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Aims: The clinical syndrome of heart failure includes exercise limitation that is not directly linked to measures
of cardiac function. Quadriceps fatigability may be an important component of this and this may arise from
peripheral or central factors.
Methods and results: We studied 10 men with CHF and 10 healthy age-matched controls. Compared with a
rest condition, 10min after incremental maximal cycle exercise, twitch quadriceps force in response to
supramaximal magnetic femoral nerve stimulation fell in both groups (CHF 14.1%±18.1%, p=0.037; Control:
20.8±11.0%, pb0.001; no significant difference between groups). There was no significant change in quadri-
ceps maximum voluntary contraction voluntary force. The difference in the motor evoked potential (MEP)
response to transcranial magnetic stimulation of the motor cortex between rest and exercise conditions at
10min, normalised to the peripheral action potential, also fell significantly in both groups (CHF: 27.3±

38.7%, p=0.037; Control: 41.1±47.7%, p=0.024). However, the fall in MEP was sustained for a longer period
in controls than in patients (p=0.048).
Conclusions: The quadriceps is more susceptible to fatigue, with a similar fall in TwQ occurring in CHF patients
at lower levels of exercise. This is associated with no change in voluntary activation but a lesser degree of
depression of quadriceps motor evoked potential.
© 2012 Elsevier Ireland Ltd. Open access under CC BY-NC-ND license. 
1. Introduction

The clinical syndrome of congestive heart failure (CHF) is not
fully explained by measures of cardiac function [1] and the classic
haemodynamic model does not adequately explain the exercise
intolerance which is characteristic. In particular, exercise tolerance
does not correlate with ejection fraction at rest, [2] or central
haemodynamics at rest or on exercise [3], though some echocardio-
graphic measures of left ventricular function fare better [4]. Models
incorporating adaptations to organs other than the heart have been
more successful [5] and there is growing interest in exercise and
rehabilitation as therapy for heart failure patients [6].

Leg discomfort is a symptom which limits exercise in some
patients with CHF. The underlyingmechanisms implicated in this sensa-
tion aremultifactorial but include increased fatigability, where fatigue is
defined as a reversible loss of the capacity to generate force resulting
from activity under load [7]. The quadriceps muscle in CHF displays a
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shift away from fatigue resistant type I fibres, loss of oxidative enzymes
and reduced capillarity, similar to that observed in COPD [8]. Quadriceps
muscle fatigue can be identified bymeasuring the fall in isometric twitch
tension (TwQ) in response to a single supramaximal stimulus applied to
the femoral nerve occurring after exercise [9]. In addition to this periph-
eral mechanism, a reduction in the ability to generate force can be
caused by a fall in neural drive termed “central fatigue”. The excitability
of the motor cortex is also influenced by exercise. In healthy subjects,
exercise induces a reversible fall in the amplitude of the electrical signal
(Motor Evoked Potential, MEP) elicited by transcranial magnetic stimu-
lation (TMS) of the motor cortex area controlling the quadriceps [10].

In the present study we wished to examine whether peripheral and
central fatigue mechanisms were similar in patients with CHF and
healthy age-matched controls by measuring response to magnetic
femoral nerve stimulation assessing the level of voluntary activation
using twitch interpolation and measuring quadriceps motor cortical
excitability before and after symptom limited cycle ergometry.

2. Methods

2.1. Subjects

The study was conducted in accordance with The Helsinki Declaration. The authors
of this manuscript have certified that they comply with the Principles of Ethical Pub-
lishing in the International Journal of Cardiology. All subjects gave their written
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informed consent and the experiment was approved by the Royal Brompton Hospital
ethics committee. Subjects were requested to refrain from exercise in the 24hours be-
fore the study, from significant alcohol consumption on the night before the study, and
from caffeine on the day.

A total of 12 controls and 16 patients with CHF participated. One control subject,
and 4 CHF patients, did not complete the protocol because they found it too demand-
ing. One CHF patient developed angina during his exercise test and the experiment was
stopped. In one further CHF patient and control subject we were unable to stimulate
the motor cortex satisfactorily on a second occasion. Thus 10 subjects from each
group completed both stages of the protocol and their data is presented here.

The 10 male patients, aged 54.8±12.3years, height 175±7cm, weight 90±13kg,
ejection fraction 38±9% were recruited from specialist CHF clinics. Diagnosis was based
upon clinical history and echocardiography. Exclusion criteria included any history of
lung disease, neuromuscular disease limiting exercise, symptomatic peripheral vascular
disease, uncontrolledhypertension, exercise-induced angina, or exercise-induced ventric-
ular arrhythmias aswell as the presence of a permanent pacemaker, or previousneurosur-
gery, which are contra-indications to magnetic stimulation. All patients had been stable
for the previous month. One patient was in NYHA class I, 7 were in class II and 2 were
in class III. The aetiology of left ventricular dysfunction was ischaemic in 3 and idiopathic
dilated cardiomyopathy in 7 patients. One was in atrial fibrillation and one had type II
diabetes. All were taking loop diuretics and ACE-inhibitors or angiotensin II receptor
antagonists. Nine took beta-blockers; four spironolactone and two digoxin.

The control group was recruited from healthy volunteers who were known to the
laboratory. It also consisted of 10 men, matched for age (52.6±13.2years, p=0.62),
height (178±6cm, p=0.38) and weight (88±14kg, p=0.65).

2.2. Measurements

Quadriceps maximum voluntary contraction (QMVC) was measured as previously
describedwith subjects supine [9]. Subjects performedat least 5 sustainedmaximal isometric
contractions of between 5 and 10s durationwith simultaneous visual feedback and vigorous
verbal encouragement. There was at least a 30‐s pause between contractions.

Transcranial magnetic stimulation (TMS) was performed using a double Magstim
200 magnetic stimulator, discharging both units simultaneously (Magstim Co. Ltd,
Whitlands, Dyfed, Wales, UK) through a 120mm double cone coil (type 9902, Magstim
Co. Ltd.). The coil was centred over the vertex, which was marked on the subject at the
start of the experiment [11–15]. Unpotentiated, twitch quadriceps force (TwQ) in
response to supramaximal, magnetic femoral nerve stimulation was measured as
described previously, with subjects supine on the bench described above using the
same double stimulator and a 70mm ‘branding iron’ coil (Magstim Co. Ltd.) [9].

.2.2.1. Electromyography
Surface recordings of the rectus femoris response to magnetic stimulation (EMG)

were obtained using electrodes placed over the belly of the muscle in its longitudinal
axis [16]. EMG signals, whether evoked by peripheral nerve (compound muscle action
potential, CMAP) or cortical (motor evoked potential, MEP) stimulation were ampli-
fied, recorded at 20kHz, band-pass filtered between 0.3 and 3kHz. The MEP was
normalised in a linear fashion for variations in the CMAP.

.2.2.2. Cardiopulmonary exercise testing
Subjects performed symptom limited incremental cycle ergometry with measure-

ment of metabolic parameters with increments set at 10W per minute for patients
with CHF and 20W per minute for healthy controls. The percent predicted VO2 for
each subject was also calculated using published formulae [17].

2.3. Protocols and timings

Both CHF and control subjects underwent an exercise session and a control session
on separate days, in a random order (Fig. 1). All sessions started at the same time of
Fig. 1. Schematic of the protocol that all subjects underwent. The rest period lasted 30min.
(either rest or exercise). TMS transcranial magnetic stimulation; TwQu Quadriceps twit
contraction.
day, and took approximately 4hours. Subjects rested supine for 20min at the start of
each session. To elicit the motor threshold for the quadriceps, the lowest stimulator
output, in steps of 5%, that elicited at least a 50μV MEP in the rectus femoris in at
least 5 of 10 TMS stimulations, was sought. Seven TMS at 140% of that threshold
level or 100% stimulator output (whichever was the lower) were then delivered.

The optimal coil position for femoral nerve stimulationwas determined as previously
described [9]. A 30‐s gap between stimulationswas required to prevent ‘twitch on twitch’
potentiation and a stimulus response curve constructed to ensure supramaximality, with
4 stimuli at 80%, 85%, 90%, 95% and 100% of stimulator output, delivered in random order.
2 further stimuli were then delivered at maximal stimulator output.

Finally, five QMVC's were recorded. To determine the degree of voluntary activation of
the quadriceps, stimulation was performed at the peak of the voluntary contraction to
produce an interpolated twitch, and approximately 4s after the end of the contraction, to
produce a potentiated twitch. The interpolated and potentiated twitches were compared to
determine the percent activation during the QMVC manoeuvre (100−interpolated twitch/
potentiated twitch×100) [18].

Subjects then either sat quietly resting in the muscle laboratory for 30min or
underwent a maximal exercise test in random order. After this period subjects were
requested to lie supine on the bench for the remainder of the experiment. At 10, 30,
60 and 90min seven TMS, five TwQ and five QMVC'd with interpolated and potentiated
twitches were recorded.

2.4. Statistics

Analyses were performed using SPSS 11.0.0 and R 2.0.1 software. All tests were
2-sided and p values under 0.05 were considered significant. Simple comparisons
between groups were assessed with t tests (paired or unpaired), Mann–Whitney U
tests, or Wilcoxon Signed Rank tests as appropriate. Values recorded over time were
normalised to baseline to ensure equivalent contribution from each subject. Areas
under the curves between 10min and 90min were chosen as summary measures to
describe the differences between the rest and exercise conditions; the units are there-
fore % minute. Mixed model analysis of variance (ANOVA) with random subject effects
was performed where appropriate to evaluate changes from baseline.

3. Results

3.1. Exercise data

Patients exercised for a similar duration to controls (775±203s
vs. 704±117s, p=0.35), but the maximum workload achieved the
CHF patients was markedly lower (127±34W vs. 226±38W, p=
b0.001). The peak RQ in both groups was high, confirming the moti-
vation of the subjects taking part in this experiment (CHF: 1.24±
0.07; Controls: 1.32±0.14, p=0.16). Both absolute (17.9±4.3ml
kg−1 min−1 vs. 29.2±3.6ml kg−1 min−1, pb0.001) and percent
predicted (66.0±13.3% vs. 102.8±18.1%, pb0.001) peak VO2 were
significantly lower in the CHF group.

3.2. Muscle force data

Baseline quadriceps strength did not differ significantly between
patients and controls; TwQ: 93±27N vs. 108±31N, (p=0.26);
QMVC: 428±91N vs. 522±124N, (p=0.09). TwQ fell significantly
after exercise (Fig. 2) in both groups (Control: 898% min, p=0.002;
Assessments were made at baseline and at 10, 30, 60 and 90min after the intervention
ch in response to femoral nerve stimulation; MVC quadriceps maximum voluntary



Fig. 3. Change in magnitude of the force of maximal voluntary contractions (MVC) over
time in control subjects (A) and patients (B) (n=9 in both groups) relative to baseline
expressed as a percentage. There was no significant difference in the pattern of the
response between the two interventions in both groups (Controls p=0.44, CHF p=
0.084).
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CHF: 867% min, p=0.019). At 10min, the mean fall in the control
group was 20.8±11.0% (pb0.001) vs. 14.1±18.1% (p=0.037) in the
CHF group. There was no significant difference in either the overall
response or that at 10min between groups.

In the control group QMVC increased after exercise (Fig. 3),
whereas in the CHF group force fell. Neither change achieved signifi-
cance (−310% min, p=0.44 vs. 647% min, p=0.084; difference
between groups p=0.076). Potentiated twitch responses are larger
than unpotentiated ones and a number of subjects did not tolerate
them, meaning that the degree of voluntary activation could only be
calculated in 9 control subjects and 5 patients. The degree of volun-
tary activation at baseline was numerically higher in the control
group at rest but this difference was not significant (Controls 85.3±
6.3% vs. CHF 79.3±2.9%, p=0.071). The degree of voluntary activa-
tion did not vary over the course of the experiment in either group
or between groups.

3.3. EMG data

The response to TMS of the quadriceps motor area after exercise
differed between patients and controls (Fig. 4). In both groups there
was a significant fall in the MEP amplitude (normalised for CMAP
against baseline) at 10min (Control: Rest 112.1±32.0%, Exercise
73.7±28.1%, Difference 41.1±47.7%, p=0.024; CHF: Rest 107.1±
36.1%, Exercise 79.8±36.0%, Difference 27.3±38.7%, p=0.037).
However, whereas this separation was maintained in the control
group it was not in the CHF group (Control: Area 2365% min, p=
0.029, CHF: Area 214% min, p=0.96). Using a mixed model analysis
of variance this differential was significant (p=0.048).

There was no significant change in either group over time in the
CMAP response to femoral nerve stimulation in either condition
(Fig. 5) (Rest, Controls, p=0.17; Exercise, Controls, p=0.95; Rest,
CHF, p=0.72; Exercise, CHF, p=0.88). There was no significant
difference in the MEP latency at baseline between groups or conditions
(Rest, Controls, 23.1±1.1ms; Exercise, Controls, 22.4±1.4ms; Rest,
Fig. 2. Change in force of peripheral quadriceps twitches over time in control subjects
(A) and patients (B) relative to baseline expressed as a percentage. There was a signif-
icant difference in the pattern of the response between the two interventions in both
groups (Controls: p=0.002, CHF: p=0.019). Difference between interventions at
10min: *pb0.001, **p=0.037.
CHF, 23.3±1.8ms; Exercise, CHF, 23.0±1.6ms; overall p=0.60) and
MEP latency also remained constant throughout the experiment for
each group and condition (Fig. 6) (Rest, Controls, p=0.99; Exercise,
Controls, p=0.86; Rest, CHF, p=0.97; Exercise, CHF, p=0.99).
Fig. 4. Change in motor evoked potential (MEP) over time in control subjects (A) and
patients (B), corrected for changes in the compound muscle action potential (CMAP)
relative to baseline expressed as a percentage. There was a significant difference in
the pattern of the response between the control subjects and patients (p=0.048).
Difference between interventions at 10min: *p=0.024, **p=0.037.
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Fig. 5. Changes in the compound muscle action potential (CMAP) over time in control
subjects (A) and patients (B) expressed as a percentage. There was no significant
change in the electrical response to peripheral stimulation in either group in either
condition.

Fig. 6. Changes in the latency in milliseconds (ms) of the motor evoked potential
(MEP) over time in control subjects (A) and patients (B). There was no significant
change in the latency in either group in either condition.
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4. Discussion

The main finding of this study is that the quadriceps of patients
with CHF displays increased susceptibility to fatigue, with a similar
fall in TwQ occurring despite patients exercising at a workload
approximately half of the control subjects. The healthy subjects expe-
rienced a greater fall in MEP response to TMS than CHF patients but
there was no difference between groups in the degree of voluntary
activation.

4.1. Significance of the findings

There have now been a number of studies documenting wasting
and a variety of histological and biochemical abnormalities of striated
muscle in patients with the clinical syndrome of heart failure includ-
ing a reduction in the proportion of fatigue resistant type I fibres,
reduced oxidative enzymes, reduced capillarity and reduced single
fibre myosin content [8,19–21]. The clinical correlates of these
changes are reduced muscle strength and endurance, with a reduced
force per unit of cross sectional area associated with reduced exercise
capacity [22]. Increased quadriceps fatigability has been observed in
patients with chronic obstructive pulmonary disease, a disorder
with many similarities to CHF with respect to the underlying muscle
abnormalities [8]. Studies in this condition have demonstrated both
low frequency fatigue, as in the present study [23] and more rapid
decline in force in response to repetitive magnetic stimulation [24].

Although twitch force declined at 10min after exercise, the force
of the maximal voluntary contraction did not, in keeping with other
studies [25] and the known differences in physiology between high
and low frequency fatigue [26,27]. During a maximal voluntary con-
traction, if central nervous system drive is maximal, then an addition-
al stimulus to the peripheral nerve will elicit no additional response.
We found no significant change in either the force generated by a
maximal voluntary contraction of the quadriceps or the degree of
activation as assessed by the interpolated twitch in either the control
or heart failure groups after exercise. The second finding of our study,
therefore, is that exhaustive exercise does not lead to prolonged func-
tional impairment in the ability to generate force in patients with
CHF.
4.1.1. The cortical response to exercise
In addition to skeletal muscle abnormalities, the ability to gener-

ate force might be influenced by central factors, reviewed in detail
here [28]. Central nervous system perturbation is a feature of CHF.
The characteristic sympathetic and parasympathetic abnormalities
may in part have a central origin [29], there is a high incidence of cog-
nitive deficits [30], cerebrovascular reactivity may be altered [31], as
may cerebral metabolism [32]. Several studies have documented
structural abnormalities [33–35], which cannot entirely be explained
by either hypotension or embolism. Rosen et al. documented distinct
patterns of cortical activity between patients with heart failure and
controls in association with exercise-induced breathlessness [36].

Both patients and controls exhibited a depressed response to TMS
after exercise. The mechanisms and significance of the depression of
the MEP after whole body exercise have not yet been determined. The
change in the MEP with exercise is complex and most TMS studies
have focused on exercise of single muscle groups. During a fatiguing
contraction of a single muscle group, MEP amplitude is increased [37].
Following a fatiguing isometric contraction, the MEP is briefly
increased, but this is followed by a longer-lasting depression [38].

Several studies have examined the effect of whole body exercise
on cortical excitability in healthy subjects. A depression in the quad-
riceps MEP after exhaustive treadmill exercise has been described
from 5min after exercise which recovered slowly over time [10].
After rowing, a reduction in the erector spinae MEP which was
more pronounced in non-rowers than elite rowers and persisted for
16min post exercise has been observed [39]. A short-lived potentia-
tion in the MEP in the 2min after exercise was only present in the
non-rowers. Hollge et al. noted a significant reduction in a number
of muscles' MEP response to intense exercise [40]. Finally a paper by
Jonville et al. [41] examined the impact of an inspiratory load on the
evolution of the diaphragmatic MEP after constant load exercise set
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just below the anaerobic threshold noting that, in the absence of an
additional load, this level of exercise resulted in a significant fall in
the MEP amplitude at 10min; it remained lower, but not significantly
so, at 20 and 40min. The present findings that whole body exercise
results in a sustained depression of MEP amplitude are therefore con-
sistent with these studies.

This persistent MEP depression has been frequently referred to as
central fatigue, although it has been unclear whether the changes in
the electromyographic response to transcranial magnetic stimulation
contribute to the loss of force [42]. In this study we specifically looked
at the ability to generate force after exercise and conclude that the
changes seen in the MEP are not related to impairment of the ability
to generate force. The lesser reduction observed in CHF patients
may be adaptive or maladaptive. Since the skeletal muscles develop
low frequency fatigue more readily (at a lower workload) it may be
that less cortical compensation is required for adaptations in periph-
eral neuromuscular activation. Alternatively it could be that the
cortical changes occur in response to signalling through some neuro-
humoral mechanism related to the work done in an absolute sense
rather than as a proportion of the individuals maximum exercise
capacity. Myokines produced during exercise such as IL6, which is
known to have central effects might be implicated [43].

4.2. Critique of the method

The subjects in the two groups were well matched and patients
were typical of those found in heart failure clinics. Patients had nu-
merically lower quadriceps strength than controls, though these dif-
ferences were not statistically significant due to the relatively small
sample size. They were optimally treated, as evidenced by the high
use of ACE inhibitors/angiotensin II receptor antagonists and
beta-blockers. Cycle ergometry was chosen as it provides a stable
platform for taking metabolic measurements and allows workload
to be measured directly. The quadriceps muscle was our principal
focus and compared with walking, biomechanics data confirm that
the locomotor limb muscles are more activated during cycling [44].
Strong verbal encouragement was given to all subjects, which is
reflected in the high RERs seen in both groups; the lowest obtained
by any of the 20 subjects was 1.13. Importantly, to enable compari-
sons between the groups, the subjects exercised for a similar length
of time and to a similar level of discomfort, with comparable Borg
scale ratings of leg discomfort and RERs.

4.2.1. Stimulus reproducibility
For the results of this study to be valid stimulus reproducibility is

imperative. The position of the body and head of the subjects was
kept constant as far as possible throughout the experiment. The posi-
tion of the coils relative to the head and femoral nerve was carefully
controlled for by the use of ink marks. The relative stability of the MEP
amplitudes and CMAP amplitudes, as well as forces produced, in the
control condition makes us confident about our ability to reproduce a
consistent stimulation from one series to another. The consistency of
the CMAP amplitudes confirms that there was not a significant change
in peripheral factors thatmay have contributed to the observed changes
in theMEP. Furthermore, the fact that correction of the TMS data for any
variation in the CMAP did not significantly change the pattern or signif-
icance of the results suggests that any changes we saw in MEP ampli-
tudes were genuinely the result of a supraspinal phenomenon.

4.2.2. Magnetic twitch quadriceps tension as a measure of fatigue
Skeletal muscle fatigue is defined as a reversible loss of the capacity

to generate force resulting from activity under load [45]. Low frequency
fatigue (LFF) results in loss of force generated in response to low stim-
ulation frequencies (10–20Hz). These are the typical motor neurone
firing frequencies during human skeletal muscle contraction. The con-
ventional method to detect LFF is to construct force frequency
curves using tetanic stimulation. This is uncomfortable and unaccept-
able to most subjects. An alternative is to measure the force elicited
from a single stimulus. A number of investigators have confirmed that
a twitch elicited by magnetic stimulation of the femoral nerve can be
used to detect fatigue [23]. Magnetic stimulation of the femoral nerve
is not as specific as electrical stimulation, but it is more comfortable,
and supramaximal stimulation is easier to achieve. It is important to
note that a fall in the twitch quadriceps force only indicates contractile
fatigue as a consequence of excitation–contraction coupling if there is
no documented change in the CMAP amplitude, otherwise it may be
due to transmission failure. Our data clearly show that the CMAP ampli-
tude remained remarkably constant across groups and conditions.

4.2.3. Factors relating to the motor evoked potential
The motor evoked potential is the electrical response measured in

a target muscle in response to stimulation of the motor cortex. Clearly
the exercise-induced depression of the MEP could occur from any site
from the cortex to the muscle. We believe that we have excluded
peripheral transmission failure by recording the CMAP and correcting
for fluctuations in its values. The data we present cannot localise the
source of this change within the central nervous system. However,
we believe that the changes do reflect changes in motor cortical excit-
ability. Experiments using transcranial electrical stimulation, trans-
mastoid electrical stimulation, and double or triple stimulation
suggest that the changes seen after exercise are likely to be intra-
cortical rather than spinal [38,46–48].

5. Conclusion

The quadriceps is more susceptible to fatigue in CHF patients with
reduction in twitch force, a non-volitional measure, occurring follow-
ing a lower level of exercise. This is associated with no change in
voluntary activation but a lesser degree of depression of quadriceps
motor evoked potential.
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