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We obtain two fixed point theorems for complete partial metric space that, by one hand,
clarify and improve some results that have been recently published in Topology and its
Applications, and, on the other hand, generalize in several directions the celebrated Boyd
and Wong fixed point theorem and Matkowski fixed point theorem, respectively.
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1. Introduction and preliminaries

In [2, Theorem 1], Altun, Sola and Simsek established the following fixed point theorem for complete partial metric
spaces.

Theorem 1. ([2]) Let (X, p) be a complete partial metric space and let f : X → X be a map such that

p( f x, f y) � φ

(
max

{
p(x, y), p(x, f x), p(y, f y),

1

2

[
p(x, f y) + p(y, f x)

]})
,

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a continuous nondecreasing function such that φ(t) < t for all t > 0. Then f has a
unique fixed point.

In [1], Altun and Sadarangani observed that the proof of Theorem 1 was wrong (in fact, the error occurs on page 2781,
line 11, as the authors noted) and then they proved the following modification of it.

Theorem 2. ([1]) Let (X, p) be a complete partial metric space and let f : X → X be a map such that

p( f x, f y) � φ

(
max

{
p(x, y), p(x, f x), p(y, f y),

1

2

[
p(x, f y) + p(y, f x)

]})
,
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for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a nondecreasing function such that the series
∑∞

n=0 φn(t) converges for all t > 0
(φn denotes the n-th iterate of φ). Then f has a unique fixed point.

In this paper we show that, regardless, Theorem 1 above is true; in fact, we prove a more general result by replacing the
condition that φ is continuous and nondecreasing by the condition that it is upper semicontinuous from the right, obtaining,
in this way, a result that generalizes in several directions the celebrated Boyd–Wong fixed point theorem [3].

Furthermore, we modify Theorem 2 by replacing the condition that the series
∑∞

n=0 φn(t) converges for all t > 0 by
simply that limn→∞ φn(t) = 0 for all t > 0, obtaining, in this way, a result that generalizes in several directions the celebrated
Matkowski fixed point theorem [6].

In the sequel the letters N and ω will denote the set of all positive integer numbers and the set of all nonnegative
integer numbers, respectively.

Let us recall that partial metric spaces were introduced by Matthews [5] to study denotational semantics of dataflow
networks. In fact, (complete) partial metric spaces constitute a suitable framework to model several distinguished examples
of the theory of computation and also to model metric spaces via domain theory (see, for instance, [4,5,8–11]).

Following [5], a partial metric on a set X is a function p : X × X → [0,∞) such that for all x, y, z ∈ X :
(i) x = y ⇔ p(x, x) = p(x, y) = p(y, y); (ii) p(x, x) � p(x, y); (iii) p(x, y) = p(y, x); (iv) p(x, z) � p(x, y) + p(y, z) −

p(y, y).
Observe that if p(x, y) = 0 then x = y.
A partial metric space is a pair (X, p) such that X is a set and p is a partial metric on X .
In the rest of this section we recall some properties of partial metric spaces which will be useful later on.
Each partial metric p on X induces a T0 topology τp on X which has as a base the family of open balls {B p(x, ε): x ∈ X,

ε > 0}, where B p(x, ε) = {y ∈ X: p(x, y) < ε + p(x, x)} for all x ∈ X and ε > 0.
If p is a partial metric on X , then the function ps : X × X → [0,∞) given by ps(x, y) = 2p(x, y) − p(x, x) − p(y, y), is a

metric on X .
Furthermore, a sequence (xn)n∈N in a partial metric space (X, p) converges, with respect to τps , to a point x ∈ X if and

only if

lim
n,m→∞ p(xn, xm) = lim

n→∞ p(xn, x) = p(x, x).

According to [5], a sequence (xn)n∈N in a partial metric space (X, p) is called a Cauchy sequence if there exists (and is
finite) limn,m→∞ p(xn, xm), and (X, p) is called complete if every Cauchy sequence (xn)n∈N converges, with respect to τp , to
a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

Example 1. Let X = [0,∞) and let p : X × X → [0,∞) be given by p(x, y) = max{x, y} for all x, y ∈ X . It is well known and
easy to see that (X, p) is a complete partial metric space. In fact, ps is the Euclidean metric on X .

Finally, the following crucial facts are shown in [5]:
(a) A sequence in a partial metric space (X, p) is a Cauchy sequence if and only if it is a Cauchy sequence in the metric

space (X, ps).

(b) A partial metric space (X, p) is complete if and only if (X, ps) is complete.

2. The results

In order to simplify the notation, given a partial metric space (X, p) and f : X → X a map, we define

P f (x, y) := max

{
p(x, y), p(x, f x), p(y, f y),

1

2

[
p(x, f y) + p(y, f x)

]}
,

for all x, y ∈ X .

Lemma 1. Let (X, p) be a partial metric space and let f : X → X be a map. Then, for each x ∈ X, we have

P f (x, f x) = max
{

p(x, f x), p
(

f x, f 2x
)}

.

Proof. Let x ∈ X . Then

max
{

p(x, f x), p
(

f x, f 2x
)}

� P f (x, f x)

= max

{
p(x, f x), p

(
f x, f 2x

)
,

1

2

[
p
(
x, f 2x

) + p( f x, f x)
]}

� max

{
p(x, f x), p

(
f x, f 2x

)
,

1

2

[
p(x, f x) + p

(
f x, f 2x

)]}

= max
{

p(x, f x), p
(

f x, f 2x
)}

.

The proof is complete. �
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Lemma 2. Let (X, p) be a partial metric space and let f : X → X be a map such that

p( f x, f y) � φ
(

P f (x, y)
)
,

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a function such that φ(t) < t for all t > 0. If x ∈ X satisfies that f nx �= f n+1x for all
n ∈ ω, then the following hold:

(a) P f ( f nx, f n+1x) = p( f nx, f n+1x ) for all n ∈ ω.
(b) p( f nx, f n+1x) � φ(p( f n−1x, f nx)) < p( f n−1x, f nx) for all n ∈ N.

Proof. (a) Let x ∈ X be such that f nx �= f n+1x for all n ∈ ω. Then p( f nx, f n+1x) > 0 for all n ∈ ω. By Lemma 1,

P f
(

f nx, f n+1x
) = max

{
p
(

f nx, f n+1x
)
, p

(
f n+1x, f n+2x

)}
.

Since

p
(

f n+1x, f n+2x
)
� φ

(
P f

(
f nx, f n+1x

))
< P f

(
f nx, f n+1x

)
,

it follows that P f ( f nx, f n+1x) = p( f nx, f n+1x) for all n ∈ ω.
(b) Taking into account (a), we deduce that

p
(

f nx, f n+1x
)
� φ

(
P f

(
f n−1x, f nx

)) = φ
(

p
(

f n−1x, f nx
))

< p
(

f n−1x, f nx
)
,

for all n ∈ N. �
Let us recall that a function φ : [0,∞) → [0,∞) is upper semicontinuous from the right provided that for each t � 0 and

each sequence (tn)n∈N such that tn � t and limn→∞ tn = t , it follows that lim supn→∞ φ(tn) � φ(t).

Theorem 3. Let (X, p) be a complete partial metric space and let f : X → X be a map such that

p( f x, f y) � φ
(

P f (x, y)
)
,

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a upper semicontinuous from the right function such that φ(t) < t for all t > 0. Then f
has a unique fixed point z ∈ X. Moreover p(z, z) = 0.

Proof. Let x ∈ X . If there is n ∈ ω such that f nx = f n+1x, then f nx is a fixed point of f and uniqueness of f nx follows as
in the last part of the proof below.

Hence, we shall assume that f nx �= f n+1x for all n ∈ ω. Put x0 = x and construct the sequence (xn)n∈ω where xn = f nx0
for all n ∈ ω. Thus xn+1 = f xn and p(xn, xn+1) > 0 for all n ∈ ω.

By Lemma 2(b), there is c � 0 such that

lim
n→∞ p(xn, xn+1) = lim

n→∞φ
(

p(xn, xn+1)
) = c.

If c > 0, we have

c = lim sup
n→∞

φ
(

p(xn, xn+1)
)
� φ(c) < c,

a contradiction. So limn→∞ p(xn, xn+1) = 0.
Next we show that limn,m→∞ p(xn, xm) = 0.
This will be done by adapting a technique of Boyd and Wong [3, Theorem 1]. Indeed, assume the contrary. Then there

exist ε > 0 and sequences (nk)k∈N , (mk)k∈N in N, with mk > nk � k, and such that p(xnk , xmk ) � ε for all k ∈ N.
From the fact that limn→∞ p(xn, xn+1) = 0 we can suppose, without loss of generality, that p(xnk , xmk−1) < ε.
For each k ∈ N we have

ε � p(xnk , xmk ) � p(xnk , xmk−1) + p(xmk−1, xmk ) < ε + p(xmk−1, xmk ),

and, hence, limk→∞ p(xnk , xmk ) = ε.
Now let k0 ∈ N be such that p(xnk+1, xnk ) < ε and p(xmk+1, xmk ) < ε for all k � k0. Then

p(xnk , xmk ) � P f (xnk , xmk )

� p(xnk , xmk ) + 1

2

(
p(xmk , xmk+1) + p(xnk+1, xnk )

)
,

for all k � k0. So limk→∞ P f (xnk , xmk ) = ε.
Since P f (xnk , xmk ) � ε for all k ∈ N, and φ is upper semicontinuous from the right, we deduce that

lim sup φ
(

P f (xnk , xmk )
)
� φ(ε).
k→∞
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On the other hand, for each k ∈ N we have

ε � p(xnk , xmk ) � p(xnk , xnk+1) + p(xnk+1, xmk+1) + p(xmk+1, xmk )

� p(xnk , xnk+1) + φ
(

P f (xnk , xmk )
) + p(xmk+1, xmk ),

so

ε � lim sup
k→∞

φ
(

P f (xnk , xmk )
)
� φ(ε),

a contradiction because φ(ε) < ε.
Consequently limn,m→∞ p(xn, xm) = 0, and, thus, (xn)n∈ω is a Cauchy sequence in the complete partial metric space

(X, p). Hence, there is z ∈ X such that

lim
n,m→∞ p(xn, xm) = lim

n→∞ p(z, xn) = p(z, z) = 0.

We show that z is a fixed point of f .
To this end we first note that

p(z, f z) = lim
n→∞ P f (z, xn),

so

lim sup
n→∞

φ
(

P f (z, xn)
)
� φ

(
p(z, f z)

)
.

On the other hand, since for each n ∈ ω,

p(z, f z) � p(z, xn) + p(xn, f z),

it follows that

p(z, f z) � lim sup
n→∞

(
p(z, xn) + p(xn, f z)

) = lim sup
n→∞

p(xn, f z)

� lim sup
n→∞

φ
(

P f (xn−1, z)
)
� φ

(
p(z, f z)

)
.

Therefore p(z, f z) = 0 and thus z = f z.
Finally, let u ∈ X be such that f u = u. Then,

p(u, z) = p( f u, f z) � φ
(

P f (u, z)
) = φ

(
p(u, z)

)
.

Hence p(u, z) = 0, i.e., u = z. This concludes the proof. �
Corollary 1. Let (X, p) be a complete partial metric space and let f : X → X be a map such that

p( f x, f y) � φ
(

p(x, y)
)
,

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a upper semicontinuous from the right function such that φ(t) < t for all t > 0. Then f
has a unique fixed point z ∈ X. Moreover p(z, z) = 0.

Corollary 2. (Boyd and Wong [3]) Let (X,d) be a complete metric space and let f : X → X be a map such that

d( f x, f y) � φ
(
d(x, y)

)
,

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a upper semicontinuous from the right function such that φ(t) < t for all t > 0. Then f
has a unique fixed point.

The following is a typical instance where Theorem 1 (and also Corollary 1) can be applied but Theorem 2 not.

Example 2. Let (X, p) be the complete partial metric space of Example 1, and let f : X → X be given by f x = x/2 for all
x ∈ X .

Now let φ : [0,∞) → [0,∞) be defined by

φ(0) = 0,

φ(t) = nt

n + 2
+ 1

(n + 1)(n + 2)
if t ∈

[
1

n + 1
,

1

n

)
, n ∈ N, and

φ(t) = t
if t � 1.
2
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It is routine to check that φ is continuous on [0,∞) with t/2 � φ(t) < t for all t > 0. Hence φ satisfies the conditions of
Theorem 1 and thus of Corollary 1. Note that, in fact, the graph of the restriction of φ to [1/(n + 1),1/n], n ∈ N, is the
straight line segment with origin at (1/(n + 1),1/(n + 2)) and end at (1/n,1/(n + 1)).

Nevertheless, since φ(1/n) = 1/(n + 1) for all n ∈ N, and φ(t) = t/2 for all t > 1, it follows that
∑∞

n=0 φn(t) = ∞ for all
t > 0. So φ does not satisfy the conditions of Theorem 2.

Finally, we have p( f x, f y) = max{x/2, y/2} � φ(max{x, y}) = φ(p(x, y)), for all x, y ∈ X , and thus, all conditions of
Theorem 1 (and also of Corollary 1) are satisfied.

In order to state our next theorem we shall need the following well-known and easy, but useful, observation.

Lemma 3. ([6,7]) Let φ : [0,∞) → [0,∞) be nondecreasing and let t > 0. If limn→∞ φn(t) = 0, then φ(t) < t.

Theorem 4. Let (X, p) be a complete partial metric space and let f : X → X be a map such that

p( f x, f y) � φ
(
M f (x, y)

)
,

where M f (x, y) = max{p(x, y), p(x, f x), p(y, f y)} for all x, y ∈ X, and φ : [0,∞) → [0,∞) is a nondecreasing function such that
limn→∞ φn(t) = 0 for all t > 0. Then f has a unique fixed point z ∈ X. Moreover p(z, z) = 0.

Proof. Let x ∈ X . If there is n ∈ ω such that f nx = f n+1x, then f nx is a fixed point of f and uniqueness of f nx follows as
in the last part of the proof below.

Hence, we shall assume that f nx �= f n+1x for all n ∈ ω. Put x0 = x and construct the sequence (xn)n∈ω where xn = f nx0
for all n ∈ ω. Thus xn+1 = f xn and p(xn, xn+1) > 0 for all n ∈ ω. By Lemma 2(b),

p(xn, xn+1) � φ
(

p(xn−1, xn)
)
,

for all n ∈ ω. Then, since φ is nondecreasing, we deduce that

p(xn, xn+1) � φn(p(x0, x1)
)
,

for all n ∈ ω. Hence

lim
n→∞ p(xn, xn+1) = 0.

Now choose an arbitrary ε > 0. Since limn→∞ φn(ε) = 0 it follows from Lemma 3 that φ(ε) < ε, so there is nε ∈ N such
that

p(xn, xn+1) < ε − φ(ε),

for all n � nε . Therefore

p(xn, xn+2) � p(xn, xn+1) + p(xn+1, xn+2)

< ε − φ(ε) + φ
(

p(xn, xn+1)
)

� ε − φ(ε) + φ(ε) = ε,

for all n � nε . So

p(xn, xn+3) � p(xn, xn+1) + p(xn+1, xn+3)

< ε − φ(ε) + φ
(
M f (xn, xn+2)

)
� ε − φ(ε) + φ(ε) = ε,

and following this process

p(xn, xn+k) < ε,

for all n � nε and k ∈ N. Consequently

lim
n,m→∞ p(xn, xm) = 0,

and thus (xn)n∈ω is a Cauchy sequence in the complete partial metric space (X, p). Hence there is z ∈ X such that

lim
n,m→∞ p(xn, xm) = lim

n→∞ p(z, xn) = p(z, z) = 0.

We show that z is a fixed point of f .
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Assume the contrary. Then p(z, f z) > 0. For each n ∈ N we have

p(z, f z) � p(z, xn) + p(xn, f z) � p(z, xn) + φ
(
M f (z, xn−1)

)
.

From our assumption that p(z, f z) > 0, it easily follows that there is n0 ∈ N such that M f (z, xn−1) = p(z, f z) for all
n � n0.

So

p(z, f z) � p(z, xn) + φ
(

p(z, f z)
)
,

for all n � n0.
Taking limits as n → ∞, we obtain that p(z, f z) � φ(p(z, f z)) < p(z, f z), a contradiction. Consequently z = f z.
Finally, uniqueness of z follows as in Theorem 3. �

Corollary 3. Let (X, p) be a complete partial metric space and let f : X → X be a map such that

p( f x, f y) � φ
(

p(x, y)
)
,

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a nondecreasing function such that limn→∞ φn(t) = 0 for all t > 0. Then f has a unique
fixed point z ∈ X. Moreover p(z, z) = 0.

Corollary 4. (Matkowski [6]) Let (X,d) be a complete metric space and let f : X → X be a map such that

d( f x, f y) � φ
(
d(x, y)

)
,

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a nondecreasing function such that limn→∞ φn(t) = 0 for all t > 0. Then f has a unique
fixed point z ∈ X.

Remark. Note that Theorem 4 can be also applied to Example 2, because in this example the function φ is nondecreasing
and limn→∞ φn(t) = 0, for all t > 0
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