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Abstract

Given a monotone property P of graphs, write Pn for the set of graphs with vertex set [n]
having property P. Building on recent results in the enumeration of graphical properties, we
prove numerous results about the structure of graphs in Pn and the functions |Pn|. We also
examine the measure eP(n), the maximum number of edges in a graph of Pn. ? 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

A property of graphs P is a (in5nite) class of labeled graphs closed under isomor-
phism, that is, if H ∈ P and G ∼= H then G ∈ P. A property P is called monotone
if it is closed under taking subgraphs and hereditary if it is closed under taking only
induced subgraphs. Clearly, each monotone property is hereditary, but the converse is
not true. For example, the property of planar graphs is both hereditary and monotone,
while the property of perfect graphs is hereditary but not monotone.

A valuable tool to study graph properties is graphical enumeration. Often one cannot
directly say how one property is related to another, but counting the number of graphs
or examining the types of graphs in a property gives an indication of the information
one needs.

There are two reasonable ways to count monotone properties. The 5rst is the speed
(of growth) of a property, de5ned as follows. Given a property P, write Pn for the
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n-level of P, the set of graphs in P with vertex set [n]={1; : : : ; n}. Then the speed of
P, |Pn|, is the number of graphs in the property on n vertices. For example, if P is
the trivial property containing all graphs, then |Pn|= 2( n

2 ). If P= {G: G = K1; r ∪̇Ks},
then |Pn| =∑n

i=3 i( n
i ) + ( n

2 ) + 1 = n2n−1( n
2 ) − n + 1. An important but trivial fact to

note is that if G ∈ Pn, all graphs isomorphic to G are in Pn, so |Pn| is at least as
large as the number of non-isomorphic labelings of G.

Another useful measure in the case of monotone properties is its size. Again, this
measure actually considers how the property grows. The size of a monotone property
P at level n is the maximum number of edges in a graph of Pn. That is, the size
eP(n) = max{|E(G)|: G ∈ Pn}. As a monotone property contains every subgraph of
each graph achieving this number of edges, the size is a good measure of how large
a property is. In fact, this measure played a large part in the development of the 5eld
of extremal graph theory, as shall be discussed in Section 7.

Certainly there is some correspondence between the size and the speed of the growth
of a property. In particular,

2eP(n) 6 |Pn|6
(

( n
2 )

eP(n)

)
:

For some properties P, this inequality is asymptotically sharp. For example if P =
{G: !(G)6 k}, then eP(n)=tk(n) and |Pn|=2tk (n)+o(n2), where the kth Tur#an number,
tk(n) = ( n

2 ) −
∑k−1

i=0 ( �(n+i)=k�
2 ) ∼ (1 − 1=k)( n

2 ). However, in other cases the speed and
the size can be arbitrarily far apart. For example, if P= {G: G = H ∪̇Kr for some H
with |V (H)|6 k}, eP(n)=( k

2 ) for all n but Pn ¿ ( n
k )�2( k

2 ). Hence the measures are
in fact fundamentally diMerent.

Every monotone property may be described in terms of its forbidden subgraphs.
Given a collection H of graphs, ForbH is de5ned to be the property of all graphs
having no subgraph isomorphic to any graph of H. This is clearly a monotone property,
and it is also clear that any monotone property has a set of forbidden subgraphs. All
early work on measures on properties of graphs was thought of in terms of a set of
forbidden subgraphs (see [12,18-21]), but recent works have viewed the measures and
properties under consideration more broadly.

In particular, there has been a great deal of work recently on the speed of general
hereditary properties of graphs (e.g. [23,5,2]), characterizing the possible speeds and
structures that such properties have. In some sense, this gives a broad characterization
for monotone properties as well, since all monotone properties are hereditary. However,
as the condition of monotonicity is more restrictive than that of being hereditary, one
might expect a more restrictive characterization of speeds and structures for monotone
properties. This is in fact the case, and we produce results and descriptions which are
much more elegant than those possible for hereditary properties.

Previous work on hereditary properties (see [2–5,23]) produced the results consoli-
dated in the theorem below. Note that b(n) is the nth Bell number, and b(n)=n(1+o(1))n.
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Theorem 1. Let P be a hereditary property of graphs. Then; for all su9ciently large
n; one of the following holds:
(i) |Pn| is identically zero; one or two.
(ii) There is an integer k ¿ 0 such that |Pn| is a polynomial in n of degree k.
(iii) There is an integer k ¿ 0 such that |Pn| has exponential order of the form∑k

i=0 pi(n)in; where pi is a polynomial in n.
(iv) There is an integer k ¿ 1 such that |Pn|= n(1−1=k+o(1))n.
(v) b(n)6 |Pn|6 no(n2).
(vi) There is an integer k ¿ 1 such that |Pn|= 2(1−1=k+o(1))n2=2.

Thus, putting it somewhat vaguely, the growth of |Pn| can be constant, polynomial,
exponential, or in one of three factorial ranges.

In the rest of the paper, we use de5nitions of these terms (as in [2]) which are
non-standard, describing the dominant factor of growth rather than the whole func-
tion. Keep in mind also that all of our functions are de5ned as f: N → R, but
our speed descriptions act as if they are de5ned everywhere. A constant function is
one which, for suNciently large n, is constant. A polynomial function is one which,
for suNciently large n, is polynomial. Our notation for both polynomial and con-
stant speeds is standard. An exponential function is one which, for suNciently large
n, acts like the sum of exponential terms with polynomial coeNcients. For k ¿ 1,
the notation �(kn) thus has its usual meaning, but we shall write f(n) = O(kn)
if the fastest growing term in the expansion of f(n) has the form cntkn for some
c; t. We de5ne �(kn) similarly. A factorial function is one which is at least ncn for
some c¿ 0.

Otherwise our notation and terminology is standard and may be found in any graph
theory text. In particular, V (G) is the vertex set of G, E(G) is the edge set of G, and
v(G), e(G) are their respective cardinalities. We write H ⊆ G if H is a subgraph of
G, H 6 G if H is an induced subgraph of G, and use G[X ] to denote the induced
subgraph of G on vertex set X ⊆ V (G). The graph H ∪̇G is the disjoint union of
two graphs H and G, and the graph H ⊕ G is their join, where each vertex of H is
adjacent to each vertex of G.

As noted earlier, Theorem 1 applies equally well to monotone properties, and the
methods of earlier research (in particular [2]) could be modi5ed to make the ap-
propriate sharpening of the theorem obtained in the current work. However, the na-
ture of monotonicity allows for a more streamlined methodology than in the previ-
ous work. In studying hereditary properties, a great deal of machinery is necessary
to deal with the diNculties inherent in allowing induced subgraphs. We shall al-
lude to Theorem 1 throughout this paper, but each result is proven independently
of any prior work. Throughout the paper, but particularly in the last sections, we
shall also explore the other measure eP(n), its properties, and its relation to the
speed. This measure has been studied extensively for properties with very large sizes
(i.e. Tur#an’s Theorem) but the full range has not been studied before in
detail.
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2. Bounded growth

In the case of hereditary properties, Scheinerman and Zito [23] showed that when
|Pn| is bounded, for suNciently large n, Pn = ∅ or {Kn} or {Kn}, or {Kn; Kn}. Hence
the result that for large enough values of n, |Pn| ∈ {0; 1; 2}.

Recalling that every monotone property is hereditary, we know that we can get no
other speeds if |Pn| is bounded. However, not every hereditary property is monotone.
In particular, if P is monotone and {Kn: n ∈ N} ⊂ P, then P is the trivial property
and |Pn|= 2( n

2 ). This highlights the point that the speeds of monotone properties will
have a diMerent pattern than those of hereditary properties. The following result could
be obtained as a direct corollary of that mentioned above. We prove it independently
here in order to set the stage for our further work.

Theorem 2. Let P be a monotone property. If there is some K such that |Pn|6 K
for all n; then for su9ciently large n; |Pn| ∈ {0; 1} and P is either the empty property
or {Kn: n ∈ Z}.

Proof. If, for all n, there is a G ∈ Pn with e(G)¿ 0, then {K2 ∪̇Kn: n ∈ N} ⊂ P by
monotonicity. In such a case, |Pn|¿ ( n

2 ), contradicting the bound on the speed. Hence
there exists N such that if n¿N and G ∈ Pn, then e(G)= 0. So for suNciently large
n, P= ∅ or {Kn}.

In fact, if the growth of |Pn| is not bounded, the proof implies that |Pn|¿ ( n
2 )+1,

as Pn contains the empty graph and every graph with a single edge. The property
P = {G: e(G) 6 1} achieves equality. In fact, this gives the following corollary
relating size and speed.

Corollary 3. Let P be a monotone property. The speed |Pn| is bounded if and only
if eP(n) = 0 for su9ciently large n.

Another way of looking at monotone properties with bounded speed is that every
graph of the property has maximal component order 1. This characterization will be
similar to the framework we develop for properties with higher speeds.

3. Polynomial growth

We now understand all properties whose speed is bounded above by a constant. If
a property has speed greater than any constant, then its speed is bounded below by
a polynomial. What sorts of monotone properties have speeds that are bounded both
above and below by a polynomial function? The structure of such properties which are
hereditary is well described in [2]. However, some of those structures and speeds do
not occur for monotone properties.

We begin our study of this range by proposing a collection of properties exhibiting
the proper speeds. We shall then show that these are the only monotone properties
possible at this speed.
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The work in [2] relied on de5ning equivalence classes of twins in the graphs of
the property. For monotone properties, can we proceed in a simpler way? First, we
observe that properties with bounded growth are de5ned by a (trivial) bound on the
number of edges which may appear in the graph. Hence it would be reasonable to
consider properties with a constant bound on eP(n). This is a good approach, but may
be strengthened by noting that constraining the maximum number of edges in a graph
also constrains the number of vertices that may appear in non-trivial components.

Given a graph G, let G∗ be the graph that remains after removing all isolated vertices.
Let v∗(G)=v(G∗) and, given a monotone property P, let v∗(P)=lim supn→∞ {v∗(G):
G ∈ PN ; N ¿n}. If v∗(P)¡∞, then every graph in P consists of the disjoint union
of some graph on at most v∗(P) vertices and a collection of isolated vertices. Such a
property has polynomial speed.

Theorem 4. Let P be a monotone property. If v∗(P) = k 6∞ and k ¿ 1; then

|Pn|=
k∑

i=0

ai

(
n
i

)
;

where 06 aj 6 2( j
2 ) is an integer for all j.

Proof. If v∗(P) = k 6 ∞, then for suNciently large n the vertices of each G ∈ Pn

can be uniquely decomposed into two sets A and B such that |A|6 k and deg(v) = 0
if and only if v ∈ B. We will call H = G[A] the head of G and G[B] the body of G.

Let H = {H : for all n there is a graph G ∈ Pn with head H}. Since k ¿ 2, H
is not empty. As there are only 5nitely many graphs on 6 k vertices, H is 5nite.
Finally, H is a monotone property and contains graphs on every number of vertices
up to and including k.

Let n be suNciently large that the graphs in H are the only graphs that appear as
heads of graphs in Pn. For each H ∈ H, let h(H) be the number of automorphisms
of H . Then there are (v(H)!=h(H))( n

v(H) ) graphs in P with head H . Summing over
all H ∈ H, we get the result.

The bounds on aj come from the number of labeled graphs on j vertices, and it
must be an integer since |Pn| is an integer-valued function at integers.

It is easy to see that these are in fact the only monotone properties with a polynomial
bound on their speeds.

Theorem 5. Let P be a monotone property. If v∗(P) =∞; then

|Pn|¿ (1 + o(1))2n=2:

Proof. If v∗(P) = ∞, then there are arbitrarily large graphs in P with no isolated
vertices. A graph on n vertices that has no isolated vertices has at least n=2 edges.
Hence eP(n)¿ n=2 and as |Pn|¿ 2eP(n), we have our result.

Thus the following assertion completely characterizes graphs of polynomial growth.
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Corollary 6. A monotone property P has polynomial speed if and only if v∗(P) is
<nite.

Noting that v∗(P) restricts not only the order of the non-trivial part of each graph
in P but also the number of edges in each graph, we obtain a corollary which strongly
relates size and speed in this range.

Corollary 7. A monotone property P has polynomial speed if and only if eP(n) is
bounded.

The actual polynomials that occur in the polynomial range are restricted as well, as
described in the following corollary to Theorem 4.

Corollary 8. Let Lk = {K1; k−1 ∪̇Kn : n ∈ Z} and Uk = {A ∪̇Kn : |V (A)| 6 k and
n∈ Z}. If |Pn|= �(nk); then; for su9ciently large values of k; |Ln

k | 6 |Pn| 6 |Un
k |;

where |Ln
k |=

∑k
i=3(i)(

n
i ) + ( n

2 ) + 1 and |Un
k |6 ( n

k )2
( k
2 ).

Proof. We 5rst consider the smallest property in the collection of properties with
speeds following �(nk). From the proof of Theorem 4, it is clear that we would like
to maximize the number of automorphisms of the graphs in A. We would also like
to minimize the number of graphs on i vertices in A for each i ∈ [k], given that A
is monotone. Clearly the family of stars on at most k vertices achieves both of these,
and no other family does so.

The upper bound is trivial.

Our main result of this section, Theorem 4, provides a simple description of mono-
tone properties with polynomial speeds: polynomial properties are precisely those in
whose graphs all but a 5nite number of vertices are isolates. Put another way to be
consistent with a possible characterization of bounded speed properties, we can say
polynomial properties are those in whose graphs all but a 5nite number of components
have order 1. We shall obtain a similar characterization for properties at the next level
of speed, where the speed is at least exponential.

4. Exponential growth

Theorem 5 tells us that if there is no polynomial bound on the speed of a monotone
property, then its speed is at least exponential. What sorts of properties are bounded
both above and below by an exponential function? Again, such hereditary properties
are described in detail in [2], but the characterization is quite complicated. We seek a
simple description of exponential monotone properties.

Thus far, our main tool has been to guarantee a large number of isolated vertices. The
properties we now wish to consider, however, will have graphs without a large number
of isolates. In order to consider something similar, we turn instead to independent
vertices. Given an independent set I in a graph G, the removal of G− I from G leaves
only isolates, so perhaps considering an independent set would be a good approach.
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Given a graph G and a monotone property P, recall that the covering number '(G)=
n − ((G), where ((G) is the independence number of G. Let 'n(P) = maxG∈Pn'(G)
and '(P) = lim supn→∞ {'n(P)}. A simple counting argument shows that if '(P) is
5nite, then the speed of P is bounded by an exponential function.

Lemma 9. Let P be a monotone property. If '(P) = k ¡∞; then |Pn|= O((2k)n).

Proof. For suNciently large n, every graph G ∈ P has a set of k='(P) vertices whose
removal yields an empty graph. Every such graph is a subgraph of Kk ⊕ Kn−k . The
largest such property therefore consists of Kk⊕Kn−k for each n and all of its subgraphs.
The graph Kk ⊕ Kn−k has fewer than ( n

k )(2
n)k labeled subgraphs on n vertices. Hence

|Pn|¡ ( n
k )(2

n)k = O((2k)n).

In fact, every monotone property with exponential bound on its speed has 5nite
'(P).

Lemma 10. Let P be a monotone property. If '(P) =∞; then |Pn|¿ n(1+o(1))n=2.

Proof. For every t there is a graph in P which, upon removing any 2t vertices, is
not an empty graph. But then, by monotonicity, every property contains the graph tK2,
a matching of arbitrary size (remove two adjacent vertices at a time, and there will
remain an edge). There are (2t)!=t!2−t ¿ t! ways to label the graph tK2, so this implies
|P2t |¿t!¿ t(1+o(1))t . Thus a monotone property containing a matching of order n has
speed |Pn|¿ n(1+o(1))n=2.

Hence we have the following corollary.

Corollary 11. Let P be a monotone property. The speed |Pn| = O(Kn) if and only
if '(P) is <nite.

We would like to know exactly what types of functions are achievable for monotone
properties with exponential bounds. We can show that the speeds that occur in this
range are precisely exponential functions with polynomial coeNcients.

In order to do so, we shall again split the graph into two parts, a “head” with fewer
constraints on its structure and a “body” whose structure is tightly constrained. We then
use this partition to control the structure of the graph as a whole. Note that although
the de5nitions given in the proof below for head and body are diMerent than in the
previous section, using the new de5nitions for a property with polynomial speed would
still yield the polynomial head and body as described.

Theorem 12. Let P be a monotone property. Suppose there is a K ¡∞ such that
|Pn|=O(Kn). Then there is some k 6 K such that |Pn|=�(kn) and further |Pn|=∑k

i=0 pi(n)in; for some collection of polynomials {pi(n)}.
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Proof. Lemmas 9 and 10 imply that '(P) =K ′ 6 log2K . Hence for suNciently large
n each graph G ∈ Pn can be partitioned into a maximal independent set (which we
shall call a “body” of G) and “head” of at most K ′ vertices. The vertices of a head
induce a partition of its corresponding body into at most 2K′

classes according to the
2K′

possible neighborhoods each vertex of the body may have.
For each graph G ∈ P, choose a head H (G) that partitions its body B(G) into as

few classes as possible. Let k(G) be this number of classes. Let kn = maxG∈Pn k(G)
and k = lim supn→∞ kn. We claim |Pn|= �(kn).

Given a graph G and a head H (G), let B1; : : : ; Bk be the induced partition of B(G).
For each vertex v of H (G), label v according to its adjacencies to the parts of the
partition. That is, label v with a vector {x1; : : : ; xk} such that xi = 1 if and only if v is
adjacent to the vertices of Bi, else xi=0. Call this labeled graph H∗(G) the “augmented
head” of G. This is well de5ned up to a permutation of the coordinates of the vectors.
Given an augmented head graph H∗, let k(H∗) be the number of classes distinguished
by the labeling. Note that k(G)= k(H∗(G)) and that G can be reconstructed from H∗

by determining how many vertices are in each of the distinguished classes.
Let H = {H∗: for all n there exists G ∈ Pn with H∗ = H∗(G)}. There are easily

fewer than (2k)K
′
2( K′

2 ) possible augmented head graphs in H, the 5rst term reVecting
the possible vector labelings and the last reVecting the possible head graphs.

For suNciently large n, the family H describes Pn, since there are a 5nite number
of augmented head graphs. For each H∗ ∈ H, there are ( n

|H∗|)k(H
∗)n−|H∗| graphs in

Pn with that augmented head. Hence, for suNciently large n,

|Pn|=
∑

H∗∈H

(
n

|H∗|
)

k(H∗)n−|H∗| |H∗|!
h(H∗)

; (1)

where h(H∗) is again the number of label-respecting automorphisms of H∗. Approxi-
mating the various terms of (1) and grouping them according to the number of vertices
in H∗, we obtain the bound

|Pn|6
K′∑

i=log2 k

(
n
i

)
2
( i

2 )(2k)ikn−i + p(n) = O(kn);

where p(n) is a polynomial in n.
Also, since k is minimal, for all n there is a G ∈ Pn such that H∗(G) partitions

B(G) into k classes. This H∗(G) has at least log2(k) vertices and at most K ′ vertices,
so

|Pn|¿
(

n
log2(k)

)
kn−K′

= �(kn):

Finally, it is not hard to see that (1) will have the desired form when expanded.

The leading base in the exponential speed function is based on the partitions a head
may induce on the body. Hence for polynomial properties, where no vertex of the head
is adjacent to the body, the body is always a single partition and the leading base is
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1. Let us make this more clear by providing another description of the structure of
monotone properties with exponential speed.

But 5rst a de5nition: given a graph G, a collection of disjoint vertex sets {V1; : : : ; Vs}
is distinguished by a collection of vertices {v1; : : : ; vt} if for each i; j either (v; vi) ∈
E(G) for all v ∈ Vj or (v; vi) �∈ E(G) for all v ∈ Vj and if v ∈ Vi; w ∈ Vj; i �= j means
v and w have diMerent neighborhoods in {v1; : : : ; vt}. If {V1; : : : ; Vs} is maximal in this
respect, then {v1; : : : ; vt} distinguishes {V1; : : : ; Vs}.

An in5nite graph is an exponential graph with parameter k if it has a decomposition
into three parts A, B, and C (as shown in Fig. 1) such that
• |V (G) \ B| is 5nite,
• A is not empty,
• the set B, the body, is independent in G,
• the set A, the head, distinguishes in5nite sets B1; : : : ; Bk in B such that if Bi has

neighborhood Ai ⊂ A, then for each A′ ⊂ Ai, there is some distinguished set Bj with
neighborhood A′,

• the set C, the trash, has no edges to B.
• there is no restriction on G[A], G[C], or G[A; C].

Note that the head as de5ned in the proof of Theorem 12 consists of the head
together with the trash of an exponential graph.

If G is an exponential graph let PG be the monotone closure of G, that is, the
property consisting of all 5nite subgraphs of G. Clearly PG is a monotone property
and |Pn

G|=�(kn). In fact, if |Pn|=�(kn), then the proof of Theorem 12 tells us that,
with the possible exception of a 5nite number of levels, P is the monotone closure of
a collection of exponential graphs, each of which has parameter at most k and at least
one of which has parameter k. We say that a property which is the monotone closure
of exponential graphs has exponential structure.

If k=1, we obtain an in5nite graph in which the in5nite, independent class is isolated
from the rest of the graph. The property based on this graph is either polynomial or
has constant speed.

This description of exponential structure for monotone properties is very similar to
that given for hereditary properties in [2], but much more restrictive.

Fig. 1. The form of graphs in exponential properties.
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Note that a graph of exponential structure has a 5nite number of non-trivial com-
ponents. Let h be the maximal order of a graph in H. Then if |Pn| = �(kn), every
G ∈ P has k + (h − k)=2 components, since the head (as de5ned above) can have at
most k vertices and give rise to at most k components, while the trash can have at most
(h− k) vertices and thus have at most half that many non-trivial components. This is
a characteristic that clearly distinguishes exponential properties from superexponential
properties, as shown in Lemma 10.

Before we utilize these facts to explore the next range of speeds, let us again note
the relationship between speed and size for properties of exponential speed. This is a
direct result of the restriction on structure noted above and in Theorem 12.

Corollary 13. Let P be a monotone property. If the speed of P is exponential in n;
then the size of P is linear in n.

Note that this goes only in one direction, unlike Corollary 7 for the size of polyno-
mial properties. To see why this is true, consider the monotone property P of being
a path forest. Clearly eP(n) = n− 1, but |Pn|¿ (1=2)n!, the number of labelings of a
path on n vertices. This is a factorial, not an exponential function.

Thus we see that for exponential properties the number of edges is not the critical
factor: what is critical is that we can cover the edges by a bounded number of vertices.
Once we can no longer do that, we are ensured of a property at the next level of speed.

5. Factorial growth

We know from Lemma 10 that a lower bound on the next level of speed is
n(1+o(1))n=2. What upper bound should we consider for the next range of speed? In
[2], it was shown that if a hereditary property P has superexponential speed, either
there exists a k such that |Pn|=n(1−1=k+o(1))n or |Pn|¿ nn. Hence we should consider
functions of the 5rst form for our next candidate properties.

In the previous sections, we have developed structural constraints for our properties
based on 5nding a nice structure that guarantees the desired count, then removing
vertices from our graphs so that the desired structure appears. Here we shall do the
same.

A basic property developed in [2] that has speed n(1−1=k+o(1))n is the property of
being an induced subgraph of an in5nite collection of disjoint k-cliques. This is one of
the smallest hereditary properties with the desired speed, but would be a rather large
property if considered as a monotone property. However, its speed is still in the desired
range. Let Pk-cl be the property of being a subgraph of

⋃̇
∞Kk . Then(

n
k; : : : ; k

)
1

(n=k)!
6 |Pn

k-cl|6
(

n
k; : : : ; k

)
1

(n=k)!

(
2
( k

2 )
)n=k

:

Both upper and lower bounds are n(1−1=k+o(1))n, hence we have our result.
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Thus Pk-cl is a property with the desired speed, and many subproperties of Pk-cl
also have this speed. As the calculation above implies, what is important is that the
graphs of the property have arbitrarily many components of order k. However, these are
clearly not the only monotone properties with this speed. Let us at this point at least
describe a collection of properties inspired by this formulation and by our previous
work with removing vertices that do not 5t in our scheme. Once again we shall use
the term “head” in a new way to 5t our current needs, but the new meaning could be
seen to subsume the previous meaning.

Theorem 14. Let P be a monotone property. Suppose there exist k and c such that
for all G ∈ P the removal of some set of c vertices from G leaves a graph with max-
imum component order k. Then |Pn| 6 n(1−1=k+o(1))n. Furthermore; if k is minimal;
then we have equality.

Proof. Given a graph G ∈ P, let H be a set of c vertices such that G \ H leaves
a graph with maximum component order k. We shall call H a “head ” of G and the
components B1; : : : ; Bs of G \ H shall be called “pseudocomponents” of G. There are

fewer than 2
( k

2 ) graphs which may appear as pseudocomponents of graphs in P, and
each of these may be related to the head in at most (2c)k diMerent ways. Hence there
are a bounded number of structures that occur in the pseudocomponents. Let A1; : : : ; Al

be the possible structures.
In order to simplify notation below, we suppose below that k | n, but the calculations

go through similarly if k A n as well.
Given G ∈ Pn, decompose it as above. Let b1; : : : ; bn be the orders of the pseu-

docomponents (some bi may be 0) and ai be the multiplicity of structure Ai as a
pseudocomponent. Then there are ( n

c )(
n−c

b1 ;:::;bn
) 1
a1!···al!

ways to pick labels for the parts
of the decomposition. Allowing for the diMerent graphs and structures that occur, we
obtain the bound

|Pn|6
(

n

c

)
2
( c

2 ) ∑
bi6k∑
bi=n−c

(
n − c

b1; : : : ; bn

) n∏
i=1

2
( bi

2 )(2c)bi
1

a1! · · · al!
:

Noting that

a1! · · · al!¿
(((∑

ai

)/
l
)
!
)l
¿ ((n=kl)!)l ¿ ((n=kle)n=kl)l = nn=k(1=kle)n=k

and replacing each bi with its upper bound k, we get

|Pn|6
(

n
c

)
2
( c

2 ) ∑
bi6k∑
bi=n−c

(
n − c

b1; : : : ; bn

)
(2
( k

2 )(2c)k)n
(kle)n=k

nn=k
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6 ncCn
∑
bi6k∑
bi=n−c

(
n − c

b1; : : : ; bn

)
1

nn=k :

As the multinomial coeNcient above is maximized when the bi are equal, we get

|Pn|6 Cn
(

n
k; : : : ; k

)
1

nn=k = n(1−1=k+o(1))n;

giving the desired upper bound.
To obtain the lower bound, we choose k minimal. In particular, let k be minimal

such that there is a c such that for all G ∈ P there exists T ⊂ V (G) with |T | 6 c
such that G − T has maximal component order k. Note that k is the largest number
such that there are graphs in P with arbitrarily many components of order k. In fact,
since there are a 5nite number (2( k

2 )) graphs on k vertices, and there are graphs in P

with arbitrarily many components of order k, there must be graphs in P that have as
components arbitrarily many copies of a particular graph, say Lk , on k vertices. Since
P is monotone, this means that rLk ∈ P for every r. Let G = (n=k)Lk . Again we
assume that k | n, but the calculations are similar in other cases as well. We can label
G in at least ( n

k;:::;k )1=(n=k)! ways, with 1=(n=k)! appearing because the components are
isomorphic. Hence

|Pn|¿
(

n
k; : : : ; k

)
1

(n=k)!
=

n!
(k!)n=k(n=k)!

= n(1−1=k+o(1))n:

Note that we may use the same k for both the upper and lower bounds, yielding the
desired result.

Recall the formulation of exponential properties: every graph has a bounded number
of vertices whose removal leaves components of order 1. The formulation in Theorem
14 is similar: every graph has a bounded number of vertices whose removal leaves
components of order k. In fact, these are the only monotone properties with speed
n(1−1=k+o(1))n. If this were not the case, the speed would jump to the next highest level.

Theorem 15. Let P be a monotone property. If |Pn|6 n(1−1=k+o(1))n; then there exists
c such that every G ∈ P has a collection of c vertices whose removal leaves a graph
every component of which has order at most k.

Proof. Suppose not. Then for all N there is a G ∈ P such that for all W ⊂ V (G) with
|W |6 N , the graph G−W has a component of order k +1. If we remove the vertices
of some such component and another N − (k + 1) vertices, we may obtain two vertex
disjoint connected subgraphs of G, each of order k + 1. Continuing in this way, we
can see that G must contain at least �N=(k + 1)� vertex disjoint connected subgraphs
on k +1 vertices. Hence P contains graphs with arbitrarily many components of order
k + 1 and Theorem 14 implies that |Pn|¿ n(1−1=(k+1)+o(1))n.
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Thus we have described all monotone properties with speeds less than n(1+o(1))n:
The structure that we have placed on the properties forms a clear hierarchy, and the
speeds are all well-behaved functions. Unfortunately, this does not continue into the
next range.

6. Superfactorial growth

In [3], it was shown that there is a monotone property which in5nitely often has
speed ncn (for some c¿ 1) and in5nitely often has speed 2n2−1=c

. Hence we know that if
P is a monotone property with |Pn|=n(c+o(1))n, we can have no further characterization
than that given in Theorem 14. In fact, this is quite a lovely description of properties
with speeds less than n(1+o(1))n, but if c ¿ 1 we can hope for no theorem giving speeds
and structures. For details of why, see [3]. However, can we get a characterization for
speeds above 2n2−1=c

?
Recent work of Bollob#as and Thomason [6,7] gave a partial characterization for both

monotone and hereditary properties.

Theorem 16. If P is a monotone or hereditary property and there exists a constant
c such that |Pn| ¿ 2cn2

in<nitely often; then |Pn|= 2(1−1=k+o(1))n2=2 for some integer
k.

To obtain this result, they de5ne a coloring number for a set of graphs as follows:
Given a collection of H of graphs, we say that H can be r colored if there is an
integer s 6 r and a graph G ∈ Forb(H), such that V (G) can be partitioned into r
sets, s of them inducing cliques and r− s inducing empty graphs. The minimal such r
is the coloring number r(H) of the set of the graphs. Their result says precisely that
the speed of the corresponding property is 2(1−1=r+o(1))n2=2.

We wish to examine monotone properties which have speeds which fall in the gap
between 2n2−c

and 2(1=2+o(1))n2=2. That is, we wish to improve the result in Theorem 16
by considering the case when r = 1. Our results in the previous sections do precisely
that, but we would like to show that there is in fact a gap between the two speeds
mentioned above; no property has speed both above 2n2−c

and below 2(1=2+o(1))n2=2. The
following theorem from [3] does just that.

Theorem 17. Let P be a monotone property. If |Pn| = 2o(n2); then there is a t ¿ 1
such that |Pn|6 2n2−1=t+o(1)

.

Furthermore, the upper bound given in this theorem is nearly sharp for some prop-
erties. If P = Forb({Kt; t ; K3}), then |Pn| ¿ 2n2−2=t

. Since this property is of the type
described, we cannot hope for an improvement.

However, Theorem 17 does provide the following slight improvement of Theorem
16 for monotone properties.
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Corollary 18. Let P be a monotone property. Suppose !(n)=no(1). If |Pn|¿ 2n2=w(n)

in<nitely often; then |Pn|= 2(1−1=k+o(1))n2=2 for some integer k.

Note that we can obtain no similar improvement for hereditary properties, as Theorem
17 does not hold for hereditary properties.

7. The size of a monotone property

We now turn our attention to the size of a property, that is to the function eP(n).
This is really where the study of monotone properties originated. As with speeds of
properties, the largest values are relatively well understood. Unlike speeds, however,
the largest sizes have been well understood since almost the beginning, when Erdős
[10,11] and Simonovits [22] (see also [13–16]) presented their work in extending the
Erdős–Stone Theorem.

In particular, the following was known, in slightly diMerent forms.

Theorem 19. If P is a monotone property; then there is an r ∈ N such that

eP(n) = (1− 1=r)
(

n
2

)
+ O(n2−/)

for some /.

Note especially the lower order term in this statement. While the theorem does seem
to echo the result of Bollob#as and Thomason (Theorem 16), neither implies the other.
However, this does cover all of the largest sizes, in a very strong sense we shall address
towards the end of this section.

For now we turn our attention to the sizes of properties that are contained in the
asymptotic term of Theorem 19, starting with the very smallest sizes possible. As in our
study of the function |Pn|, we shall consider several cases according to the magnitude
of the function. Our goal will be to describe the types of sizes that may occur for
monotone properties, as well as to discuss the relationship of size and speed. Our 5rst
result, a slightly more detailed form of Corollary 7, follows from Theorem 4.

Theorem 20. If eP(n) is bounded for a property P; then lim eP(n) = k for some
integer k. The speed of this property is a polynomial with degree at most 2k.

From now on, we shall suppose that eP(n) is unbounded. Since P is monotone,
for every t there is a G ∈ P with exactly t edges. As t edges can cover at most 2t
vertices, for every t there is an H ∈ P with |V (H)|6 2t and |E(G)|= t. This shows
that eP(n)¿ �n=2�.

This inequality is sharp, as can be seen, for example, in the property P={G: 0(G)6
1}. In fact one can prove considerably more.
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Theorem 21. If lim sup eP(n)=n¡ 1; then there are integers a 6 b and k such that
eP(n) = �(1− 1=k)(n − a)�+ b for large enough n.

Proof. If there are graphs in a property P containing arbitrarily large components, then
there are arbitrarily large connected graphs in P and eP(n) ¿ n − 1 which implies
lim sup eP(n)=n¿ 1. Hence if lim sup eP(n)=n¡ 1, there is an l such that no graph in
P has a component of order greater than l. Let k 6 l be the maximal integer such
that there are graphs in P with arbitrarily many components with order k. This gives
eP(n) ¿ �(1 − 1=k)n�: As the order of the components is bounded, the large graphs
in P have many components.

Note that we have equality above if and only if all of the components are trees
of order k. We can obtain a strict inequality above from two sources: if we have
components with order greater than k (but at most l) and if we have components that
are not trees. We call either of these types of components “bad”. How many edges
can we have in “bad” components? There are only boundedly many (by a constant,
say c, depending on P) components of order greater than k and each has order less
than l, so there are fewer than c( l

2 ) edges arising from large components. The number
of edges from non-tree components is bounded as well. If there are graphs in P with
unboundedly many non-tree components, then for all n there is an n-graph in P in
which all but at most one component is not a tree. This gives eP(n) ¿ n − 1. But
since it is almost always true that eP(n)¡n − 1, the number of non-tree components
in the graphs of P is bounded. Hence the number of “extra” edges due to non-tree
components is bounded as well.

Thus there exist b ¿ a ¿ 0 depending only on P such that each graph in P has
at most a vertices in “bad” components and b edges in components with more than
k − 1 edges. Then, for suNciently large n; eP(n)6 �(1− 1=k)(n − a)�+ b. As there
are only a 5nite number of choices for the “bad” components (they have order 6 l),
for suNciently large n there exist choices of a and b to obtain equality.

Given a property P with eP(n) = �(1− 1=k)(n − a)�+ b, the proof of Theorem 21
tells us the structure of a maximal size graph in Pn. In particular, each graph has all
but a bounded number of vertices in components that are trees with order at most k.

Even more is implied by the proof. If the size of P is above the range given in
Theorem 21, that is, if lim inf eP=n¿ 1, then one of the following holds.

1. For each n, there is a maximal graph G ∈ Pn with components of bounded order
such that at most one component is a tree.

2. The order of the components of the graphs in P is unbounded. Hence, for each n,
P contains a connected graph on n vertices.

In either case, eP(n)¿ n − 1. Thus we have the following result.

Corollary 22. If lim sup eP(n)=n¿ 1; then eP(n)¿ n − 1.
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This result is tight, since when P = {G is acyclic} equality holds. However, after
this the size of a property does not behave as nicely. The authors have shown in [3]
that there are properties P for which eP(n) oscillates between signi5cantly diMerent
values when eP(n)=n¿ 1. The proofs and theorems in that work imply directly this
result by presenting speci5c properties with oscillating speeds that also happen to have
similarly oscillating sizes. In particular, the following is shown about the oscillation of
sizes. Similar results are known about the oscillation of speeds.

Theorem 23 (Balogh et al. [3]). For any c; d¿ 1 and any /¿ 0; there is a monotone
property P with eP(n)=cn in<nitely often and eP(n)=dn in<nitely often. Also; there
is a property R with eR(n) = cn in<nitely often and eR(n) = n2−1=c−/ in<nitely often.

Here we present a diMerent property and proof than that in [3], which in some sense
allows us to show more about properties with oscillating size. The following theorem
shows that even if we keep the size of the property only slightly above n we can have
oscillation of size.

Theorem 24. For any sequence with /n ¿ 0; /n → 0; there is a property P with
eP(n)¿ n1+/n in<nitely often; and eP(n) = n − 1 in<nitely often.

Proof. The idea of constructing this property P comes from the fact that there are
“dense” graphs with large girth. We can construct a sequence {2i} (depending on /n),
such that P2i={G: G is acyclic, with |V (G)|=2i} and if 2i ¡n¡2i+1 then Pn={G: G
contains no Cj for any j}. It is clear that for any sequence {2i}, the size eP(2i)=2i−1
for all i. We shall prove that we can construct a sequence such that eP(n)¿ n1+/n for
n = 2i+1 − 1.

Suppose that we have constructed the sequence (2i)s−1
i=1 so that it satis5es the required

size function up to n = 2s−1 and we wish to choose a value for 2s. Let l = 2s−1 and
choose some c¡ 1=(l − 1). Consider Gn;p with p = n−1+c. Let G be a graph in Gn;p

and X be the number of cycles Ci of length i 6 l in G. E(|E(G)|) = 1=2n1+c and
E(X ) =

∑l
i=3(

n
i )(i!=2)p

i 6 l=2nlc = o(n1+c). In particular Pr(X ¿ n1+c=4) = o(1). So
there is a speci5c G with at least n1+c=2 edges and at most o(n1+c) cycles with length
at most l. Deleting from each cycle an edge we get that there is a graph with at least
n1+c=4 edges and no cycle with length at most l. As /n → 0 when n → ∞, if we
choose 2s large enough so that /2s−1 ¡c then the conditions hold.

One of the questions raised in [3] relates to the optimality of the results summarized
in Theorem 23. There we presented for each k ¿ 1 a monotone property P that has
eP(n)=kn for in5nitely many values of n and eP(n)=n2−1=k for in5nitely many values
of n as well. We wish to consider whether there are properties with a wider range of
oscillation. While for hereditary properties the sharpness of this range is unknown,
for monotone properties, this result is nearly sharp as demonstrated by the following
theorem. It shows that if P is monotone, we will not be able to get a signi5cantly
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larger range of oscillation for size than that of the property cited. Note that this theorem
is in some sense a corollary of the main result of [17].

Theorem 25. Let k be an integer; /¿ 0; and P be a monotone property. If eP(n)¿
n2−1=k+/ in<nitely often, then eP(n)¿ kn + o(n) for all n.

Proof. Fix some m ∈ N. Let n be such that eP(n)¿n2−/ and n1−k/+k ¿ (m − k)( n
k ),

which may be done as k/¡ 1. Let G ∈ Pn be a graph with |E(G)|¿n2−/. Without
loss of generality, the minimum degree of G is at least n1−/. Consider pairs of the
type (x; S) where S ⊂ 5(x), |S|= k, and x �∈ S. The number of such pairs is

n
(

n1−/

k

)
∼ Cn1−k/+k

for some constant C. The choice of n gives that there are at least (m − k)( n
k ) such

pairs. Hence there is a set S which appears in at least m − k diMerent pairs. The set
S together with the k vertices it is paired with induces a graph on m vertices with at
least k(m − k) edges, so eP(m)¿ k(m − k) = km + o(m).

Theorem 25 implies a lower bound on the size of properties which in5nitely often
have very large size. We can also give a lower bound when the property takes on sizes
in a middle range. The following is similar to Theorem 24, but here we gain more by
having the exponent maintain a positive distance from 1.

Theorem 26. Let k be an integer; c¿ 1=k; and P be a monotone property. If eP(n)¿
n1+c in<nitely often; then eP(n)¿ (1 + 1=k)n − 3 holds for all su9ciently large n.

Proof. For k=2, Theorem 25 implies the desired result. So assume k ¿ 2. The hypoth-
esis tells us that for arbitrarily large n such that there is a G ∈ Pn with |E(G)|¿ n1+c.
We wish to show that for any large m, if n is large enough and |E(G)|¿ n1+c, there
is an H ⊂ G with |V (H)| = m and |E(H)| ¿ (1 + 1=k)m − 3. This would prove the
theorem.

Fix m�k and let n�m. Let G be such that |V (G)|=n and |E(G)|¿ n1+c. Without
loss of generality, the minimum degree of G is nc, as we may otherwise remove
vertices and create a subgraph with such a minimum degree and greater density. Let
v be any vertex of G and let Bi = {u ∈ V (G): d(u; v) = i}. We start with two cases in
which we can easily show that a subgraph with the desired edge density exists.
Case 1: For some 1¡i 6 k+1, there is a vertex w ∈ Bi such that |5(w)∩Bi−1|¿

m. Then there are m paths (not necessarily disjoint) of length i between v and w. We
will construct a subgraph H as follows. Arbitrarily order the paths. Start with the 5rst
path. It has i edges and i + 1 vertices. Add in the vertices of each path in turn, in
order from v to w, until you obtain a graph on m vertices. As you add in whole paths
from v to w, you add some number a of vertices and a + 1 edges. The last path you
add may not reach all the way to w, but will add some number of vertices and the
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same number of edges. When you obtain a graph on m vertices in this way, it will
have at least (1 + 1=(i − 1))m− 3 edges, and (1 + 1=(i − 1))m− 3¿ (1 + 1=k)m− 3.
Case 2: For some 1 6 i 6 k, |E(Bi)| ¿ |Bi| − 1. We 5rst show that if a graph G

has the same number of edges as a tree, then there is a nested sequence of induced
subgraphs A1 6 A2 6 · · · 6 A|V (G)| = G such that each Aj has at least as many
edges as a tree. If G is connected, then we are done, as a search of a spanning
tree would suNce. Otherwise, label the components of G as C1; C2; : : : ; Cl so that
|E(Cj)|=|V (Cj)|¿ |E(Cj+1)|=|V (Cj+1)|. Build a spanning tree on C1, then on C2, etc.,
and build the graphs Ai according to this ordering.

So let A1 ⊂ A2 ⊂ · · · ⊂ A|Bi| = Bi be sets of vertices with induced graphs as above.
Then consider a collection of paths from the vertices in Am to v. As in Case 1, order
the paths, only this time order them according to the sequence (Ai). Take vertices of
the paths in order as before to obtain a graph H on m vertices. We will have the
fewest number of edges if H − Bi is a tree. In this case, H − Bi has �m=i� leaves and
h = �m=i� of the paths from v to the leaves have length i. Furthermore H ∩ Bi = Ah

and |E(Ah)|¿ h− 1¿ m=i− 2. Hence |E(H)|=m− 1+ |E(Ah)|¿ (1 + 1=i)m− 3¿
(1 + 1=k)m − 3.

Suppose that neither Case 1 or Case 2 holds, that is, there is no subgraph H with
the proper density. Then Case 2 implies that for all 1 6 i 6 k; |E(Bi)|¡ |Bi| − 1.
Further Case 1 implies that for all i if u ∈ Bi+1 then |5(u)∩Bi|¡m and if w ∈ Bi then
|5(w)∩Bi−1|¡m. Note that this last fact is true trivially for i=1, and the implications
of the failure of Case 1 tell us that for all 1 6 i 6 k, |E(Bi−1; Bi)|¡m|Bi| and
|E(Bi; Bi+1)|¡m|Bi+1|. Recalling that each vertex has degree at least nc, we obtain for
all 16 i 6 k,

|Bi|nc = 2|E(Bi)|+ |E(Bi−1; Bi)|+ |E(Bi; Bi+1)|
6 |Bi| − 1 + m|Bi|+ m|Bi+1|;

and hence,

|Bi+1|¿ |Bi|(nc − m − 1)¿ |Bi|n1=k ;

where the last inequality holds if n is suNciently large.
Hence |Bi|¿ni=k for all 16 i 6 k, in particular for i= k. But then |Bk |¿n, which

is not possible. Hence one of the two cases holds and we have our result.

The last three theorems taken together tell us that if the size of a property is in
the range (n − 1; n2−/) the size can oscillate within certain ranges. However, if P is
a monotone property, its size cannot go above n2−/n if /n → 0 and still oscillate. This
is implied by Theorem 19 of Erdős and Simonovits [13–16]. That is, if eP(n)¿n2−/

for all /¿ 0, then, by Theorem 19 there is an integer k ¿ 1 and number /¿ 0 such
that eP(n) = (1− 1=k)n2=2 + O(n2−/).

In the other direction, we can show, just as we did in Theorem 17, that if a property
has a size below the highest range then its size must drop to a lower level. Although
this is also implied by Theorem 19, here we show it independently. As with many



J. Balogh et al. / Discrete Applied Mathematics 116 (2002) 17–36 35

of our results on size, this is easier to prove than the corresponding result on speed
(Theorem 17), but also relies on the work of Kőv#ari, S#os, and Tur#an in [17].

Theorem 27. If for a property P; eP(n)¡ �n2=4� in<nitely often; then there is an
/¿ 0 such that eP(n) = O(n2−/).

Proof. Assume there is no /¿ 0 such that eP(n) = O(n2−/). Then eP(n)¿n2−/ for
all / and |Pn|¿ 2n2−/

for all /. But then by the Kőv#ari–S#os–Tur#an Theorem [17],
for suNciently large n, the graph Kt; t ∈ P for all t ¿ 1. But then eP(n) ¿ n2=4, a
contradiction.

The theorems we have presented provide a great deal of information about the ranges
into which sizes and speeds may fall for monotone properties. Oscillation is possible
for the size function much earlier than for the speed function, which hinders the de-
velopment of any more detailed picture of allowable sizes. However, these results give
us further insight into the speed functions of monotone properties as well and will
hopefully lead to a complete picture with additional work.

8. Towards a complete picture

What would a complete picture consist of? It would include exact results on the
full range of oscillation for both speed and size of monotone properties. For size the
results presented here are perhaps as detailed as we can hope; however it may be
possible to remove some of the asymptotics that are factored into the present work. In
particular, a clearer picture of the lower order terms that occur would be nice. These
lower order terms are even less understood in the case of the speed functions; there
is still signi5cant improvement possible of those results. We know, for example, that
there are large gaps within the polynomial range: i.e. the only allowable quadratic
speed for monotone properties is ( n

2 ) + 1. What other jumps occur?
A complete picture would also include analogous results for hereditary properties.

Theorem 1 is also missing lower order terms, and the oscillation of speed for hereditary
properties is even less understood than for monotone properties. Although the de5nition
of size given here does not make sense for hereditary properties, one may de5ne a
hereditary size (ehP(n)) consistent with the current de5nition that satis5es the relation
|Pn|¿ 2ehP(n). Perhaps results on this measure would yield insights into the speed as
well.
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