For codatatypes, we have the following propositions.

P r o p o s i t i o n 4.8:

d; o r 1,) = Bale(f1 , . . . , f~)) o fl
r = id
Vi(dl o h = Bi(h) o fl) ~ h -- r

P r o p o s i t i o n 4.9: r o [dl, et] , . . . , B,~(v~) o [d,,, e~]) o vt = id.

P r o p o s i t i o n 4.10: Hi o r o [d~, e~],... ,B,~(v~) o [d~, e~]) o u2 = e;. 0

Therefore,

P r o p o s i t i o n 4.11: [di(merge di 4= ei & " " & d,~ 4= e~)]] = [ei~.

We have shown that datatypes can be characterized as initial F, G-algebras and that
codatatypes can be characterized as final F, G-dialgebras.

Note that case and merge statements do not straightforwardly correspond to cate-
gorical morphisms compared with constructors and destructors. In CPL, we took the
categorical versions of case and merge, so we could see much more natural correspon-
dence between datatypes/codatatypes and initial/final F, G-dialgebras.

Note also that we did not take recursive definitions of functions into consideration. ML
allows general recursion, but categorically it is rather complicated and CPL does not
allow general recursion but only primitive recursion.

We also assumed that Ai and B; are covariant functors. If they involve function spaces,
they might not be covariant functors. We canno~ handle non-covariant functors by
F, G-diMgebras.

Codatypes in ML 643

At the beginning of this section, we fixed a category g. One may wonder what it is.
We assumed that it is the category of ML types, but the number of ML types increases
as we declare new datatypes and codatatypes. Therefore, one may wonder whether C
is fixed or not. For example, if we define product first and then coproduct, is this the
same as to define coproduct first and then product? Are we using the same C?

There may be two approaches for this problem. In the first approach, we regard that
C is given by the God and never changes. It is the universe of the ML data types. It
contains all the data types and co-data types we can define in ML. For example, C P O •
we will present in the next section is such a category. F, G-dialgebras do not add new
objects but pick up existing objects. As we prove in domain theory the existence of
solutions of recursive domain equations, we have to prove that initial and final objects
of/v, G-dialgebras exist. We have the following result.

P ropos i t i on 4.12: If F is continuous and G has the left adjoint, there exists the
initial F, G-dialgebra. Dually, if G is co-continuous and F has the right adjoint, there
exists the final F, G-dialgebra.
proof: See [12].

This proposition puts some restrictions to F and G, but it is easy to see that F and G
for datatypes and codatatypes satisfy these conditions. In this apporach, because C is
fixed, the order of declarations does not matter very much. Declaring products before
coproducts and declaring coproducts before products are the same. They just pick up
products and coproducts of C (e.g. CPOx). Of course, we have to declare products
before lists because the declaration of lists depends on that of products.

We may also take the other approach. In this approach, C changes as we declare new
datatypes and codatatypes..We regard initial and final F, G-dialgebra characterizatioll
as specification of categories. Since this characterization is given by equations (see
proposition 4.3 and 4.8), we can device a specification language similar to an algebraic
one (see [12] about this specification language). We can translate initial and final
F, G-dialgebra conditions into equational specifications. In this specification language,
a model is a category associated with appropriate functors and satisfying equations.
Therefore, the category of models is a category of categories. When nothing is de-
clared, the model category is the category of (small) categories. When the terminal
object, the binary product and the exponential are declared, the model category is the
category of cartesian closed categories. We can prove that every model category has
the initial model and we can exactly follow the initial algebra approach to give meaning
to datatypes and codatatypes (see [12] for more details). In this approach, declaring
products before coproducts may differ from declaring coproducts before products. We
have to prove that two models are isomorphic. This should follow from the fact that
two declarations are independent.

644 T. Hagino

5 D o m a i n T h e o r e t i c V i e w o f C o d a t a t y p e s

The abstract data types in DEC-10 ML were derived from the domain theoretic idea
of recursive domain equations. In domain theory, domains other than primitive ones
are defined by solving recursive domain equations.

D = ~ F (D)

For example, the domain of natural numbers can be given as the solution of the fol-
lowing equation.

N ~ - I + N

In this paper, we use the category C P O • of complete partial orders with the least
element and strict continuous functions. In this category, the initial object 0 is { J_ },
the final object 1 is the same, the product A x B is given by { (a, b) I a E A, b e B }
with

(a,b) E(a',b') ~ aE_a'AbE_b',

and the sum A + B is given by

({0}• (A \ { • (B \ { • 1 7 7

with
(o, ~) E (o, ~') (~, ~' �9 A and ~ E ~')
(~, b) E 0 , b') (b, b' e B and b E V)
• E Z (ce A + B) .

However, it does no have the categorical function space. Instead, it has the strict
function space A ---*• B of strict continuous functions which is the right adjoint to the
following smash product A | B.

A | e A x B la=_l_ ~ b=_l_}

It also has the lifting flmctor Ax which adds the new least element to A.

In general, when F: C P O • ~ C P O • is continuous, the initial fixed point of F can be
given as the co]fruit of the following diagram.

0 ~ F(0) -~ F2(0) --+ F3(0) - ~ - . . -~ F~(0) - ~ . . .

This diagram may not be in C P O x but in C P O ~ which is the associated category of
embeddings. The datatype T declared by

da t a type T = Cl of A I (T) I . . . I cn off Aa(T)

can be regarded as the initial fixed point of the following functor.

F(X) - A,(X) +. . . + A~(X)

The meaning of cl and case statements can easily be given by using the isomorphisms
T ~ F(T).

Codatypes in ML 645

E x a m p l e 5.1: The type of natural numbers can be declared by

datatype N=zero[suec of N.

Zero is a constant of N and its domain is regarded as 1. Therefore, this defines the
domain which is the initial fixed point of

F (X) = 1 + X. 0

Since codatatypes are dual to datatypes, we might expect that the codatatype declared
by

c o d a t a t y p e S = d l i s BI(S) ~: . . . & dn i s B~(S)

can be regarded as the final fixed point of the following functor.

G(X) - BI(X)| | (~)

Here, we use smash products instead of categorical ones because categorical ones con-
tain undesirable elements. For the codatatype

c o d a t a t y p e S = f s t i s A & s n d i s B,

we would like it to denote A | B rather than A • B.

However, (t) does not work for recursive definitions. For example, the codatatype of
infinite lists is defined by

codatatype I:head is A~rtail is I,

and G(X) is A | The final fixed point of G can be given as the limit of the fo]]ow:ing
diagram.

1 ~- V(1) ~- G~(1) ~ . . - ~- V~(1) ~ . . -

Because A | 1 ~ 1, the final fixed point is 1 ~ { _1_ }. This is not what we want. In
fact, initial fixed points and final fixed points always coincide in CPO• Then, it may
seem that there is no difference between datatypes and codatatypes. We need some
tricks to make difference. We use the lifting functor.

D e f i n i t i o n 5.2: For the codatatype declared by

codatatype S = clI is BI(S) A... & d n is Bn(S),

it is characterized as the initial fixed point (= the final fixed point) of the following
functor.

V(X) -- B,(X• | | B~(X~) 0

We can give the semantics of destructors and merge statements as follows.

646 T. Hagino

D e f i n i t i o n 5.8: Let us write r for the isomorphism S -+ G(S) and r for its inverse.

{ [dd(x) = ~;(r
~me=ge dl ~ el ~ . . . ~ d~ ~ e j - r - , (E~-~)~>)

where ~r, is the ith project of BI(S.L)|174 and ([e;~)• is the result of injecting
N into D

E x a m p l e 5.4: The product of A and B is defined by

coda ta type P = f s t i s A & s n d i s B.

Semantically, it denotes the initial fixed point of

= B (X.) | B (X.) = A | B.

Since G(X) is a constant functor, the initial fixed point is A | B, which we expected.
Fs t and snd are projections and [merge f s t r el &: snd <= e2~ is just (tel]l, [e~).

E x a m p l e 5.5: Let us consider the codatatype of infinite lists defined by

codatatype I = head is A ~r tail is I.

Semantically, I is the initial fixed point of

G(X) - A | X•

By calculating the limit of

0 --* X | 0• --* A | (A | 0•177 --* A | (X | (A | 0j.)•177 ~ . . . ,

we obtain
= { (a ~ a ~ " . a -) 1 0 < n < ~ , a i ~ A , a ' # •

with its ordering given by

(al a2 a3 ...an) ~ (bl b2 ba . . .b in) ~ n < m A k/i = 1 , . . . , n (a , E bi).

Note that n may be cx~ and, therefore, I includes infinite lists of A elements. Merge
statements concatenate an A element to an infinite list. Therefore,

val rec iseql = merge head <= I ~ tail <= iseql;

denotes the lest upper bound of the following sequence.

() E (1)_(1 1)_(1 1 I)_...___ (1 1. . .1)_. . .

The least upper bound is the infinite list of 1.

Codatypes in ML 647

6 C o d a t a t y p e s a s G r e a t e s t F i x e d P o i n t s

In C P O • final fixed points and initial fixed points are the same, and we have to use
lifting to get the proper meaning of codatatypes. If we do not use function spaces, we
can give the meaning in the category of sets, Set. In [2], Arbib and Manes emphasized
the usefulness of greatest fixed points (= final fixed points). In Set, the initial object
is the empty set, the final object is the one-point set, products are given by cartesian
products, and sums are given by disjoint unions.

The meaning of the datatype defined by

da ta type T = cl of A~(T)] . . . l c,~ of A,~(T)

is given by the initial fixed point of

~'(X) = A I (X) + " " + An(X) ,

in the same way as in C P O z , whereas the meaning of the codatatype defined by

coda ta type S = d~ i s BI(S) & . . . & d,~ i s B,~(S).

is given simply by the final fixed point of

a (x) = B I (X) x . . . x e~ (X) .

In the approach, the duality of datatypes and codatatypes is more apparent.

E x a m p l e 6.1: Let us once more consider the codatatype of infinite lists given in
example 5.5. G(X) is A x X. Its initial fixed point is the empty set, but the finaI fixed
point is given as the limit of the following diagram.

1 *--A x 1 ~ A x (A x 1) ~- ...

It is easy to see that the limit is the following set.

{ . . . a) e A } D

7 C o n c l u s i o n s

In this paper, we proposed a new data type declaration mechanism of codatatypes for
ML. The product type no longer needs to be primitive, and lazy data types, like infinite
lists, can be declared by this mechanism. We obtained symmetry in ML. Let us call
this new ML SymML.

We can regard codatatypes as mirror images of datatypes. In category theory, datatypes
are characterized as left adjoints, whereas codatatypes are characterized as right ad-
joints. Traditionally, datatypes have been open to users for defining their own data

648 T. Hagino

types, but codatatypes have been fixed and given as primitive data types (e.g. prod-
ucts). Users have not been allowed to define them. However, in SymML, both
datatypes and codatatypes are treated equally and are open to users to define new
data types.

Codatatypes have totally opposite properties of datatypes. A datatype is declared by
listing its constructors, but a codatatype is declared by listing its destructors. The con-
trol structure for datatypes is case statements which decompose elements of datatypes
into their components, but the control structure of codatatypes is merge statements
which combine components and create elements of codatatypes. In Set, datatypes are
characterized as initial fixed points, but codatatypes are characterized as finial fixed
points. Algebraically, datatypes are ordinary algebras, but codatatypes are co-algebras.

Because everything (except the function space type) can be defined either as a datatype
or a codatatype, the semantics of SymML can be given in a uniform manner. We do
not need to treat the product type specially.

In SymML, infinite lists are defined as codatatypes. Usually, infinite lists are obtained
by changing evaluation mechanism from full evMuation to lazy evaluation. However,
in SymML, lazy evaluation is embedded into codatatypes. The data type of finite lists
and the data type of infinite lists are two distinct data types. We have an advantage
of having both data types in the same framework. Users can choose which data type
to use according to their need.

The author believes that lazy evaluation should be treated in the framework of co-
datatypes. Lazy evaluation is often discussed for lists. The reason why lists can be
treated lazily is that lists are made of pairs. Pairs are declared as codatatypes in
SymML. Therefore, the laziness of lists comes out of that of codatatypes. In addition,
when lazy evaluation is simulated in a programming language which employs full eval-
uation, function closures are often used. A function space is a kind of codatatype. In
SymML, it cannot be declared as a codatatype, but, in CPL from which SymML is
derived, it can be declared as a codatatype. Therefore, the laziness comes out again
from codatatypes.

Although we have not shown here, one can define the lazy data type of natural numbers
as a codatatype. The data type of ordinary natural numbers can be defined by listing
0 and the successor function as a datatype, but the lazy one is defined by listing one
destructor, the predecessor function.

codatatype CoNat = pred is unit+CoNat;

Pred decreases the given number by one or fails. In the latter case, it returns the
element of un i t . It turns out that CoNat has one extra element, the infinity. Fnrther-
more, in CPL, the data type of ordinary natural numbers is associated with primitive
recursion, whereas the lazy one is associated with general recursion. We cannot define
F~ operator for the ordinary one, but we can define it for the lazy one.

SymML is derived from a categorical programming language CPL. Refer [12] for CPL.
For a lambda calculus version of SymML, refer [la].

Codatypes in ML 649

R e f e r e n c e s

[1] Arbib, M. A. and Manes, E. G.: Arrows, Structures, and Functors - - The Cate-
gorical Imperative ~ . Academic Press, 1975.

[2] Arbib, M. A. and Manes, E. G.: The Greatest Fixed Points Approach to Data
Types. In proceedings of Third Workshop Meeting on Categorical and Algebraic lPdeth-
ods in Computer Science and System Theory, Dortmund, West Germany, 1980.

[3] Burstall, R. M. and Goguen, J. A.: The Semantics of Clear: A Specification Lan-
guage. Internal Report CSR-65-80, Department of Computer Science, University of
Edinburgh, 1980.

[4] Burstall, R. M. and Goguen, J.A.: An Informal Introduction to Specifications using
Clear. In The Correctness Problem in Computer Sciences, Academic Press, pp. 185-
213, 1981.

[5] Burstall, R. M. and Goguen, J.A.: Algebras, Theories and Freeness: an Introduc-
tion for Computer Scientists. Internal Report CSR-65-80, Department of Computer
Science, University of Edinburgh, 1981.

[6] Burstall, R. M., MacQueen, D. and Sannella, D.: HOPE: An Experimental Ap-
plicative Language. Internal Report CSR-62-80, Department of Computer Science,
University of Edinburgh, 1980.

[7] Cardelli, L.: ML under UNIX. Bell Laboratories, Murray Hill, New Jersey, 1982.
[8] Curien, P-L.: Categorical Combinators, Sequential Algorithms and Functional Pro-

gramming. Research Notes in Theoretical Computer Science, Pitman, 1986.
[9] Gordon, M. J., Milner, A. J. and Wordsworth, C. P.: Edinburgh LCF. Lecture Notes

in Computer Science, Volume 78, 1979.
[10] Goguen, J. A., Thatcher, J. W. and Wagner, E. G.: An Initial Algebra Approach

to the Specification, Correctness and Implementation of Abstract Data Types. In
Current Trends in Programming Methodology, prentice-Hall, pp. 80-149, 1978.

[11] Goldblatt, R.: Topoi: The Categorical Analysis of Logic. Studies in Logic and
Foundation of Mathematics, Volume 98, North-Holand, 1979.

[12] Hagino, T.: Category Theoretic Approach to Data Types. Ph. D. thesis, University
of Edinburgh, 1987.

[13] Hagino, T.: A Typed Lambda Calculus with Categorical Constructions. Cate-
gory Theory and Computer Science, Lecture Notes in Computer Science, Vol. 283,
Springer-Verlag, pp. 140-157, 1987.

[14] Harper, R., MacQueen, D. and Milner, R.: Standard ML. LFCS Report Series,
ECS-LFSC-86-2. Department of Computer Science, University of Edinburgh, 1986.

[15] Lambek, J.: From Lambda-calculus to Cartesian Closed Categories. In To H. B.
Curry; Essays on Combinatory Logic, Lambda-calculus and Formalism, edited by J.
P. Seldin and J. R. Hindley, Academic Press, 1980.

[16] Lambek, J. and Scott, P. J.: Introduction on Higher-Order Categorical Logic.
Cambridge Studies in Advanced Mathematics, Volume 7, 1986.

[17] Lehmann, D. and Smyth, M.: Algebraic Specification of Data Types - A Synthetic
Approach -. Mathematical System Theory, Volume 14, pp. 97-139, 1981.

[18] Mason, I.: The Semantics of Destructive Lisp. CSLI Lecture Notes No. 5, 1986.
[19] Mauny, M.: Compilation des Languages Functionnels dnas les Combinateurs

Categoriques, Application au language ML. These de 3eme cycle, UniversiteParis
7, 1985.

650 T. Hagino

[20] Mauny, M. and Saurez, A.: Implementing Functional Languages in the Categori-
cal Abstract Machine. A. C. M. Conference on Lisp and Fuactional Programming,
Cambridge, pp. 266-278, 1986.

[21] Mac Lane, S.: Categories for the Working Mathematician. Graduate Tezts in
Mathematics 5, Springer-Verlag, 1971.

[22] Paulson, L. C.: Logic and Computation - - Interactive Proof with Cambridge LCF
-- . Cambridge Tracts in Theoretical Computer Science, Combridge University Press,
1987.

[23] Pitt, D., Abramsky, S., Poign~, A. and Rydeheard, D. (edited): Category The-
ory and Computer Programming, Lecture Notes in Computer Science, Volume 240,
Springer-Verlag, 1986.

[24] Scott, D.: Data Types as Lattices. SIAM Journal of Computing, Volume 5, pp.
552-587, 1976.

[25] Smyth, M. B. and Plotkin, G. D.: The Category-Theoretic Solution of Recursive
Domain Equations. SIAM Journal of Computing, Volume 11, pp. 761-783, 1982.

