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a b s t r a c t

Anew isomorphism invariant ofmatroids is introduced, in the form
of a quasisymmetric function. This invariant:

• defines a Hopf morphism from the Hopf algebra of matroids to
the quasisymmetric functions, which is surjective if one uses
rational coefficients;
• is a multivariate generating function for integer weight vectors
that giveminimumtotalweight to a unique base of thematroid;
• is equivalent, via the Hopf antipode, to a generating function for
integer weight vectors which keeps track of how many bases
minimize the total weight;
• behaves simply under matroid duality;
• has a simple expansion in terms of P-partition enumerators;
• is a valuation on decompositions of matroid base polytopes.

This last property leads to an interesting application: it can
sometimes be used to prove that a matroid base polytope has no
decompositions into smaller matroid base polytopes. Existence of
such decompositions is a subtle issue arising from the work of
Lafforgue, where lack of such a decomposition implies that the
matroid has only a finite number of realizations up to scalings of
vectors and overall change-of-basis.

© 2009 Published by Elsevier Ltd

1. Definition as generating function

Webegin by defining the newmatroid invariant. Formatroid terminology undefined here, we refer
the reader to some of the standard references, such as [1–6].
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LetM = (E,B) be a matroid on ground set E, with basesB = B(M). Let P := {1, 2, 3, . . .} be the
positive integers. We will say that a weighting function f : E → P is M-generic if the minimum f -
weight f (B) :=

∑
e∈B f (e) among all bases B ofM is achieved by a unique base B ∈ B(M). For example,

it is a standard exercise in matroid theory (see, e.g. [2, Exer. 1.8.4]) to show that f isM-generic if f is
injective, that is, if f assigns all distinct weights.

Definition 1.1. Given a matroid M as above, define a power series F(M, x) in countably many
variables x1, x2, . . . , as the generating function for M-generic weighting functions f according to
number of times f takes on each value in P. That is,

F(M, x) :=
∑

M-generic
f :E→P

xf (1.1)

where xf :=
∏
e∈E xf (e).

One of the defining properties of a matroid [2, Theorem 1.8.5] is that an f -minimizing base may be
found by (Kruskal’s) greedy algorithm:

Construct a sequence of independent sets

∅ =: I0, I1, . . . , Irank(M)
by defining Ij := Ij−1 ∪ {e} where e is any element in E having minimum weight f (e) among
those for which Ij−1 ∪ {e} is independent. Then Irank(M) is an f -minimizing base ofM .

2. Quasisymmetry

We recall [7], [8, Section 7.19] what it means for a power series f (x) in a linearly ordered variable
set x1, x2, . . . to be quasisymmetric: f must have bounded degree, and for any fixed composition
(α1, . . . , αk) in Pk, the coefficients of the monomials xα1i1 x

α2
i2
· · · xαkik with i1 < i2 < · · · < ik in f are all

the same. Put differently, f is quasisymmetric if and only if it is a (finite) linear combination of the
monomial quasisymmetric functions1 indexed by compositions α = (α1, . . . , αk):

Mα :=
∑

1≤i1<i2<···<ik

xα1i1 x
α2
i2
· · · xαkik .

Proposition 2.1. For any matroid M, the power series F(M, x) is quasisymmetric.

Proof. This follows from the fact that the f -minimum bases can all be found by the greedy algorithm,
and this algorithmmakes all of its decisions based only on the relative ordering and equality of various
weights f (e), not on their actual values. �

Example 2.2. When |E| = 0, there is only one matroid M∅, having rank 0 and exactly one base, the
empty base ∅. As there is only one function f from the empty set E into P, and this f has no coordinates
(!), we should decree xf = 1 (as the empty product is 1). Hence F(M∅, x) = 1.
There are two matroids with |E| = 1, namelyMisthmus of rank 1 having a single base {e}, andMloop

of rank 0 having a single base ∅. Every f : E → P is generic for either of these, so that

F(Misthmus, x) = F(Mloop, x) = x1 + x2 + x3 + · · · = M1.

The enumerative information recorded in F(M, x) is data about optimizingweight functions on the
bases of M . An obvious specialization counts M-generic weight functions that take on only a limited
number of distinct weight values.

1 While there is a danger of confusion between matroidsM and monomial quasisymmetric functionsMα , the difference will
always be clear from the context.
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Definition 2.3. For a positive integerm, let [m] := {1, 2, . . . ,m}, and define

φ(M,m) := F(M, x) x1=x2=···=xm=1
xm+1=xm+2=···=0

= |{M-generic f : E → [m]}|.

Since F(M, x) is a power series of bounded degree, φ(M,m) is a polynomial function ofm. Whenm is
large, almost all weight functions f : E → [m] are injective and henceM-generic, so the polynomial
expansion of φ(M,m) begins

φ(M,m) = mn + O(mn−1)

where n := |E|.
In Section 6, our analysis of the behavior of F(M, x) under the Hopf algebra antipode on

quasisymmetric functions will imply an interesting reciprocity result for the polynomial φ(M,m).
In the remainder of this paper, we will suppress the x in F(M, x) and write F(M) unless there is a

need to consider the variables.

3. Hopf algebra morphism

There is a known Hopf algebra structure built from matroids [9–12] and a perhaps better-known
Hopf algebra of quasisymmetric functions [7, Section 4]. The goal of this section is to show that the
invariant F(M) defines a Hopf morphism between them.
LetMat be the free Z-module consisting of formal Z-linear combinations of basis elements [M]

indexed by isomorphism classes of matroidsM . EndowMat with a product and coproduct extended
Z-linearly from the following definitions on basis elements:

[M1] · [M2] := [M1 ⊕M2]

∆[M] :=
∑
A⊆E

[M|A] ⊗ [M/A]

whereM1⊕M2 is the direct sum of thematroidsM1,M2, andM|A,M/A denote the restriction ofM to A
and the contraction (or quotient) ofM byA, respectively. Onehas aZ-module direct sumdecomposition
Mat =

⊕
n≥0Matn, where Matn denotes the submodule spanned by the basis elements [M] for

which the ground set E of M has cardinality |E| = n. One can then easily check that this product
and coproduct makeMat into a graded, connected Hopf algebra over Z which is commutative, but
non-cocommutative. Here the unit is [M∅].
Let QSym (or QSym(x)) denote the Hopf algebra of quasisymmetric functions in the linearly

ordered variable set x1, x2, . . . and having coefficients inZ. The product inQSym is inherited from the
formal power series ringZ[[x1, x2, . . .]]. The coproductmaybedescribed as follows. A quasisymmetric
function f (x) defines a unique quasisymmetric function f (x, y) in the linearly ordered variable set

x1 < x2 < · · · < y1 < y2 < · · ·

by insisting that f (x, 0) = f (x). In other words, for any i1 < · · · < ik and j1 < · · · < j`, the
coefficient of xα1i1 · · · x

αk
ik
yβ1j1 · · · y

β`
j`
in f (x, y) is defined to be the coefficient of xα11 · · · x

αk
k x

β1
k+1 · · · x

β`
k+` in

f (x). Consider the injective map

i : Z[[x1, x2, . . .]] ⊗ Z[[y1, y2, . . .]] → Z[[x1, x2, . . . , y1, y2, . . .]]

which sends f (x)⊗g(y) to f (x)g(y). The image i(QSym(x)⊗QSym(y)) contains the quasisymmetric
functions QSym(x, y), that is, there is a unique expansion f (x, y) =

∑
i fi(x)gi(y) for any

quasisymmetric function f (x, y). This defines the coproduct ∆ : QSym→ QSym⊗ QSym. Grading
QSym by the usual notion of degree, one can check that QSym becomes a graded, connected Hopf
algebra over Zwhich is commutative, but non-cocommutative.
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Theorem 3.1. The map F

Mat→QSym
[M] 7→ F(M)

is a morphism of Hopf algebras.

Proof. Example 2.2 shows that F sends the unit M∅ of Mat to the unit 1 of QSym. The fact that F
preserves degree shows that it preserves the counit.
The fact that F preserves the product structures follows because the bases of M1 ⊕ M2 are the

disjoint unions B1 t B2 of a base B1, B2 from each. This implies that f : E1 t E2 → P is (M1 ⊕ M2)-
generic if and only if f |Ei isMi-generic for i = 1, 2.
The fact that F preserves the coalgebra structure is somewhat more interesting. Unravelling the

definitions, this amounts to checking the following identity:

F(M, x, y) =
∑
A⊆E

F(M|A, x)F(M/A, y). (3.1)

The left side of (3.1) has the following interpretation. Linearly order the disjoint union P t P as
follows:

1 < 2 < 3 < · · · < 1′ < 2′ < 3′ < · · · .

Given a weight function f : E → P t P, define (xy)f :=
∏
e∈E ze where

ze :=
{
xi if f (e) = i (with no prime)
yi if f (e) = i′.

Then

F(M, x, y) =
∑

M-generic
f :E→PtP

(xy)f .

On the other hand, the right side of (3.1) expands to
∑

(A,f1,f2)
xf1yf2 , where the sum ranges over all

triples (A, f1, f2) in which

• A is a subset of E,
• f1 : A→ P isM|A-generic, and
• f2 : E \ A→ P isM/A-generic.

There is an obvious association f 7→ (A, f1, f2) defined by

A := {e ∈ E : f (e) has no prime}
f1 := f |A
f2 := f |E\A.

It only remains to check that f is M-generic if and only if f |A and f |E\A are M|A and M/A-generic,
respectively. This follows from the sequential nature of the greedy algorithm: because the primed
values i′ are bigger than all the unprimed values i, when the greedy algorithm finds f -minimizing
bases for M , it must first find f |A-minimizing bases for M|A by trying to use only e’s with unprimed
values for as long as it can, and then proceed to finding f |E\A-minimizing bases forM/A using primed
values. Lack of uniqueness in the f -minimizing bases of M can only occur if it occurs in one of these
two steps, leading either to lack of uniqueness in the f |A-minimizing bases of M|A or in the f |E\A-
minimizing bases ofM/A. Conversely, lack of uniqueness in either step will lead to lack of uniqueness
for the whole computation. �

It turns out that the Hopf morphism Mat → QSym is not surjective if one works over Z,
but becomes surjective after tensoring with the rationals. The somewhat technical proof of this
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surjectivity2 is given in the Appendix. The proof involves the construction of two new Z-bases for
QSym, which may be of independent interest.

Remark 3.2 (On Combinatorial Hopf Algebras). Definition 1.1 for F(M) immediately implies that for
any composition α = (α1, . . . , αk) of n := |E|, the coefficient cα in the unique expansion

F(M) =
∑
α

cαMα (3.2)

has the following interpretation: cα is the number ofM-generic f : E → P in which |f −1(i)| = αi for
i = 1, 2, . . . , k.
The work of Aguiar, Bergeron and Sottile [14] on combinatorial Hopf algebras also offers an

interpretation for cα , using the fact that F is a Hopf morphism, as we explain here. In their theory,
the character (=multiplicative linear functional) ζQ : QSym→ Z defined by

ζQ(Mα) =
{
1 if α has at most one part, and
0 otherwise

plays a crucial role,makingQSym intowhat they call a combinatorial Hopf algebra. TheHopfmorphism
F : Mat → QSym then allows one to uniquely define a character ζM : Mat → Z, via ζM := ζQ ◦ F ,
so that F becomes amorphism of combinatorial Hopf algebras.
It is not hard to see directly (or one can appeal to Corollary 5.6) the following more explicit

description of the character ζM . Say that a matroidM splits completely if it is a direct sum of matroids
on 1 element, that is, a direct sum of loops and isthmuses, or equivalently, if it has only one base B.
Then for any matroidM

ζQ([M]) =
{
1 ifM splits completely, and
0 otherwise.

Using this, [14, Theorem4.1] immediately implies another interpretation for the coefficient cα in (3.2).
Given a flag F of subsets

F : ∅ = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ak = E (3.3)

where E is the ground set for the matroidM , let α(F ) = (α1, . . . , αk) be the composition of n := |E|
defined by αi := |Ai| − |Ai−1|.

Proposition 3.3. The coefficient cα in (3.2) is the number of flags F of subsets of E having α(F ) = α
and for which each subquotient

(
M|Ai

)
/Ai−1 splits completely.

The equivalence of these two interpretations of cα is easy to understand. Any f : E → P with
|f −1(i)| = αi for i = 1, 2, . . . , k gives rise to a flag F of subsets as in (3.3) with α(F ) = α, by letting
Ai := f −1({1, 2, . . . , i}). In other words, f takes on the constant value i on each of the set differences
Ai \Ai−1. One can then readily see (e.g. from the greedy algorithm) that f will beM-generic if and only
if each of the subquotients

(
M|Ai

)
/Ai−1 has only one base, that is, if and only if each such subquotient

splits completely.
A consequence of this equivalence is that [14, Theorem4.1] gives an alternate proof of Theorem3.1.
Given this discussion, the existence of canonical odd and even subalgebras inside any combinatorial

Hopf algebra (see [14, Section 5]) naturally suggests the following question.

Question 3.4. What is the odd subalgebra of the combinatorial Hopf algebraMat? Does it contain any
elements of the form [M] for a single matroid M, or does it contain only non-trivial sums

∑
cM [M]?

2 A shortening of parts of this proof has been found recently by Luoto, as an application of his ‘‘matroid-friendly’’ basis of
quasisymmetric functions; see [13, Section 7.4].
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For any such [M] in the odd subalgebra ofMat , it will follow from [14, Propositions 5.8e and 6.5]
that F(M)will lie in the peak subalgebra ofQSym (see [14] for definitions).

Example 3.5. One can use Proposition 3.3 to compute some more examples of F(M). IfM is a rank 1
matroid on ground set E = {1, 2} in which 1, 2 are parallel elements, then there are exactly two flags
F having all subquotients that split completely:

∅ ⊂ {1} ⊂ E = {1, 2}
∅ ⊂ {2} ⊂ E = {1, 2}.

Both of these flags have α(F ) = (1, 1) and hence F(M) = 2M1,1.
Similarly, ifM is a rank 1 matroid on ground set E = {1, 2, 3} in which 1, 2, 3 are all parallel, then

there are two kinds of flags F having all subquotients that split completely:
• 6 = 3! flags of the form

∅ ⊂ {a} ⊂ {a, b} ⊂ E = {a, b, c}

where (a, b, c) is some permutation of (1, 2, 3), all having α(F ) = (1, 1, 1), and
• 3 flags of the form

∅ ⊂ {a} ⊂ E = {a, b, c}

where a ∈ {1, 2, 3}, all having α(F ) = (1, 2).
Consequently, F(M) = 3M1,2 + 6M1,1,1.

4. Behavior under matroid duality

Recall that ifM is a matroid on ground set E with basesB(M), then its dual (or orthogonal) matroid
M∗ has the same ground set E but bases

B(M∗) = {B∗ : B ∈ B(M)}
where B∗ := E\B is called the cobase ofM∗ corresponding to the base B ofM .

Proposition 4.1.

F(M) =
∑
α

cαMα

if and only if

F(M∗) =
∑
α

cαMα∗

where α∗ := (αk, αk−1, . . . , α2, α1) is the reverse composition to α.

Proof. We check that for any composition α ∈ Pk, the coefficient of Mα in F(M) is the same as the
coefficient ofMα∗ in F(M∗).
The former coefficient counts the set of M-generic f : E → P for which xf = xα . The latter

coefficient counts the set ofM∗-generic f ∗ : E → P for which xf ∗ = xα∗ .
We exhibit a bijection between these sets as follows. If B is a base ofM with cobase B∗ ofM∗, then

the equation

f (B)+ f (B∗) =
∑
e∈E

f (e)

shows that B is f -minimizing if and only if B∗ is f -maximizing. Now define f ∗(e) := k + 1 − f (e), so
that one has

f (B∗)+ f ∗(B∗) = (k+ 1)|B∗| = (k+ 1) (|E| − r(M)) .

This equation shows that B∗ is f -maximizing if and only if B∗ is f ∗-minimizing. Since xf = xα if and
only if xf ∗ = xα∗ , the map f 7→ f ∗ restricts to the desired bijection. �
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5. P-partition expansion

Quasisymmetric functions were originally introduced by Gessel [7] (building on the work of
Stanley) as enumerators for P-partitions.We review this here, and explain how it leads to an expansion
of F(M) as a sum of P-partition enumerators.
A labelled poset (P, γ ) on n elements is a poset P together with a bijective labelling function

γ : P → [n] := {1, 2, . . . , n}.
A (P, γ )-partition is a function f : P → P such that

f (p) ≤ f (p′) if p ≤ p′

f (p) < f (p′) if p ≤ p′ and γ (p) > γ (p′).

It will sometimes be more convenient for us to refer only to a labelled poset P on [n] (suppressing the
extra labelling function γ ), bywhichwemean a partial order<P on the set [n]. Using this terminology,
a P-partition is a function f : [n] → P satisfying

f (i) ≤ f (i′) if i≤P i′

f (i) < f (i′) if i≤P i′ and i>Z i′.

For example, every permutationw = w1 · · ·wn of [n] can be regarded as a labelled poset on [n]which
is totally ordered:w1<w · · ·<w wn.
Let A(P, γ ) denote the set of (P, γ )-partitions, and let F(P, γ , x) :=

∑
f xf be their weight

enumerator:

F(P, γ , x) :=
∑

f∈A(P,γ )

xf .

A basic result of Stanley tells how F(P, γ , x) expands in terms of another basis forQSym indexed by
compositions α, known as the fundamental quasisymmetric functions

Lα :=
∑

β:β refines α

Mβ . (5.1)

Say that a permutation w = w1 . . . wn in the symmetric group Sn is a linear extension of (P, γ )
if p < p′ in P implies w−1(γ (p)) < w−1(γ (p′)). The Jordan–Hölder set of (P, γ ) is the set L(P, γ )
of all linear extensions of (P, γ ). The descent composition for the permutation w is the composition
α(w) of n which gives the lengths of the maximal increasing consecutive subsequences (runs) of w.
It is not hard to check that, regarding w as a totally ordered labelled poset on [n] as above, one has
F(w, x) = Lα(w). The basic result about P-partitions is the following expansion.

Proposition 5.1 ([15, Section 4.5], [8, Section 7.19], [7, Eq. (1)]).

F(P, γ , x) =
∑

w∈L(P,γ )

F(w, x)

=

∑
w∈L(P,γ )

Lα(w).

It turns out that every base B of a matroidM leads to a certain labelled poset PB, whose P-partition
enumerator is relevant for expanding F(M); see Theorem 5.2.
Given a base B of a matroidM on ground set E, let B∗ = E \ B be the corresponding cobase ofM∗.
For each e ∈ B the basic bond for e in B∗ is the set of e′ ∈ E for which (B\{e})∪{e′} is another base of

M . Dually, for each e ∈ E−B (=B∗) the basic circuit for e in B is the set of e′ ∈ E for which (B∪{e})\{e′}
is another base of M . By definition then, one has a symmetric relationship: e′ lies in the basic bond
for e in B∗ if and only if e lies in the basic circuit for e′ in B. Thus these relations can be encoded by a
bipartite graph with vertex set E, bipartitioned as E = Bt B∗. Define the poset PB to be the one whose
Hasse diagram is this bipartite graph, with edges directed upward from B to B∗.
Say that a labelling γ of a poset P is natural (resp. strict or anti-natural) if γ (p) < γ (p′) (resp.

γ (p) > γ (p′)) whenever p < p′ in P .
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Theorem 5.2. For any matroid M,

F(M, x) =
∑
B∈B(M)

F(PB, γB, x)

where γB is any strict labelling of PB.

Proof. We will show that B is the unique f -minimizing base ofM for some f : E → P if and only if f
lies inA(PB, γB).
First assume that f does not lie in A(PB, γB), that is, there exists some e < e′ in PB for which

f (e) ≥ f (e′). By the definition of PB, thismeans that e lies in B, e′ does not lie in B, and B′ := B\{e}∪{e′}
is another base of M . However f (e′) ≤ f (e) implies f (B′) ≤ f (B), so that B cannot be the unique f -
minimizing base.
Now assume that B is not the unique f -minimizing base ofM . This means that there exists another

base B′ ofM having f (B′) ≤ f (B). By convexity, we may assume that the pair {B, B′} corresponds to an
edge of thematroid base polytopeQ (M), which is defined to be the convexhull inRE of all characteristic
{0, 1}-vectors of bases of M (see Section 7). A well-known fact from matroid theory [16, Section 2.2,
Theorem 1] says that all edges of Q (M) take the form {B, B′} in which B, B′ differ by a single basis
exchange: there exist some e ∈ B and e′ ∈ B′ such that B′ = B \ {e} ∪ {e′}. Thus e < e′ in PB. Since
f (B′) ≤ f (B) forces f (e′) ≤ f (e), this means f is not inA(PB, γB). �

Remark 5.3. Aguiar has pointed out that Theorem 5.2 shows the Hopf morphism F : Mat → QSym
factoring through the Hopf algebra P of (labelled) posets, which is described (for unlabelled posets)
in [14, Example 2.3]. More precisely, one has a Hopf morphism

Mat −→ P

[M] 7→
∑
B∈B(M)

[(PB, γB)]

and the usual (P, γ )-partition enumerator Hopf morphism

P −→QSym
[(P, γ )] 7→ F(P, γ , x).

Then F :Mat → QSym is the composite of these two morphisms.

Corollary 5.4. Let F(M) =
∑

α c
M
α Lα . Then

(i) the coefficients cMα are non-negative,
(ii) their sum

∑
α c
M
α is n! where n := |E|, and

(iii) the coefficient cM1,1,...,1 of L1,1...,1 is the number of bases of M.

Proof. Everything will follow from Proposition 5.1 and Theorem 5.2. Assertion (i) is immediate.
Assertion (ii) follows because each of the n! linear orderings e1, . . . , en of E is a linear extension

for exactly one of the posets PB, namely the one indexed by the unique f -minimizing base B when
f (e1) < · · · < f (en).
Assertion (iii) follows because any strictly (anti-naturally) labelled poset (P, γ ) has the reversing

permutation w0 = n . . . 321 in L(P, γ ), and w0 is the only permutation having descent composition
(1, 1, . . . , 1). �

Corollary 5.4 gives a combinatorial interpretation for the coefficient cM1,1,...,1. It would be nice to
have such an interpretation for every coefficient cMα . The next result at least tells us how to interpret
the coefficients ‘‘at the other end’’ of the Lα expansion, namely cMα where α has at most two parts, in
terms of some basic matroid invariants of M . Recall that an element e in E is a loop in M if it appears
in no bases ofM , and it is a coloop (or isthmus) if it appears in every base ofM .

Proposition 5.5. Let M be matroid having
• rank r,
• corank r∗ := |E| − r,



L.J. Billera et al. / European Journal of Combinatorics 30 (2009) 1727–1757 1735

• number of loops equal to `,
• number of coloops equal to c, and
• number of bases b.

Then

F(M) = b

(
`+c∑
j=0

(
`+ c
j

)
L(r+`−j,r∗−`+j)

)
+

∑
β:`(β)≥3

cβLβ

for some non-negative coefficients cβ . Here `(β) denotes the number of parts in the composition β .
Equivalently, if M̂ is the matroid obtained from M by removing all loops and coloops, so that M̂ has

rank r̂ = r − c, and
corank r̂∗ = r∗ − ` = |E| − r − `,

then

F(M) = (L1)`+cF(M̂)

= (L1)`+c
(
b · L(r̂,r̂∗) +

∑
γ :`(γ )≥3

dγ Lγ

)
for some non-negative integer coefficients dγ .

Proof. The second assertion follows from the ` + c = 0 case of the first, applying the multiplicative
property F(M1⊕M2) = F(M1)F(M2) to the decomposition ofM as a direct sum of M̂ with `+ c loops
and isthmuses.
For the first assertion, we apply Theorem 5.2. For each base B, the poset PB will have height one,

and decompose into three sets:

• the set A1 of `+ c loops and coloops, which are all both minimal and maximal in PB,
• the set A2 of r − c non-coloop elements in B, each of which is minimal but not maximal in PB, and
• the set A3 of r∗ − ` non-loop elements in B∗, each of which is maximal but not minimal in PB.

We are free to choose the strict labelling γB so that the elements in A2 all have the highest labels, the
elements in A3 all have the lowest labels, and the elements in A1 have the labels in between.
How, then, can one choose a linear extensionw inL(PB, γB) so that its descent composition α(w)

has at most two parts? This means that w has at most two increasing runs, separated by a unique
descent. Due to our chosen labelling of B, such a w will have the first run of length at least r − c , and
the second run of length at least r∗ − `. Furthermore, for any integer j in the range [0, `+ c], one can
check that there are

(
c+`
j

)
ways to choose such aw in (PB, γB) so that it starts with an increasing run

of length r − c + j, followed by its unique descent, and then ends with an increasing run of length
r∗+ c − j: one must place the elements of A2 together with any j elements chosen from A1 before the
unique descent, and place the elements of A3 together with other ` + c − j elements of A1 after the
unique descent. �

In particular, the previous proposition tells us the coefficient of Lα in F(M)when α has only 1 part.
Recall from Section 3 that a matroid M is said to split completely if M is a direct sum of loops and
isthmuses.

Corollary 5.6. For M amatroid on ground set E of size |E| = n, the expansion of F(M) in the Lα (resp. Mα)
basis for QSym has the coefficient of L(n) (resp. M(n)) equal to 1 if M splits completely, and 0 otherwise.

Proof. The assertion for the coefficient of L(n) follows from Proposition 5.5. Then the assertion for the
coefficient ofM(n) follows from the expansion (5.1) of Lα intoMβ ’s. �
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6. Reciprocity and behavior under the antipode

Part of the structure of a Hopf algebra is an involutive anti-automorphism known as its antipode.
For the Hopf algebra of quasisymmetric functions, the antipode S : QSym → QSym is known to be
related to combinatorial reciprocity results [17,18]. It turns out to have an interesting effect on F(M),
transforming it into a different sort of enumerator for weight functions f : E → P. We begin by
reviewing how the antipode relates to reciprocity.
The antipode S : QSym→ QSym has the following effect on the Lα-basis [17, Corollary 2.3]:

S(Lα) = (−1)|α|Lαc

where |α| := α1 + · · · + αk = n denotes the weight of the composition α, and αc corresponds to the
subset T c = [n−1] \ S if α corresponds to the subset T of [n−1] (i.e. T is the set of partial sums of α).
Stanley’s reciprocity theorem for P-partitions [15, Theorem 4.5.7] tell us that if γ , γ̄ are natural

and strict labellings of the same poset P , then

S(F(P, γ , x)) = (−1)|P|F(P, γ̄ , x). (6.1)

Upon specializing Lα, Lαc to x = 1m, that is,

x1 = · · · = xm = 1,
xm+1 = xm+2 = · · · = 0,

one obtains

Lα(1m) =
(
m− k+ n

n

)
Lαc (1m) =

(
m+ k− 1

n

)
where α = (α1, . . . , αk). Then the equality(

m− k+ n
n

)
= (−1)n

(
−m+ k− 1

n

)
leads immediately to the following reciprocity fact (cf. [18, Section 4]).

Proposition 6.1. If two homogeneous quasisymmetric functions F , F∗ of degree n are related by S(F) =
F∗, then their specializations

φ(m) = F(1m)
φ∗(m) = F∗(1m)

satisfy

φ(−m) = φ∗(m).

We can now identify the image of F(M) under the antipode S inQSym.

Definition 6.2. Define a power series in x1, x2, . . .

F∗(M, x) :=
∑
f :E→P

|{f -minimizing bases ofM}| xf .

Also define a polynomial inm

φ∗(M,m) := F∗(M, 1m)

=

∑
f :E→[m]

|{f -minimizing bases ofM}|.
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One could argue that these two enumerators F∗(M, x), φ∗(M,m) are at least as natural to consider
as our original F(M, x), φ(M,m). For example, the expected number of f -minimizing bases of M
attained when using at mostm distinct values for the weights is exactly 1

mn φ
∗(M,m).

Theorem 6.3. For any matroid M on n elements,

S(F(M, x)) = (−1)nF∗(M, x)

and consequently,

φ(M,−m) = (−1)nφ∗(M,m).

Proof. Theorem 5.2 implies

S(F(M, x)) =
∑
B∈B(M)

S(F(PB, γB, x))

= (−1)n
∑
B∈B(M)

F(PB, γ̄B, x)

= (−1)n
∑
B∈B(M)

∑
f :E→P

B is f -minimizing

xf

= (−1)n
∑
f :E→P

|{f -minimizing bases ofM}|xf

= (−1)nF∗(M, x). �

Note that since F(M, x), F∗(M, x) are related by the antipode S, they carry equivalent information,
a fact which is not completely obvious from their definitions. The same goes for φ(M,m) and
φ∗(M,m).

7. Valuation property and application to polytope decompositions

The goal of this section is to show that the matroid invariant F(M) behaves like a valuation
on the associated matroid base polytopes Q (M), and apply this to the subtle problem of detecting
decompositions of these polytopes.
By thematroid base polytopewe mean the convex polytope

Q (M) := conv

{∑
i∈B

ei : B a base ofM

}
,

where ei denotes the ith standard basis vector in RE . This polytope Q (M) is a face of a polytope
first studied by Edmonds [19], which took as vertices the indicator functions of all independent sets
in M (subsets of bases). We are interested in the existence or non-existence of certain polytopal
decompositions of Q (M).

Definition 7.1. A matroid base polytope decomposition of Q (M) is a decomposition Q (M) =
∪
t
i=1 Q (Mi)where

• each Q (Mi) is a matroid base polytope for some matroidMi, and
• for each i 6= j, the intersection Q (Mi) ∩ Q (Mj) is a face of both Q (Mi) and of Q (Mj).

We call such a decomposition a hyperplane split ofQ (M) if t = 2.We say thatQ (M) is decomposable
if it has a matroid base polytope decomposition with t ≥ 2, and indecomposable otherwise. We say
that the decomposition is coherent if the Q (Mi) are exactly the maximal domains of linearity for
someR-valued piecewise-linear convex function on Q (M). For example, hyperplane splits are always
coherent.
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Coherent matroid base polytope decompositions appeared in the work of Lafforgue [20,21] on
compactifications of the fine Schubert cell of the Grassmannian corresponding to the matroid M ,
and in related work by Keel and Tevelev [22, Section 2.6], and by Hacking, Keel and Tevelev [23,
Section 3.3]. In particular, Lafforgue’s work implies that for a matroidM represented by vectors in Fr ,
if Q (M) is indecomposable, then M will be rigid, that is, M will have only finitely many realizations,
up to scaling and the action of GL(r, F).

7.1. Polar cones and valuations

Wewill need a version of a theorem of Lawrence [24, Theorem 16] (see also [25, Corollary IV.1.6])
about polarity, which can be proved by a minor adjustment to the proof of [25, Theorem IV.1.5].
Let 〈·, ·〉 denote the usual inner product on Rn. If A is a convex set in Rn, then denote by [A] its

indicator function and by I(A) the convex set

I(A) := {x ∈ Rn : 〈x, y〉 > 0 for all y ∈ A}.

Recall that a closed convex cone K ⊂ Rn is said to be pointed if it contains no lines. In this case, its
polar cone K ◦ := {x ∈ Rn : 〈x, y〉 ≤ 0 for all y ∈ K} has a non-empty interior. For a non-zero pointed
cone K , I(K) is the interior of−K ◦.
We show that the function A 7→ I(A) acts as a valuation on non-empty closed convex sets.

Proposition 7.2. Let A1, A2, . . . , AN be a finite family of non-empty closed convex sets. If∑
i

αi[Ai] = 0

for real numbers α1, α2, . . ., then∑
i

αi[I(Ai)] = 0.

Proof. The proof is as in [25], except that in Theorem IV.1.5, one defines

Fε(x, y) = F(x, y) =
{
1 if 〈x, y〉 ≤ 0
0 otherwise.

In this case, the limiting argument of [25] (and [24]) is not necessary.
As in [25] the association

D : [A] 7→ [I(A)]

is the specialization to indicator functions [A] of a linear map

D : C(Rd) 7→ C(Rd),

whereC(Rd) is the algebra of indicator functions of closed convex sets inRd (see [25, Defn. I.7.3]). The
mapD may be defined as follows: for a function g(x), the value of (Dg)(y) on a point y ∈ Rd is given
by

χ(g(x))− χ(g(x)F(x, y)).

Here χ denotes the Euler characteristic linear functional on C(Rd); its value on a function h(x) ∈
C(Rd) is determined uniquely from knowing that it takes the value 1 on indicator functions of closed
convex sets. �

7.2. Matroid polytopes and decompositions

We now wish to apply this to a decomposition Q (M) = ∪i Q (Mi) of matroid base polytopes.
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Necessarily the Mi will be weak images (degenerations) of M , that is, B(Mi) ⊂ B(M). If M1 =
(E,B1) andM2 = (E,B2) arematroids of the same rank on the same set E, thenwe defineM1∩M2 :=
(E,B1 ∩ B2). We write M1 ∩ M2 = ∅ if B1 ∩ B2 = ∅ (as opposed to {∅}). Note that even when
M1 ∩M2 6= ∅, it is not usually a matroid—take, for example, the rank 2 matroidsM1,M2 having bases

B(M1) = {13, 14, 23, 24},
B(M2) = {12, 13, 23, 24, 34}

so thatB(M1)∩B(M2) = {13, 23, 24}. However, when Q (M1) and Q (M2)meet along a common face
(as in a matroid base polytope decomposition), and that face is non-empty, the intersectionM1 ∩M2
will be a matroid.

Proposition 7.3. If M1 and M2 are matroids of the same rank r and Q (M1) ∩ Q (M2) is a non-empty
common face of Q (M1) and Q (M2), then M1 ∩M2 is a matroid of rank r and

Q (M1 ∩M2) = Q (M1) ∩ Q (M2).

Proof. Non-empty faces of matroid base polytopes are matroid base polytopes [16, Section 2.5
Theorem 2], and so the common face Q (M1) ∩ Q (M2)must be a matroid base polytope. The vertices
of Q (M1) ∩ Q (M2) correspond to common bases ofM1 andM2, that is, to elements ofB1 ∩B2. �

Suppose eB =
∑
i∈B ei is the vertex of Q (M) corresponding to the base B ofM . We denote by KB(M)

the closed convex cone generated by the Minkowski sum (translate) Q (M)− {eB}. Its polar K ◦B (M) is
the normal cone to Q (M) at eB.
Notice that by the proof of Theorem 5.2, the expansion of F(M) given there can be written as

F(M, x) =
∑
B∈B(M)

F(KB(M), x), where

F(KB(M), x) =
∑

f∈I(KB(M))

xf .
(7.1)

With this, one can prove that F(M) acts as a valuation over subdivisions of Q (M).

Theorem 7.4. The association Q (M) 7→ F(M) is a valuation on the class of matroid polytopes: if Q (M)
can be subdivided into finitely many matroid polytopes Q (Mi), then

F(M) =
∑
j≥1

(−1)j−1
∑

i1<i2<···<ij

F(Mi1 ∩Mi2 ∩ · · · ∩Mij),

with the sum over i1 < i2 < · · · < ij such that Mi1 ∩Mi2 ∩ · · · ∩Mij 6= ∅.

Proof. Anydecomposition ofQ (M) induces, for eachB ∈ B(M), a decomposition ofKB(M) intoKB(Mi)
where B ∈ B(Mi). (For notational convenience, we include all B ∈ B and set KB(Mi) = ∅ when
B 6∈ B(Mi).) This, in turn, leads to an inclusion–exclusion relation (see, for example, [25, Lemma
I.7.2])

[KB(M)] =
∑
j

(−1)j−1
∑

i1<i2<···<ij

[
KB(Mi1) ∩ · · · ∩ KB(Mij)

]
=

∑
j

(−1)j−1
∑

i1<i2<···<ij

[
KB(Mi1 ∩ · · · ∩Mij)

]
,

with the second equality following from Proposition 7.3. Clearly, we can restrict these sums to those
i1 < i2 · · · < ij for which B ∈ B(Mii) ∩ · · · ∩ B(Mij), in which case Mii ∩ · · · ∩ Mij 6= ∅. Thus, by
Proposition 7.2, we have the relation

[I (KB(M))] =
∑
j

(−1)j−1
∑

i1<i2<···<ij

[
I
(
KB(Mi1 ∩ · · · ∩Mij)

)]
.

The assertion now follows from (7.1). �
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It turns out that all of the terms with j ≥ 2 in the summation of Theorem 7.4 involve matroids
which are disconnected. This will allow us to deduce a corollary (Corollary 7.7) which ignores these
terms, and leaves a sum with positive coefficients.
To this end, recall that a non-empty subset A ⊆ E is called a separator of M if it leads to a direct

sum decomposition of matroids:

M = M|A ⊕M|E\A.

The whole ground set E is itself a separator, and the collection of separators is closed under
intersection. Hence E can be written as a disjoint union of inclusion-minimal separators ofM . Denote
by s(M) the number of minimal separators ofM . The following is [16, Section 2.4, Proposition 4].

Proposition 7.5. The dimension of the matroid polytope Q (M) is |E| − s(M).

Considering QSym as a graded Z-algebra, its maximal (homogeneous) ideal is m = ⊕d≥1QSymd.
Given an element f ∈ QSym, let f denote its image in the quotient ringQSym/m2.

Corollary 7.6. If E 6= ∅ and the dimension of Q (M) is less than |E| − 1, then F(M) lies in the square m2

of the maximal ideal m. In other words, F(M) = 0 inQSym/m2.

Proof. If Q (M) has dimension less than |E| − 1 then s(M) > 1, so there exists at least one proper
separator A ( E. Since F : Mat → QSym is an algebra morphism, one has F(M) = F(M|A)F(M|E\A),
and hence F(M) lies in m2. �

Since Q (M1 ⊕ M2) = Q (M1) × Q (M2), to study decomposability of matroid polytopes Q (M), it
is enough to restrict attention to connected matroids M , that is, those with s(M) = 1. For these, the
maximal cells in any decomposition Q (M) = ∪i Q (Mi) will have dimension |E| − 1 and so will also
correspond to connectedmatroids. All their proper intersections, however, will be lower-dimensional
and so correspond to matroids with non-trivial separators.

Corollary 7.7. If a matroid polytope Q (M) can be subdivided into finitely manymatroid polytopes Q (Mi),
then inQSym/m2 one has F(M) =

∑
i F(Mi).

This corollary interacts nicely with a result of Hazewinkel [26, Theorem 8.1], confirming a
conjecture of Ditters which says that the Z-algebra structure on QSym is that of a free commutative
algebra, that is, a polynomial algebra. Consequently,m/m2 is a free (graded)Z-module, and hence each
homogeneous component (QSym/m2)n is a Z-lattice Zrn of some finite rank3 rn.
Thus for matroidsM of rank r on ground set E of size n, to understand the potential matroid base

polytope decompositions of Q (M), it helps to examine the additive semigroup structure generated by
the elements F(M)within the lattice Zrn .

Definition 7.8. Say that F(M) is decomposable if there exist matroids Mi with F(M) =
∑t
i=1 F(Mi),

and indecomposable otherwise. Say that F(M) isweak image decomposable if it is decomposable with
eachMi a weak image ofM , that is,B(Mi) ⊂ B(M).

3 In fact, these ranks rn can be made more explicit in two ways. First, they are determined uniquely by the power series
relation∏

n≥1

1
(1− tn)rn

= Hilb(QSym, t) = 1+ t + 2t2 + 4t3 + · · · =
1− t
1− 2t

.

Second, rn has a combinatorial interpretation explained in [26, Section 4], as the number of words in the alphabet {1, 2, . . .} of
total weight nwhich are star powers of elementary Lyndon words.
In practice, we have done our computer calculations in (QSym/m2)n using {Lα}|α|=n as a Z-basis for QSymn , and using
{LβLε}|β|+|ε|=n as a Z-spanning set for (m2)n . To do this, one can expand LβLε in terms of Lα ’s using Proposition 5.1: LβLε =
F(P, γ , x) for a labelled poset (P, γ )which is the disjoint union of two chains, one with descent composition β , the other with
descent composition ε.
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Fig. 1. The connected rank three matroids on 6 points for which Q (M) is indecomposable, represented as affine point
configurations in the plane. The first matroid contains a tripled point, and the second contains two pairs of doubled points.

In otherwords, F(M) is indecomposable if and only if it is an element of the uniqueHilbert basis [27,
Chapter 13] for the additive semigroup generated by the F(M). Corollary 7.7 implies that Q (M) is
indecomposable unless F(M) is weak image decomposable. However, decomposability (and hence
also weak image decomposability) of F(M) is easily checked using computer algebra packages that
can compute the toric ideal and/or the Hilbert basis for the additive semigroup generated by the F(M)
withinQSym/m2; see [27, Chapters 4 and 13].

Example 7.9. A (loopless) rank 2 matroid M on n elements is determined up to isomorphism by the
partition λ(M) of n that gives the sizes λi of its parallelism classes. Also, M1 is a weak image of M2,
up to isomorphism, if and only if the partition λ(M1) is refined by the partition λ(M2). Note thatM is
connected if and only if λ has at least 3 parts. Hence the connected weak images of M correspond to
all coarsenings of λ(M)with at least 3 parts.
In particular, if λ(M) has exactly 3 parts then F(M)must beweak image indecomposable andQ (M)

must be indecomposable. In fact, by computer calculations, we have verified for 3 ≤ n ≤ 9 that the
rank 2matroidsM for which λ(M) has exactly 3 parts form the Hilbert basis for the semigroup gener-
ated by the F(M), and those for which λ(M) has more than 3 parts all have Q (M) decomposable (and
hence F(M)weak image decomposable). The following question was left open in an earlier version of
this paper, but has recently been resolved in the affirmative by work of Luoto [13, Corollary 6.7]:

Question 7.10. Fix n, and consider the semigroup generated by F(M) within QSym/m2 as one ranges
over all matroids M of rank 2 on n elements. Is the Hilbert basis for this semigroup indexed by those M for
which λ(M) has exactly 3 parts?

We should mention that a convenient parametrization of all rank 2 matroid base polytope decom-
positions was given by Kapranov [28, Section 1.3], who showed that all decompositions in this (rank
2) setting can be achieved by a sequence of hyperplane splits.

Example 7.11. Considering all 15 connected rank 3 matroids M with n := |E| = 6 (see, for
example, [16, Fig. 2]), we found five for which F(M) is indecomposable. These are illustrated in Fig. 1.
In particular, the twomatroidsM1 andM2 in Fig. 2(a) satisfy F(M1) = F(M2), which can be written

in three different ways as sums of these indecomposables

F(Mi) = F(Mb)+ F(Mc)+ 2F(Md)
= 2F(Ma)+ F(Me)
= F(Ma)+ 3F(Md).

For M2, all three of these additive decompositions correspond to matroid base polytope
decompositions of Q (M2), as does the first for M1. However, since Ma is not a weak image of M1,
the second and third cannot correspond to such decompositions of Q (M1).

Question 7.12. Does F(M) being weak image decomposable in QSym/m2 imply that Q (M) is
decomposable?

We see no reason, a priori, for this to hold, but the matroids considered in Examples 7.9 and
7.11 provide no counterexamples. In fact, for all of the matroidsM in those examples, one has Q (M)
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Fig. 2. (a) Two matroidsM1,M2 , represented by affine point configurations having the same Tutte polynomials and the same
quasisymmetric functions. (b) TwomatroidsM3,M4 having the sameTutte polynomials but different quasisymmetric functions.

indecomposable if and only if F(M) is indecomposable if and only ifM is minimally connected (i.e., all
weak images ofM have a non-trivial separator).

Example 7.13. It is worth noting that among the rank 3 matroids with n = 6 elements, one finds the
first matroid base polytope decompositions which are not hyperplane splits. For example, ifM is the
rank 3matroid on E = {1, 2, 3, 4, 5, 6} having every triple but {1, 2, 3}, {1, 4, 5} and {3, 5, 6} as bases,
then both F(M) and Q (M) split into three indecomposable pieces, each isomorphic to the matroidMd
in Fig. 1. This subdivision of Q (M) cannot be obtained via hyperplane splits.

8. Comparison to the other matroid invariants

One might ask how fine a matroid invariant is F(M). That is, how well does it distinguish
non-isomorphic matroids, say in comparison with well-studied matroid invariants like the Tutte
polynomial?
Certainly the kernel of the Hopf algebra map F :Mat → QSym contains p := [Misthmus] − [Mloop]

by Example 2.2, and hence contains the smallest Hopf ideal I generated by p. In fact, since p is primitive
(as it is of degree 1), the Hopf ideal I which it generates coincides with the principal ideal consisting
of all multiples of p. Consequently F factors through the quotient Mat/I , that is, through the Hopf
algebra of matroids modulo ‘‘loops = coloops’’.
Beyond this inability to distinguish loops from coloops, one might ask how discriminating F(M) is.

The next two examples show that it certainly does not distinguish all loopless and colooplessmatroids
up to isomorphism (whichwould have been toomuch to ask), but it at least does better than the well-
known Tutte polynomial in some instances.

Example 8.1. Fig. 2(a) depicts two matroids, represented as affine point configurations, having the
same Tutte polynomial (because M1/e ∼= M2/e and M1 \ e ∼= M2 \ e, where e is the labelled point in
each case). Direct computer calculation (using Theorem 5.2) shows that F(M1) = F(M2).

These two examples were borrowed from the survey of Brylawski and Oxley on the Tutte
polynomial [6, pp. 197]; they are the smallest examples of non-isomorphic matroids with the same
Tutte polynomial.
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Example 8.2. Fig. 2(b) depicts twomatroidsM3,M4 having the sameTutte polynomials (sinceM3/e ∼=
M4/e andM3 \ e ∼= M4 \ e), but different quasisymmetric functions: it turns out that the coefficient of
L(1,3,3) in F(M3) is 16, while in F(M4) is 18.

These two examples were again taken from the survey of Brylawski and Oxley [6, pp. 133], where
they point out other features thatM3,M4 share and do not share.
Note that Example 8.2 rules out the possibility of computing F(M) purely in terms of F(M \

e), F(M/e).

Question 8.3. Even though there is no direct deletion–contraction computation for F(M) for which one
might have naively hoped, does this rule out other sorts of recursions?

In particular, one is tempted to try the following. Theorem 5.2 says

F(M, x) =
∑
B∈B(M)

F(PB, γB, x)

=

∑
B∈B(M):e6∈B

F(PB, γB, x)+
∑

B∈B(M):e∈B

F(PB, γB, x).

Can one better identify the two summands in this last equation? Are they instances of some
quasisymmetric functions that should be associated to objects more general than matroids?
Lastly, we mention an invariant gM(t) for a matroidM (representable over Q) recently introduced

by Speyer [29], which shares some common features with F(M). Among its other properties, this
invariant gM(t) is

(i) a polynomial in one variable t with integer coefficients (conjecturally non-negative),
(ii) multiplicative under direct sums: gM1⊕M2 = gM1gM2 ,
(iii) invariant under duality of matroids: gM = gM∗ ,
(iv) additive under any decomposition of the matroid base polytope Q (M) = ∪ti=1 Q (Mi), where

Q (M1), . . . ,Q (Mt) are all of the interior faces of the decomposition, in the sense that gM(t) =∑
i gMi(t).

Question 8.4. Is gM(t) related to (some specialization of) F(M)?

Remark 8.5. In personal communication, Speyer has pointed out that all three invariants of amatroid
M discussed in this section, behave either valuatively or additively under matroid base polytope
decompositions:

• the quasisymmetric function F(M, x) behaves valuatively according to Theorem 7.4,
• Speyer has checked that the Tutte polynomial TM(x, y) also behaves valuatively (via a small
calculation using the corank-nullity formula for TM(x, y); see also [30]), and
• his invariant gM(t) behaves additively by property (iv) above.

Speyer then used this to explain why all three invariants take the same value for the two matroids
M1,M2 shown in Fig. 2(a): either of thematroid base polytopesQ (Mi) for i = 1, 2 can be obtained from
the hypersimplex Q (U(3, 6)) associated to the uniform matroid of rank 3 on the same six elements,
by splitting off with hyperplanes (in any order) two other polytopes Q (M ′i ),Q (M

′′

i ), that is,

Q (U(3, 6)) = Q (Mi) ∪ Q (M ′i ) ∪ Q (M
′′

i ).

Furthermore, theM ′i ,M
′′

i are all isomorphic as matroids

M ′1 ∼= M
′

2
∼= M ′′1 ∼= M

′′

2

and have isomorphic intersections

M1 ∩M ′1 ∼= M2 ∩M
′

2
∼= M1 ∩M ′′1 ∼= M2 ∩M

′′

2 .
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As a consequence, a matroid invariant f (M)will have

f (U(3, 6)) =
{
f (Mi)+ f (M ′i )+ f (M

′′

i )− f (Mi ∩M
′

i )− f (Mi ∩M
′′

i ) if f is valuative,
f (Mi)+ f (M ′i )+ f (M

′′

i )+ f (Mi ∩M
′

i )+ f (Mi ∩M
′′

i ) if f is additive

for i = 1, 2. In either case, this forces f (M1) = f (M2).
This strongly suggests trying to define a ‘‘universal’’ valuative invariant of matroids, following

McMullen’s polytope algebra, and in particular his section [31, Section 20] dealing with valuations
invariant under a finite group action. Build an Abelian group starting with the free Abelian group
on basis elements [M] indexed by matroids M , imposing the valuation relation for each matroid
base polytope decomposition of Q (M), and the relation [M] = [M ′] if M and M ′ are isomorphic as
matroids.4 Valuative matroid invariants are exactly the linear functionals on this Abelian group.

Problem 8.6. Study the structure of this Abelian group. Are there special classes of special matroids
which generate it?

For example, a conjecture of Speyer [29, Conjecture 11.3] would follow if this Abelian group were
generated by the classes [M]whereM runs over all direct sums of series–parallel matroids.

9. Generalization to generalized permutohedra

It turns out that the proofs of Proposition 2.1, Theorem 5.2, Corollary 5.4, Theorems 6.3 and 7.4
generalize in a straightforward way to give results about a general class of convex polytopes studied
recently by Postnikov [32]; see also [33,34].
Given a convex polytope Q in Rn, the following conditions are well-known to be equivalent [35,

Proposition 7.12]:

• Every edge of Q lies in one of the directions {ei − ej : 1 ≤ i 6= j ≤ n}.
• The normal fan of Q in (Rn)∗ is refined by the usual braid arrangement (or type An−1 Weyl chamber
fan).
• The polytopeQ is aMinkowski summand of some realization of the permutohedron as aMinkowski
sum of line segments (possibly of different lengths) in the directions {ei − ej : 1 ≤ i < j ≤ n}.

Say that Q is a generalized n-permutohedronwhen any of these equivalent conditions hold.5

Example 9.1. Given a matroidM on ground set E = [n], the matroid base polytope Q (M) defined in
Section 7 is a generalized n-permutohedron [16, Section 2.2, Theorem 1], a fact that played a crucial
role in the proof of Theorem 5.2.

Given a polytope Q in Rn, say that a function f : [n] → P (which we think of as giving an element
of (Rn)∗) is Q -generic if f maximizes over Q uniquely at a vertex. In other words, f lies in the interior
of an n-dimensional cone in the normal fan for Q . One can then prove the following:

Theorem 9.2. If Q is a generalized n-permutohedron in Rn, then
(i) the power series

F(Q , x) :=
∑
Q-generic
f :[n]→P

xf

is quasisymmetric, with

4 As McMullen points out in [31, Section 20], imposing invariance under finite group action (such as matroid isomorphism)
seems to require sacrificing the multiplicative structure in the polytope algebra coming from Minkowski addition. It also
appears that in our situation onemust sacrifice translation-invariance, and the structure coming fromdilatations, as the vertices
of each matroid base polytope Q (M) are required to be {0, 1}-vectors whose coordinates sum to the rank r(M).
5 Actually, the definition of generalized permutohedra given in [32] looks slightly different, but is shown to be equivalent to
these conditions in [34, Appendix].



L.J. Billera et al. / European Journal of Combinatorics 30 (2009) 1727–1757 1745

(ii) an expansion in terms of P-partition enumerators as

F(Q , x) =
∑

vertices v of Q

F(Pv, γv, x)

where (Pv, γv) are certain strictly labelled posets indexed by the vertices of Q .
(iii) Furthermore, the coefficients cQα in its expansion F(Q , x) =

∑
α c
Q
α Lα

(a) are non-negative,
(b) sum to n!, and
(c) have cQ1,1,...,1 equal to the number the number of vertices of Q .

(iv) The antipode S onQSym satisfies

S(F(Q , x)) = (−1)nF∗(Q , x)
where

F∗(Q , x) :=
∑
f :[n]→P

|{f -minimizing vertices of Q }|.

(v) The two polynomials φ(Q ,m), φ∗(Q ,m) in the variable m defined by specializing F(Q , x), F∗(Q , x)
to x = 1m satisfy

φ(Q ,−m) = (−1)nφ∗(Q ,m).
(vi) Suppose Q = ∪i Qi is a decomposition of Q into finitelymany permutohedron summands Qi, in which

Qi ∩ Qj is a common face of Qi and Qj for all i, j. Then

F(Q , x) =
∑
j≥1

(−1)j−1
∑

i1<i2<···<ij

F(Qi1 ∩ Qi2 ∩ · · · ∩ Qij),

where the sum is over those terms in which Qi1 ∩ Qi2 ∩ · · · ∩ Qij is non-empty.
In fact, the posets Pv appearing in the theorem have a very simple description: Pv is the transitive

closure of the binary relation on [n] which has i<Pv j if there exists an edge of Q of the form {v, v
′
}

with v′ − v = ej − ei.
In the remainder of this section, we discuss three naturally occurring families of generalized n-

permutohedra that have occurred in the literature.

Problem 9.3. Study the quasisymmetric functions F(Q , x) associated with any of these families of
generalized permutohedra Q .

9.1. Graphic zonotopes and Stanley’s chromatic symmetric function

Let G be a simple graph on vertex set [n]. Let ZG denote the Minkowski sum of line segments in the
directions

{ei − ej : {i, j} is a an edge of G}.
Then ZG is a generalized n-permutohedron; the n-permutohedron itself equals ZKn where Kn is the
complete graph on n vertices. It is easy to see that a function f : [n] → P is ZG-generic if and only if it
is a proper coloring of the vertex set [n] of G. One concludes that F(ZG, x) is the same as the chromatic
symmetric function XG(x1, x2, . . .) introduced by Stanley [18], and studied further by others in recent
years. Many of the results of this paper were inspired by his work, and in particular Theorem 9.2
generalizes a few of the facts about XG.
It is also known (see [14, Example 4.5]) that the map G 7→ XG can be interpreted as a Hopf

morphism between a certain Hopf algebra of graphs and the Hopf algebra Λ of symmetric functions
inside the quasisymmetric functionsQSym. As far as we know, this morphism is of a different nature
than our Hopf morphism F :Mat → QSym.

9.2. Polymatroids and flag matroids

Example 9.1 alludes to a famous result of Gelfand, Goresky, MacPherson, and Serganova,
characterizing matroids in terms of their matroid base polytopes, which we rephrase slightly here.
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Theorem 9.4 (See [16, Section 2.2, Theorem 1], [36, Theorem 1.11.1]). Let B be a collection of r-subsets
of [n], and Q the convex hull of their characteristic vectors in {0, 1}n ⊂ Rn. Then B is the collection of
bases B(M) for some matroid M on ground set E = [n] (and Q = Q (M) is the associated matroid base
polytope) if and only if Q is a generalized n-permutohedron.

This led Gelfand, Goresky, MacPherson, and Serganova to the notion of Coxeter matroids [36]. A
Coxeter matroid is the result of taking the characterization in the previous theorem and

• replacing r-subsets of [n], which can be thought of as the cosets of maximal parabolic subgroups
in the Coxeter group of type An−1, with cosets of an arbitrary parabolic subgroup in an arbitrary
finite Coxeter group,
• replacing the characteristic vectors of r-subsets with W -translates of sums of fundamental
dominant weights,
• replacing generalized n-permutohedra with Minkowski summands of the zonotopes generated by
other root systems.

When the Coxeter group is of type An−1, considering arbitrary parabolic subgroups instead of just
maximal ones leads to the notion of a flag matroid, and its flag matroid base polytope. These will be
generalized n-permutohedra generalizing the matroid base polytopes, whose vertices are vectors in
Nn that no longer necessarily sum to r , but obey certain constraints on the sizes of their coordinates;
see [36, Section 1.11].
Generalizing in another direction, a discrete polymatroid base polytope of rank r (see [37]) is a

generalized n-permutohedron, each ofwhose vertices has non-negative integer coordinates summing
to r . These polytopes were introduced by Edmonds [19] in the context of combinatorial optimization.

9.3. Graph-associahedra

Building on the work of others (De Concini-Procesi, Davis-Januszkiewicz-Scott, and Carr-
Devadoss), Postnikov [32] showed that the generalized n-permutohedra contain an interesting
subclass of polytopes called graph-associahedra, indexed by simple graphs G on vertex set [n]. Within
this subclass, the associahedra and cyclohedra correspond to the cases where the graphs G are paths
and cycles, respectively.
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Appendix. Surjectivity and new bases for QSym

A.1. Sketch of surjectivity

The goal of this appendix is to prove the following.

Theorem A.1. The Hopf algebra morphism F :Mat → QSym is surjective when one extends the scalars
to a field F of characteristic zero.
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We observe here that the morphism F is definitely not surjective without extending scalars. The
image of the mapMat2

F
→QSym2 on homogeneous components of degree 2 is a sublattice of index

2 withinQSym2: there are only four non-isomorphic matroids on 2 elements, whose images under F
are all either of the form L1,1 + L2 or 2L1,1.
Our approach will be to define, for each degree n, a family of 2n−1 matroids on ground set E = [n],

whose images under F span QSymn with rational coefficients. It turns out that it will suffice to take a
subfamily of a family of 2n matroids which were called freedommatroids in [9], and which we will call
PI-matroids here. They were considered in the context of face enumeration in [38] and in [39], where
they arose in the context of combinatorial operators on zonotopes.
Given amatroidM , let I(M) := M⊕Misthmus be a single-element extension ofM by an isthmus. Let

P(M) be a single-element extension ofM which is the principal extension of M along the improper flat,
that is, one adjoins a new element e to the ground set, which is generic while obeying the constraint
that it does not increase the rank.
Say thatM is a PI-matroid if it can be obtained from the emptymatroidM∅ on E = ∅ by performing

a sequence of repeatedM 7→ I(M) and/orM 7→ P(M) operations. It happens that every matroid with
|E| ≤ 3 is isomorphic to a PI-matroid.
Let 0{0, 1}n−1 denote the collection of all binary strings σ ∈ {0, 1}n that begin with a 0. Given σ

in 0{0, 1}n−1, let Mσ be the PI-matroid built from this sequence beginning with an empty matroid,
where one performs the I operation for each 0 and the P operation for each 1 in σ . (For example, the
sequence 01111 would build the PI-matroidM01111 of rank 1 consisting of 5 parallel elements.)
We will prove the following refinement of Theorem A.1.

Theorem A.2. The quasisymmetric functions

{F(Mσ ) : σ ∈ 0{0, 1}n−1}

spanQSymn ⊗ F whenever n! is invertible in F.

Remark A.3. The operationM 7→ I(M)which adds an isthmus toM has a predictable effect on F(M):

F(I(M)) = L1 · F(M).

Seeing this, onemight hope to approach TheoremA.2 by understanding how F(P(M)) relates to F(M).
Unfortunately, F(P(M)) does not depend solely on F(M) via some operation in QSym. For example,
the two matroids

M1 := Misthmus ⊕Misthmus, and
M2 := Misthmus ⊕Mloop

have F(M1) = F(M2)(= L21), however

F(P(M1)) = 3L2,1 + 3L1,1,1, while
F(P(M2)) = 2L2,1 + 2L1,2 + 2L1,1,1.

Instead, the proof of Theorem A.2 (and hence Theorem A.1) proceeds in three steps, carried out
over this and the next two subsections.
Step 1. Introduce a family of posets Rσ on [n], also indexed by 0{0, 1}n−1, and show that the expansion
of the F(Mσ , x) in terms of the strictly labelled P-partition enumerators for the Rσ is triangular in some
ordering. Furthermore, the diagonal coefficients in this expansion are products of binomial coefficients
that all divide n!.
Step 2. Introduce another family of labelled posets Qσ on [n], also indexed by 0{0, 1}n−1, which are
easily seen to form a Z-basis forQSym, and have some nice properties.
Step 3. Show that the expansion of the naturally labelled P-partition enumerators for the Rσ in terms
of the P-partition enumerators for the Qσ is unitriangular with respect to some ordering. From Step 2
it then follows that the former P-partition enumerators also give a Z-basis forQSym.
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Fig. 3. The poset R01001110 , along with its associated blocks (A1, A2, A3).

Then by Eq. (6.1), the strict P-partition enumerators of the Rσ also give a Z-basis for QSym, and
together with Step 1 this proves Theorem A.2.
Step 1 is completed in the remainder of this subsection, while Steps 2 and 3 are achieved in

Appendices A.2 and A.4. As mentioned in an earlier footnote, Luoto [13, Section 7.4] has recently
found an alternative to Steps 2 and 3, by expanding the Rσ basis elements unitriangularly in terms
of his ‘‘matroid-friendly’’ basis forQSym.
Given σ in 0{0, 1}n−1, let Rσ be the labelled poset of height 1 (or 0) on [n] having i<Qσ j if

σi = 0, σj = 1 and i < j.
Each suchσ also defines a partition of the set [n] into intervals thatwewill call the blocks A1, . . . , At

of σ , by breaking [n] between the positions i, i+ 1 where (σi, σi+1) = (1, 0). We also define a vector
(z1, . . . , zt) associated to σ as follows: zi is the number of positions j in the block Ai for which σj = 0.
It is not hard to see that one can recover σ uniquely from the blocks (A1, . . . , At) and the values
(z1, . . . , zt).

Example A.4. Let n = 7 and let σ be the string in 0{0, 1}n−1 given by

σ = 0 1 0 0 1 1 1 0
1 2 3 4 5 6 7 8.

ThenRσ is the labelled poset on [8] inwhich theminimal elements are 1, 3, 4, 8, themaximal elements
are 2, 5, 6, 7 (and 8), and the order relations are

1< 2, 5, 6, 7
3, 4< 5, 6, 7

as illustrated in Fig. 3.
Also, σ has associated to it the blocks (A1, A2, A3) = (12, 34 567, 8), and vector (z1, z2, z3) =

(1, 2, 1). The blocks Ai are separated by dotted lines in Fig. 3.

It should be clear that the posets Rσ are characterized up to isomorphism by the following
stable/shifted labelling property.

Proposition A.5. A labelled poset P on [n] is isomorphic to Rσ for someσ if and only if it has height atmost
one, and can be relabelled so that each minimal (resp. maximal) element has its upward (resp. downward)
neighbors in P forming a final (resp. initial) segment of [n].

Proposition A.6. The lexicographic order <lex on 0{0, 1}n−1 induced by 0 < 1 makes the expansion
of {F(Mσ , x) : σ ∈ 0{0, 1}n−1} in terms of the strict P-partition enumerators {F(Rσ , γσ , x) : σ ∈
0{0, 1}n−1} triangular of the following form:

F(Mσ , x) =
∑
τ ≤lex σ

cσ ,τ F(Rτ , γτ , x) (A.1)

where cσ ,τ ∈ Z, and γτ is any strict labelling of the poset Rτ . Furthermore, the diagonal coefficient cσ ,σ
can be expressed in terms of the blocks (A1, . . . , At) and vector (z1, . . . , zt) associated to σ as follows:

cσ ,σ =
t∏
i=1

(
|Ai|
zi

)
.
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Fig. 4. An example of the proof of Proposition A.6.

Proof. We use Theorem 5.2 and expand

F(Mσ , x) =
∑

B∈B(Mσ )

F(PB, γB, x).

The bases B of Mσ are easily analyzed in terms of the blocks (A1, . . . , At) and vector (z1, . . . , zt)
associated to σ (cf. [9, Proposition 5.1]). Note that Mσ will have rank r := z1 + · · · + zt , and it has a
distinguished chain of flats

∅ ⊂ F1 ⊂ · · · ⊂ Ft = [n]

in which Fi := A1 t A2 t · · · t Ai. Bases B ofMσ are then simply the r-subsets B of [n] that contain for
each i = 1, . . . , t at most z1 + z2 + · · · + zi elements from the flat Fi.
Given any base B of Mσ , we claim that the poset PB is isomorphic to some Rτ . To see this, we use

Proposition A.5. We know that PB has height at most 1. Relabel its minimal (resp. maximal) elements,
that is, those in B (resp. B∗∗) by an initial (resp. final) segment of [n], with those lying in block Ai
coming earlier than those in block Aj whenever i < j. It is then easy to check that any minimal (resp.
maximal) element of PB will have its upward (resp. downward) neighbors in PB forming a final (resp.
initial) segment of [n].
The diagonal terms on the right side of (A.1) come frombases B ofMσ containing exactly zi elements

of Fi\Fi−1 for each i; let us call these the diagonal bases of Mσ . For example, the lexicographically
earliest base B0 forMσ is a diagonal base, and it is not hard to see that PB0 = Rσ on the nose; see Fig. 4

for an example. There are a total of
∏t
i=1

(
|Ai|
zi

)
diagonal bases B forMσ , and each has PB ∼= PB0 = Rσ .

For any non-diagonal base B, there is some smallest index i such that B contains less than zi
elements of Fi\Fi−1. It is not hard to see that such a B will have PB ∼= Rτ for some τ that agrees with
σ in the first |Fi−1| positions, that is, in the positions indexed by their first i − 1 blocks of σ (or τ ).
But then the ith block Ai for τ indexes a {0, 1}-substring of τ of the form 00 · · · 011 · · · 1 starting with
more zeroes than does the corresponding ith block Ai for σ , so that τ <lex σ . �

Example A.7. Fig. 4 illustrates the previous proof. Here σ = 01101011. The matroid Mσ is drawn as
an affine point configuration. Its associated chain of flats is

F1 = 123 ⊂ F2 = 12345 ⊂ F3 = 123456789.
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The lexicographically first base B0 = 146 of Mσ is a diagonal base, having poset PB0 which coincides
with Rσ . An example of a non-diagonal base B = 167 is shown, with poset PB isomorphic to Rτ where
τ = 01101011. Here the smallest index i for which B does not contain zi elements of Fi− Fi−1 is i = 2,
and hence σ , τ agree in their first |F1| = 3 positions. However the second block A2 = 456789 in τ
indexes a substring 00111 starting with two zeroes, while the second block A2 = 45 in σ indexes a
substring 01 starting with only one zero. Hence τ <lex σ .

This completes Step 1 of our program: the formula for cσ ,σ in the previous result only contains

factors of the form
(
|Ai|
zi

)
in which |Ai| ≤ n, so that each of these factors divides n!.

A.2. The first new basis forQSym

In this subsection, we complete Step 2 of the proof of Theorem A.2 by exhibiting a new Z-basis for
QSym that may be of independent interest. This basis turns out to have a nice expansion property
(Lemma A.14) when one multiplies one of its elements by L1 = x1 + x2 + · · ·.
This new basis comes from a family of (non-naturally, non-strictly) labelled posets Qσ on [n],

indexed by σ in 0{0, 1}n−1, which are defined recursively. Before defining them, we recall some
standard labelled poset terminology.
Let P1, P2 be labelled posets on label sets A1, A2 that disjointly decompose [n], that is, [n] = A1tA2.

Their disjoint sum P1 + P2 is the labelled poset on label set [n] keeping all order relations that were
present in P1 or in P2, with no new order relations between P1 and P2. Their ordinal sum P1 ⊕ P2
is obtained by from the disjoint sum by imposing further new order relations: p1 < p2 for all
p1 ∈ P1, p2 ∈ P2.
Now one can define the labelled posets Qσ for σ in 0{0, 1}n−1 recursively by:

• Q00 · · · 0︸ ︷︷ ︸
n zeroes

is the labelled poset on [n]which is an antichain.

• If σ ends with a 1, say σ = σ̂1, then Qσ = Qσ̂ ⊕ (n+ 1)where (n+ 1) is a labelled poset with one
element labelled n+ 1.
• If σ ends with a 0 (but is not all zeroes), say σ = σ̂0, then Qσ is obtained from Qσ̂ by adding in a
new element labelled n+ 1, with only one new order relation n < n+ 1 (plus all others generated
by transitivity), and then swapping the labels of n, n+ 1.

Example A.8. The string σ in 0{0, 1}14 given by

σ = 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

has Qσ given by these order relations:

1, 2 < 3 < 7 < 4, 5, 6 < 9 < 8 < 10 < 15 < 11, 12, 13, 14

as depicted in Fig. 5.

It is not hard to see that Qσ is always isomorphic to an iterated ordinal sum of a sequence of
antichains. For example, in the poset Qσ of Example A.8, these antichains are the induced subposets
on these sets:

{1, 2}, {3}, {7}, {4, 5, 6}, {9}, {8}, {10}, {15}, {11, 12, 13, 14}.

Remark A.9. The recursive definition of Qσ can be rephrased, after introducing a certain simple
operation on labelled posets, which will be useful later.
For each positive integer m, define an operation ψm that takes labelled posets on [n] to labelled

posets on [n + m] as follows. Given a labelled poset P on n, then ψm(P) := P ⊕ (n + m) ⊕ A where
(n + m) is a labelled poset with one element labelled n + m, and A is an (m − 1)-element antichain
with elements labelled n+ 1, n+ 2, . . . , n+m− 1.
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Fig. 5. The poset Q001100010110000 .

To describe Qσ in terms of these operations, uniquely decompose σ into an initial sequence of n0
zeroes, and then sequences of length n1, n2, . . . , np ≥ 1 of the form 100 · · · 0. Then

Qσ := ψnp · · ·ψn2ψn1(Q00 · · · 0︸ ︷︷ ︸
n0 zeroes

).

One then has the following proposition.

Proposition A.10. The P-partition enumerators {F(Qσ , x) : σ ∈ 0{0, 1}n−1} form a Z-basis for QSymn.

Proof. Given σ ∈ 0{0, 1}n−1, let wσ be the linear extension of the labelled poset Qσ obtained by
reading each of the antichains discussed above in the reverse of their usual numerical order. For
example, one has

wσ = 2 · 1 3 7 · 6 · 5 · 4 9 · 8 10 15 · 14 · 13 · 12 · 11

in the previous example, where we have indicated the positions of descents inwσ by dots.
It is easily seen that
• the descent set ofwσ can be read from σ as follows:

Des(wσ ) = {i ∈ [n− 1] : σi+1 = 0},

and
• every other linear extensionw inL(Qσ ) has

Des(w) ( Des(wσ )

because at least one of the antichains discussed above must not appear in reverse order inw.

Hence the expansion

F(Qσ ) = Lα(wσ ) +
∑

w∈L(Qσ )−{wσ }

Lα(w)

is unitriangular with respect to the lexicographic orders on the set 0{0, 1}n−1 and the set of
compositions α of n. �

A.3. An expansion property

It turns out that the F(Qσ , x) basis for QSym has an interesting expansion property when one
multiplies by L1 := x1 + x2 + · · ·. The expansion is both non-negative, and triangular in a certain
sense; see Lemma A.14.
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Before diving into its statement and proof, we introduce some notation, and observe a few simple
facts about P-partition enumerators.

Definition A.11. Let P be a labelled poset on n integers ω1<Z · · ·<Z ωn. Then the standardization
std(P) of P is the labelled poset on [n] obtained by replacing the label ωi in P with the integer i for
i = 1, . . . , n.
Given binary strings σ and τ , denote their concatenation by στ ; the most frequently used case for

us will be where τ = 100 · · · 0 so that στ = σ100 · · · 0.

The next two propositions should then be clear from Proposition 5.1, and will be used repeatedly
without reference.

Proposition A.12. Let P be a labelled poset on [n] which is an ordinal sum

P = P1 ⊕ (n)⊕ P2
in which (n) is the labelled poset with one element labelled n, and P1 have n1, n2 elements respectively (so
that n1 + n2 + 1 = n).
Let P ′ be the following labelled poset on [n]. First form the labelled poset P ′2 on [n2] obtained from

std(P2) by adding n1 to all of its labels. Define

P ′ := std(P1)⊕ (n)⊕ P ′2.

Then

F(P, x) = F(P ′, x). �

Proposition A.13. The Z-linear map ψm : QSymn −→ QSymn+m defined by sending

F(w, x) 7−→ F(ψm(w), x)

for any permutationw will also send

F(Qσ , x) 7−→ F(Qσ100···0, x)

and more generally, for any labelled poset P on [n], sends

F(P, x) 7−→ F(ψm(P), x). �

Note that we are slightly abusing terminology here, in using the same nameψm for a Z-linear map
and also for an operation on posets.
We now come to the crucial expansion property of the F(Qσ , x) basis.

Lemma A.14. For any σ in 0{0, 1}n−1,

F(Qσ , x) · L1 = F(Qσ0, x)+
∑

τ <lex σ0

cτ F(Qτ , x) with cτ ∈ N.

Proof. Induct on n. One has

F(Qσ , x) · L1 = F(Qσ + (n+ 1), x)

=

∑
w∈L(Qσ+(n+1))

F(w, x). (A.2)

We analyze the set of linear extensionsL(Qσ + (n+ 1)). The analysis breaks up into two cases.
Case 1. σ ends with a 1, say σ = σ̂1.
In this case, n is a top element of Qσ by construction, and we decompose the linear extensions w

inL(Qσ + (n+ 1)) into three sets, based on the location of n+ 1 relative to n:
L1: Thosew with n+ 1 occurring second-to-last, just before n.
L2: Thosew with n+ 1 occurring last, just after n.
L3: Thosew remaining, in which n+ 1 occurs at least two positions before n.
It is easy to see thatL1 = L(Qσ0).
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Letting t = (n, n + 1) denote the transposition that swaps the labels n, n + 1 in a labelled poset
on [n+ 1], a little thought shows

L2 t tL3 = L((Qσ̂ + (n))⊕ (n+ 1)).

Also, if one applies t to a linear extension in which n, n+ 1 are not adjacent, there is no effect on the
descent set. Since this is true for every linear extension inL3, one knows thatL2 t tL3 has the same
distribution of descent sets asL2 tL3.
Therefore, (A.2) implies

F(Qσ , x) · L1 = F(Qσ0, x)+ F((Qσ̂ + (n))⊕ (n+ 1), x)
= F(Qσ0, x)+ ψ1(F(Qσ̂ , x) · L1)
= F(Qσ0, x)+ ψ1(F(Qσ̂0, x)+

∑
τ̂ <lex σ̂0

cτ̂ F(Qτ̂ ))

= F(Qσ0, x)+ F(Qσ̂01, x)+
∑

τ̂ <lex σ̂0

cτ̂ F(Qτ̂1) (A.3)

where the third equality uses the inductive hypothesis. Since

τ̂1<lex σ̂01<lex σ̂10 = σ0,

the last equation in (A.3) gives the desired conclusion.
Case 2. σ ends with a 0, say σ = σ̂ 100 · · · 0︸ ︷︷ ︸

m letters

.

This time we decompose the linear extensionsw inL(Qσ + (n+ 1)) into four sets, again based on
the location of n+ 1 relative to n:

L1: Thosew with n+ 1 at least two positions after n.
L2: Thosew with n+ 1 immediately after n.
L3: Thosew with n+ 1 immediately preceding n.
L4: Thosew with n+ 1 at least two positions before n.

Note that the sets L1,L4 will have their descent set distributions unchanged when one applies the
transposition t = (n, n+ 1) to their labels. A little thought then shows that

L3 t tL1 = L(Qσ̂ 100 · · · 0︸ ︷︷ ︸
m+1 letters

) = L(Qσ0)

and

L2 t tL4 = L(ψm(Qσ̂ + (n))).

Consequently (A.2) implies

F(Qσ , x) · L1 = F(Qσ0, x)+ F(ψm(Qσ̂ + (n)), x)
= F(Qσ0, x)+ ψm(F(Qσ̂ , x) · L1)
= F(Qσ0, x)+ ψm(F(Qσ̂0, x)+

∑
τ̂ <lex σ̂0

cτ̂ F(Qτ̂ ))

= F(Qσ0, x)+ F(Qσ̂0100···0, x)+
∑

τ̂ <lex σ̂0

cτ̂ F(Qτ̂100···0) (A.4)

where the third equality uses the inductive hypothesis. Since

τ̂100 · · · 0<lex σ̂0100 · · · 0<lex σ̂100 · · · 0 = σ0,

the last equation in (A.4) gives the desired conclusion. �

This completes Step 2 in the proof of Theorem A.2.
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A.4. The second new basis forQSym

The goal of this subsection is to prove the following positive, unitriangular expansion of the
F(Rσ , x) in terms of the F(Qσ , x).

Theorem A.15. For σ in 0{0, 1}n−1,

F(Rσ , x) = F(Qσ , x)+
∑
τ <lex σ

cτ F(Qτ , x)

for some cτ in N.

Note that this implies the F(Rσ , x) form a Z-basis for QSym, which would complete Step 3 of the
proof of Theorem A.2.
Theorem A.15 is simply the conjunction of assertions (i) and (ii) in the following lemma.

Lemma A.16. For σ in 0{0, 1}n−2,

(i)

F(Rσ1, x) = F(Qσ1, x)+
∑

τ <lex σ1

cτ F(Qτ , x) with cτ ∈ N.

(ii)

F(Rσ0, x) = F(Qσ0, x)+
∑

τ <lex σ0

cτ F(Qτ , x) with cτ ∈ N.

(iii) For σ in 0{0, 1}n−m and m ≥ 1,

ψmF(Rσ , x) = F(Qσ100···0, x)+
∑

τ <lex σ100···0

cτ F(Qτ , x) with cτ ∈ N.

Proof. We prove all three assertions (i), (ii), (iii) by a simultaneous induction on n.
Proof of (ii). Given σ in 0{0, 1}n−2, one has

F(Rσ0, x) = F(Rσ + (n), x)
= F(Rσ , x) · L1
= (F(Qσ , x)+

∑
τ <lex σ

c ′τ F(Qτ , x)) · L1

= F(Qσ0, x)+
∑

ρ <lex σ0

c ′′ρF(Qρ, x)+
∑
τ <lex σ

∑
ν ≤lex τ0

c ′τ c
′′

ν F(Qν, x)

where the third equality uses induction, and the last equality uses Lemma A.14. Note that the last
equality implies assertion (ii).
Proof of (iii). Given σ in 0{0, 1}n−m andm ≥ 1, one has

F(Rσ , x) = F(Qσ , x)+
∑
τ <lex σ

cτ F(Qτ , x) with cτ ∈ N,

by induction using assertions (i), (ii) (that is, Theorem A.15). Applying ψm to this equality gives

ψmF(Rσ , x) = ψmF(Qσ , x)+
∑
τ <lex σ

cτψmF(Qτ , x)

= F(Qσ100···0, x)+
∑
τ <lex σ

cτ F(Qτ100···0, x)

where the last equality uses Proposition A.13. This gives assertion (iii).



L.J. Billera et al. / European Journal of Combinatorics 30 (2009) 1727–1757 1755

Proof of (i). Given σ in 0{0, 1}n−2, let

J := {j ∈ [n− 1] : σj = 1},

so that the labelled poset Rσ1 has the element labelled n above all of the elements in [n]− J , and above
none of the elements in J . This means that for every linear extension w in L(Rσ1), there is a unique
subset I ⊆ J consisting of those elements appearing later (i.e. higher) in w than n. A little thought
shows that this gives a decomposition

L(Rσ1) =
⊔
I⊆J

L(P I)

where P I := P I1 ⊕ (n) ⊕ P
I
2 is a labelled poset on [n] having P

I
1 the restriction of Rσ to its elements

labelled by [n− 1] − I , and P I2 an antichain labelled by the elements of I . Consequently,

F(Rσ1, x) =
∑
I⊆J

F(P I , x)

=

∑
I⊆J

F(P I1 ⊕ (n)⊕ P
I
2, x)

=

∑
I⊆J

ψ|I|+1F(std(P I1), x)

=

∑
I⊆J

ψ|I|+1F(Rσ\I , x)

where for each I ⊆ J , the string σ\I is obtained from the string σ by removing all the ones that were
in the positions indexed by I . Hence by induction using assertion (iii) one obtains

F(Rσ1, x) =
∑
I⊆J

(
F(Q(σ\I)100···0, x)+

∑
τ <lex(σ\I)100···0

cτ F(Qτ , x)

)
(A.5)

with cτ in N. Note that for any I ⊆ J one has

(σ\I) 100 · · · 0︸ ︷︷ ︸
|I|+1 letters

≤lex σ1

and equality occurs if and only if I = ∅. Hence assertion (i) follows from (A.5). �

A.5. Remarks on the bases forQSym

We close with a few remarks on these new bases forQSym.

Remark A.17. Note that the F(Rσ , x) basis forQSym consists entirely of naturally labelled P-partition
enumerators. This answers affirmatively the question of whether QSym is Z-linearly spanned by
naturally labelled P-partition enumerators; note that neither of the usual Z-bases for QSym (theMα
or Lα) have this form.
The same question was also answered (affirmatively) in the recent work of Stanley [40] who, after

being queried by the authors of the current paper, produced yet another Z-basis forQSym consisting
of naturally labelled P-partition enumerators. Given a composition α = (α1, . . . , αk) of n, he defined
Pα to be the naturally labelled poset which is the ordinal sum A1⊕· · ·⊕Ak, in which Ai is an antichain
on αi elements for each i = 1, 2, . . . , k. These posets Pα bear a close resemblance to the (non-
naturally) labelled posets Qσ defined above, in that both have simple, unitriangular expansions of
their P-partition enumerators in terms of the Lα-basis. In [40], Stanley combinatorially interprets this
upper unitriangular change-of-basis matrix between his basis and the Lα-basis, as well as providing a
nice (and remarkably similar) combinatorial interpretation for the inverse change-of-basis matrix.

Remark A.18. The matrix An giving the expansion of F(Rσ , x) into Lα within QSymn is unimodular,
and it turns out that our previous results imply a nice LU-decomposition for it.
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Order the strings σ in 0{0, 1}n−1 with lex order, and order the compositions α of n also in lex
order. Then the matrix Un expanding F(Rσ , x) in terms of F(Qσ , x) will be upper unitriangular (by
Theorem A.15), while the matrix Ln expanding F(Qσ , x) in terms of Lα will be lower unitriangular (by
the proof of Proposition A.10). Also, An = LnUn.
For example, when n = 3, this looks like

A3 =


R000 R001 R010 R011

L111 1 0 0 0
L12 2 1 1 0
L21 2 0 1 1
L3 1 1 1 1



=


Q000 Q001 Q010 Q011

L111 1
L12 2 1
L21 2 0 1
L3 1 1 0 1




R000 R001 R010 R011
Q000 1 0 0 0
Q001 1 1 0
Q010 1 1
Q111 1

 .

Remark A.19. We have now encountered five Z-bases for the Hopf algebraQSym of quasisymmetric
functions, namely

Mα, Lα, F(Pα, x), F(Qσ , x), F(Rσ , x).

Given any such basis Bα , one might ask whether the structure constants cα,βγ from the unique
expansion

BαBβ =
∑
γ

cα,βγ Bγ

are always non-negative. For the monomial basis Mα and the fundamental bases Lα , this property is
well-known to hold and is straightforward.
Unfortunately, this property fails for the remaining three bases Pα, Rσ ,Qσ . They turn out to have

some negative multiplication structure constants occurring already in (relatively) low degrees:

F(P(1,1), x)F(P(1), x)
(
=F(P(1,1), x) · L1

)
= F(P(0,0,1), x)+ F(P(0,1,0), x)− F(P(0,1,1), x)

F(R01, x)2 = 2F(R0101, x)− F(R0011, x)
F(Q010, x)2 = F(Q001000, x)+ 2F(Q010100, x)+ F(Q001100, x)+ 2F(Q010010, x)− F(Q001001, x).

On the other hand, the new Z-basis for QSym found by Luoto which was mentioned earlier does
have this property; see [13, Section 4.4].
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