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Abstract

The random-neighbor version of the Bak-Sneppen biological evolution model is

reproduced, along with an analogous model of random replicators, the latter

eventually experiencing topology changes. In the absence of topology changes,

both types of models self-organize to a critical state. Species extinctions in the

replicator system degenerates the self-organization to a random walk, as does

vanishing of species interaction for the BS-model. A replicator model with

speciation is introduced, experiencing dramatic topology changes. It produces a

variety of features, but self-organizes to a possibly critical state only in a few

special cases. Speciation-extinction dynamics interfering with self-organization,

biological macroevolution probably is not a self-organized critical system.
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1. Introduction

The evolution of life apparently proceeds as a stepwise process, instead of a

smooth development [1, 2]. The emergence of species apparently lacks continuity

[3, 4, 5, 6]. Evolution can possibly be described in terms of a punctuated

equilibrium: the system of life settles into a stasis, which then becomes disturbed

by species appearances and avalanches of extinctions. An avalanche of extinctions

is often followed by rapid recovery [5, 7]. The evolution of species may appear to

be a self-organized critical phenomenon, the size distribution of extinction events

possibly following a power law [4, 5, 7, 8, 9].
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A few computational approaches have been used in order to investigate the

evolution of life [10, 11, 12]. The model by Bak and Sneppen [9, 13, 14], was

claimed to self-arrange into a critical state. System states where observables are

scale-free are often interpreted as critical [15, 16, 17, 18, 19, 20]. In other words,

critical systems show fractal properties, observables being distributed according to

power-laws [15, 16, 17, 18, 20, 21]. However, power-law distributed observables

may appear simply as a result of a random process, and do not necessarily imply

criticality, in the sense that the distribution of some observable would diverge [20,

22, 23, 24, 25].

Not all critical systems are self-organized. Scale-free behavior may be found

simply by tuning system parameters towards a critical phase transition. It obviously

is disputable whether or not self-organized criticality is a phenomenon

characteristic to wide variety of complex systems in Nature [9, 15, 16, 17, 19,

20, 26].

One functional way of modelling ecological systems is the use of replicator

equations. Replicators refer to systems where a configuration of “strategies” or

“species” contributes to the “payoff” or “fitness” of any particular strategy. The

“payoff” or “fitness” in turn contributes to the abundance of each “strategy” or

“species”. A difference to a catalytic network model [27, 28, 29, 30, 31, 32, 33] is

that the fitness regulates abundance in relation to the existing abundance. In other

words, within the replicator model, parents of the same species are needed. It has

been shown that the generalized Lotka-Volterra − system is a tedious way of

implementing a replicator system [34].

Early attempts to apply random replicator models into the evolution of life have

either not produced large, complex ecosystems, or have not resulted in large,

recovering avalanches of extinctions, depending on the parameters used [30, 35,

36, 37, 38]. Recently, a variety of parameters have been, resulting as more features

in the corresponding systems [34]. However, systems with fluctuations of a wide

variety of sizes can only be produced by tuning the parameters; the replicator

ecosystems with speciation do not self-arrange to any critical state [34].

There is a discrepancy between the Bak-Sneppen evolution model and the

replicator models, as the latter do not show any sign of self-organized criticality. A

recent investigation with one-dimensional models indicates extinction dynamics

may interfere with self-organization [39]. The discrepancy possibly is related to a

question of wider applicability. It has been argued that not only evolution of a

system of species in nature is a self-organized critical process [4, 5, 7, 8, 9], but

that many phenomena in the complex Nature, living as well as non-living, are

dominated by contingency and show self-organized critical behavior with power-

law distributed observables [9]. We hope the present study with evolution models
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will give some hint whether Nature, in large, essentially consists of systems

showing self-organized critical features [7, 40, 41].

We will introduce a sequence of evolution models, focusing in multidimensional

systems. First, we implement a finite random-neighbor Bak-Sneppen (BS) model

[14, 42, 43, 44, 45], where the number of species and average among-species

connectivity appear as relevant system parameters. Then, we establish an

analogous finite random replicator model where however topology may change

due to species extinctions, as well as due to re-allocation of connections. In this

model, inheritance is introduced. Relative strength of self-interaction, as well as

symmetry of interactions, appear as additional free parameters. Finally, we

introduce a replicator model with speciation. Instead of preferential attachment

[46] or fitness network [47] we stick to BS-type extremal dynamics. Such a model,

originating from a single species, experiences drastic topology changes, and

possibly mimics biological macroevolution in Nature.

2. Model

2.1. Model 1

2.1.1. Bak-sneppen random neighbor model

Key features of the Bak-Sneppen (BS) model are extremal dynamics on the one

hand, and spatial correlations on the other [13, 21]. The former is based on the

assumption that species with the lowest fitness barrier mutate first. The latter

constitutes a simplified description of species interaction. In the one-dimensional

model, any species interacts with two nearest neighbors [13, 21]. Later on, the

treatment has been extended to higher-dimensional lattices [48], small-world

networks [49, 50], scale-free networks [42, 43, 44], as well as random graphs as a

special case of the latter [14, 45, 51].

Within the BS-model, any species has one independent property: randomly

assigned fitness. Extremal dynamics activates the species with the lowest fitness.

That species is assigned another random fitness value. Spatial correlations are

applied by simultaneously assigning new fitness values for the immediate

neighbors of the triggering species. In multidimensional cases, the randomly

assigned neighbors may arise either from a quenched or an annealed randomness

[14, 43, 51].

Along with increasing number of mutation cycles, a BS-system arranges to a

stationary state where, in the case of a system with many species, the lowest fitness

never appears to exceed a particular threshold value [13, 14, 21, 52]. In other

words, the fitness space becomes divided in two phases, an active phase and an

inert phase. Species with fitness in the active phase may trigger mutations, whereas
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species with fitness in the inert phase do not. The latter however may mutate in

events triggered by one of their nearest neighbors.

Within the BS-model, an activity cycle starts when the lowest fitness falls below

another threshold value, a cycle threshold taken somewhat below the phase

boundary. The cycle terminates when there no longer is any species with fitness

below the cycle threshold, the size of the cycle being the number of newly assigned

fitness values within the cycle.

The above indicates that in the stationary state, results are likely to depend on the

selection of the cycle threshold. This appears problematical. However, it has been

shown that once model self-organizes to the phase boundary, it is critical at the

phase boundary (“self-organizing threshold”) [52, 53]. Criticality can readily be

understood in terms of the probability of a particular fitness to be the smallest

fitness vanishes at the phase boundary. Consequently, the average activity cycle

size diverges.

It also appears that there is a hierarchy of activity cycle sizes (“avalanches”) as a
function of cycle threshold f 0 distance from the self-organizing threshold f c, and

average activity cycle size obeys a scaling relation [52, 53]

Sh 〉∝ f c � f 0ð Þ�γ (1)

In one dimensional regular lattice system, the scaling exponent γ appears to be in

the order of 2.7, and in two dimensions in the order of 1.7 [52, 53, 54]. The d-

dimensional BS-system has been believed to belong to the same universality class

with d + 1 directed percolation, which would imply the scaling exponent

approaching unity with increasing dimensionality [53, 54, 55, 56]. In random

neighbor systems, the exponent thus should approach unity [14, 22, 52, 57]. A self-

organization threshold of 1/(1 + k), where k is the average degree of minimum-

fitness nodes, has been reported for random-neighbor systems in the annealed case

[14, 43, 45, 58].

We first implemented random-neighbor BS-experiments, with both annealed and

quenched randomness, with 300 and 3000 species (or nodes). The annealed case

corresponds to a new drawing of among-species connections of the triggering

species at the instant of any mutation event. Extremal dynamics did organize the

fitness space in two phases, and the probability of the smallest fitness getting a

particular value vanished at the phase boundary. Fig. 1 shows the probability

density of smallest fitness in the annealed case. There obviously is a size effect, the

phase boundary gaining a lower value with the larger system (dotted lines in

Fig. 1), in comparison to smaller systems with similar average degree of the nodes.

Disappearing species interactions (connectivity getting to zero) degenerates the

self-organization to a random process within the entire fitness space. Interestingly,
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results for the systems with quenched disorder were virtually indistinguishable

from the annealed results shown in Fig. 1 [cf. 43, 44].

Fig. 2 shows the average activity cycle size as a function of the cycle threshold f 0
distance from the self-organizing threshold f c, apparently following the power

law (1) with exponent γ which very significantly differs from unity, in direct

contradiction with previously presented arguments [14]. The scaling exponent

approaches unity only in the case of vanishing species interaction, where

[(Fig._1)TD$FIG]

Fig. 1. Probability density of smallest fitness with random-neighbor BS-systems with annealed

disorder. Results for quenched disorder were similar. Labels refer to the number of species (nodes) in

any experiment, as well as the connection probability between nodes.

[(Fig._2)TD$FIG]

Fig. 2. Average activity cycle size in the random-neighbor BS-model, as a function of separation

between the self-organizing threshold and cycle threshold. Legend refers to the number of species

(nodes) in any experiment, as well as the connection probability between nodes.

Article No~e00144

5 http://dx.doi.org/10.1016/j.heliyon.2016.e00144

2405-8440/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00144


self-organization has degenerated to a random process (Fig. 2). In other cases the

exponent is in the order of 4, regardless whether the randomness in species

connections is quenched or annealed, the quenched case apparently showing

somewhat more scattering. Such an exponent indicates that the system is not in

the universality class of directed percolation [53, 54, 55, 56].

2.2. Model 2

2.2.1. Multidimensional replicator model with inheritance

The multidimensional replicator model is here designed to resemble the Bak-

Sneppen − model in the sense that evolutionary steps mutate the properties of

existing species, instead of creating a previously non-existing species. The initial

abundance of any species corresponds to the inverse of the number of species.

Random interaction coefficients are drawn from a Gaussian distribution of zero

mean and unit variance, the interaction coefficients constituting a square matrix of

linear dimension corresponding to the number of species. The diagonal of the

matrix is then replaced by self-interaction coefficients, drawn from a Gaussian with

predetermined mean value and 20% standard deviation [cf. 34]. Elements

appearing in the model are summarized in Table 1.

The interaction matrix produced according to the procedure above would be fully

occupied. Vacancies are introduced by replacing some of the interaction matrix

elements by zero values. This happens by assigning any nondiagonal interaction

matrix element a connectivity parameter, drawn from Gaussian distribution of zero

mean and unit variance. Vacancy appears in the interaction matrix in case the

individual connectivity parameter is smaller than a predetermined threshold value.

The average among-species connectivity corresponds to the Gaussian probability

mass of parameter values exceeding the threshold for among-species connectivity.

Vacancies are symmetric with respect to the interaction matrix diagonal.

Table 1. Summary of elements appearing in the replicator model.

x Abundancy Vector (Configuration Vector)

z Asymmetric Interaction Matrix

u Self-Interaction Vector

u Mean Value of Self-Interaction

C Matrix of Connectivity Parameters

Γ Symmetry Parameter

K Interaction Matrix

F Fitness Vector

I Inheritance Parameter
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The sparse interaction matrix produced this way corresponds to the asymmetric

case. In other words, nondiagonal interaction coefficients Zij and Zji have zero

covariance. In order to introduce either symmetry or antisymmetry, some amount

of covariance must be induced. This is implemented by replacing Zij and Zji, for

i≤ j, with

Kij ¼ Zij

Kji ¼ ΓZij þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Γ2

p
Zji

(2)

where Γ refers to a symmetry parameter with values between unity and negative

unity, with the value zero corresponding to the asymmetric interactions.

Correspondingly, Kij and Kji refer to non-diagonal interaction coefficients with

possibly some covariance.

A fitness vector is then produced as the product of the interaction matrix and the

abundancy vector (or configuration vector) x, or equivalently

Fi ¼ Kijxj
∑
k
xk

(3)

Any species abundance is then assumed to change according to the replicator

equation

Δxi
xi

¼ Fi � Fh 〉 ¼ Fi � x⋅F
∑
k
xk

(4)

Eqs. (3) and (4) are applied repeatedly until an equilibrium species configuration is

found.Extremal dynamics is then applied to the replicator system by mutating the

species with lowest fitness. Mutation of the species corresponds to reassigning the

interaction coefficients where the mutating species is involved. It also corresponds

to resampling the species that interact with the mutating species through the sparse

interaction matrix. In the latter sense the model resembles the annealed case of the

BS-model.

Technically, inheritance contributes to the mutation process as follows. First,

independent interaction coefficients for the mutated (daughter) species are drawn

from Gaussian with zero mean and unit variance. Then, eventual symmetry is

introduced using Eq. (2). Third, interaction coefficients are partially inherited as

KiC ¼ IKiP þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� I2

p
KiD

KCj ¼ IKPj þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� I2

p
KDj

(5)

where KiP; KPj are interaction coefficients for the parent species, KiD; KDj

are independently created interaction coefficients for the daughter species,

KiC; KCj are partially inherited (combined) interaction coefficients for the daughter

species, and I is inheritance.
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Links between species (nodes) are also inherited. In other words, the connectivity

parameters determining the vacancies in the interaction matrix are partially

inherited. Any daughter species is drawn a set of independent connectivity

parameters from a Gaussian with zero mean and unit variance. Then, partially

inherited (combined) connectivity parameters are produced as

CiC ¼ ICiP þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� I2

p
CiD (6)

where CiP are connectivity parameters for the parent species, and CiD are

independently created connectivity parameters for the daughter species. The

connectivity parameters, as well as vacancies, are symmetric with respect to the

matrix diagonal. Vacancy appears in the interaction matrix in case the combined

connectivity parameter is smaller than a predetermined threshold value.

Mutation of interaction coefficients and among-species connections immediately

changes the fitnesses of the mutating species and the connected species according

to Eq. (3). Further, the abundances of all the species are changed according to

Eq. (4). Again, Eqs. (3) and (4) are applied repeatedly until equilibrium species

abundances are found. Then, species with abundance vanishing below a small

threshold value in the vicinity of zero are considered extinct and removed from the

system.

Extremal dynamics will possibly make the system to self-organize. The eventual

self-organizing threshold fc, in terms of fitness, will depend on system parameters.

However the scaling ansatz of Eq. (1) may well be attempted. It appears from

Fig. 3 that average activity cycle size within the replicator model apparently

follows power-law scaling, with exponent γ similar to the one in the BS-system in

Fig. 2. We also find from Fig. 3 that there are two groups of data. The left group

corresponds to system parameters which do not induce many species extinctions.

The right group corresponds to systems where 299 of initial 300 species went

extinct.

Species extinctions obviously interfere the scaling behavior (Fig. 3). In the absence

of extinctions, extremal dynamics organizes the fitness space into an active phase

and an inert phase. The number of species reducing to one, the self-organization

degenerates to a random walk in the fitness space. Scaling behavior of such a

system obviously depends on the kind of distribution where the single self-

interaction coefficient is drawn from.

A more detailed investigation of Fig. 3 reveals that strongly antisymmetric systems

retain a significant number of species, whereas asymmetric systems do not.

Partially antisymmetric systems with strong self-interaction retain many species,

whereas partially antisymmetric systems with weak self-interaction do not [cf. 34,

59, 60].
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It is worth noting that particular values of the mutation parameters, i.e. symmetry,

self-interaction and connectivity do not necessarily correspond to similar

observable properties of the evolved system. Extremal dynamics involves the

species with the lowest fitness, which does not necessarily correspond to average

values of such properties. In the case of the right grouping of systems in Fig. 3 with

devastating extinctions, the observable properties rather significantly differ from

the corresponding mutation parameters.

2.3. Model 3

2.3.1. Replicator model with speciation

The replicator models above were designed to mimic the BS-model with a constant

number of species. This kind of an approach does not tell how life has evolved in

the first place. A replicator model for the evolution of life (“macroevolution”)
probably should be initiated with a single species, followed by further speciations,

within- and among-species interactions, and eventual species extinctions. Any

resulting system trajectory will possibly depend on system parameters.

[(Fig._3)TD$FIG]

Fig. 3. Average activity cycle size in the multidimensional replicator model, as a function of separation

between the self-organizing threshold and the cycle threshold. Legend refers to the symmetry parameter

(Eq. (2)), mean value of self-interaction coefficient, probability of among-species connection, and

inheritance parameter (Eqs. (5) and (6)).
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A replicator model with speciations and extinctions is here implemented in terms

of extremal dynamics. The first species is introduced with unit abundance. It is

assigned an interaction matrix of dimension one. The single matrix element Z11 is

drawn from a Gaussian with predetermined mean value and 20% standard

deviation [cf. 34]. Another species is then introduced with abundance at the species

extinction limit, and added to the bottom of the species configuration column

vector. The interaction matrix is extended by a column on the right, and by a row at

the bottom. Independent among-species interaction coefficients for the new species

are drawn from a Gaussian with zero mean and unit variance, and eventual

symmetry is introduced using Eq. (2). Then, inheritance is considered by applying

Eq. (5). It is worth noting that the self-interaction coefficient KPP becomes partially

inherited into the among-species interaction coefficients KPC and KCP (Eq. (5)).

Then, the self-interaction coefficient for the new species is drawn from the

Gaussian distribution with the predetermined mean value and 20% standard

deviation.

Links between species (nodes) are also inherited. A set of independent connectivity

parameters from a Gaussian with zero mean and unit variance are drawn for the

daughter species. Then, partially inherited (combined) connectivity parameters are

produced according to Eq. (6). Vacancies are again symmetric with respect to the

interaction matrix diagonal. According to Eq. (6), there must be a self-connectivity

parameter CPP of the parent species which becomes partially inherited to CPC and

CCP. For inheritance purposes, the diagonal of the matrix of connectivity

parameters contains a finite value, even if self-interaction always takes place.

Again, vacancy appears in the interaction matrix in case a non-diagonal combined

connectivity parameter is smaller than a predetermined threshold value.

After any speciation and related manipulation of the configuration vector and

interaction matrix, a fitness vector is created according to Eq. (3), and any species

abundance is changed according to the replicator Eq. (4). Again, Eqs. (3) and (4)

are applied repeatedly unless an equilibrium species configuration is found. Then,

species with abundance below the extinction limit are identified and removed from

the system. Extremal dynamics again means that in any further speciation cycle the

species with the lowest fitness in the equilibrium configuration is taken as the

parent species.

The sum of species abundances, as defined above, generally exceeds unity. The

absolute ecosystem size naturally depends on model parameters. The average

species abundance in relation to the speciation abundance is

xh 〉
ε

¼ n
N
þ 1
Nε

(7)

Eq. (7) simply results from the first species appearing at unit abundance, and the
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following species at abundance ε; n refers to the number of speciations, and N to

the number of living species. It can readily be shown that application of the

replicator Eq. (4) does not change the sum of species abundances.

Fig. 4 and Fig. 5 show some system trajectories, in terms of number of living

species, for the replicator systems with speciation and extinction, for weak and

strong inheritance, respectively. System parameters significantly contribute to

system behavior. Strong self-interaction and antisymmetry in speciation (Eq. (2))

results in large, stable systems. Asymmetry in speciation, along with weak self-

interaction results in smaller systems with significant fluctuations (Fig. 4 and

Fig. 5).

In order to investigate eventual self-organization of the replicator systems shown in

Fig. 4 and Fig. 5, we will plot a few trajectories of smallest fitness. Fig. 6 shows

the antisymmetric case from Fig. 4. Extremal dynamics apparently organizes the

fitness space in two phases. However data does not indicate whether there is a

critical transformation into the inert phase, in which case average activity cycle

size would diverge as the cycle threshold f 0 approaches the self-organization

threshold f c (Eq. (1)). Fig. 7 shows the partially antisymmetric case from Fig. 4.

An apparent self-organization threshold is visible, but there is no inert phase in the

fitness space. Mass extinctions in Fig. 4 are related to the smallest fitness in Fig. 7

[(Fig._4)TD$FIG]

Fig. 4. Number of living species as a function of the number of speciations in replicator systems with

weak inheritance (I = 0.1 in Eqs. (5) and (6)). Probability of randomly drawn among-species connection

is 0.05, and inherited self-connectivity parameter corresponds to connectivity 0.95.
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exceeding the prospective self-organization threshold. The inverse relationship of

the number of living species and the value of smallest fitness is particularly clear in

the partially antisymmetric case of Fig. 5 (smallest fitness trajectory not shown in

the Figures). Topology changes obviously interfere with the self-organization,

deteriorating any stationary self-organized critical state.

The symmetry parameter shown in Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7 regulates

the amount of covariance in the generation of nondiagonal interaction coefficients

according to Eq. (2). It does not necessarily correspond to the symmetry of an

established interaction matrix since the interaction coefficients are partially

inherited according to Eq. (5). Fig. 8 shows two trajectories of interaction matrix

symmetry for the case of high inheritance and strong self-interaction. We find that

young systems are symmetric. This is due to the interaction coefficients inheriting

the parent species according to Eq. (5). In the very beginning, with just one

initiating species, K1P ¼ KP1 and thus K1C ≈KC1 for large I. Later on, the

symmetry parameter of Eq. (2) comes more strongly into play, but some effect of

the initial symmetry remains. With fully antisymmetric speciation according to

Eq. (2), for the dataset shown in Fig. 5, the interaction matrix symmetry fluctuates

[(Fig._5)TD$FIG]

Fig. 5. Number of living species as a function of the number of speciations in replicator systems with

strong inheritance (I = 0.9 in Eqs. (5) and (6)). Probability of randomly drawn among-species

connection is 0.05, and inherited self-connectivity parameter corresponds to connectivity 0.95.
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around zero (Fig. 8). In the case of partially antisymmetric speciation (Fig. 5), the

interaction matrix symmetry fluctuates between −0.3 and unity (Fig. 8).

A phenomenon similar to that demonstrated in Fig. 8 for interaction matrix

symmetry also takes place in the case of connectivity. The latter depends on the

magnitude of the self-connectivity parameter to be inherited. Both of the

phenomena appear in the case of strong inheritance. In the case of weak

inheritance the second term of the right-hand-side Eq. (5) dominates. Consequent-

ly, even if K1P ¼ KP1, K1C is not in general closely related to KC1. In all

fluctuating systems, regardless of inheritance, connectivity appears to increase as

the number of species collapses.

Scaling of the average activity cycle size according to Eq. (1) for the replicator

systems with speciations and extinctions in shown in Fig. 9. We find that the data

again appears in two groupings. Inspection of the corresponding trajectories of

smallest fitnesses revealed that the left group corresponds to systems where the

fitness space is, at least apparently, divided into an active phase and an inert phase

as in Fig. 6. The right group corresponds to systems where fluctuations in the

number of living species interferes with the self-organization as in Fig. 7. In the

latter case a well-defined self-organization threshold does not exist. Technically

the threshold is represented by the greatest observed value of minimum fitness

[(Fig._6)TD$FIG]

Fig. 6. Smallest fitness as a function of the number of speciations in a replicator system with

antisymmetry in speciation and weak inheritance (I = 0.1 in Eqs. (5) and (6)). Probability of randomly

drawn among-species connection is 0.05, and inherited self-connectivity parameter corresponds to

connectivity 0.95.
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(Fig. 7), which results in observations shifting to the right in Fig. 9. In the left

group, the scaling exponent γ (Eq. (1)) appears to be in the same order as those

appearing in Fig. 2 and Fig. 3, whereas observations in the right group do not

follow power-law scaling.

3. Discussion

The random-neighbor Bak-Sneppen model self-organizes into two phases in the

fitness space, and the distribution of activity cycle sizes diverges at the phase

boundary. However the scaling exponent for average activity cycle size

significantly differs from that of directed percolation [53, 54, 55, 56].

In the absence of among-species interactions, the self-organized criticality of the

BS − evolution model degenerates into a random walk in the fitness space. In the

case of a replicator system, a somewhat less oversimplified representation of the

Nature, species extinctions degenerate self-organization to a random walk. The

magnitude of topology changes in terms of extinctions depends on system

parameters.

[(Fig._7)TD$FIG]

Fig. 7. Smallest fitness as a function of the number of speciations in a replicator system with partial

antisymmetry in speciation and weak inheritance (I = 0.1 in Eqs. (5) and (6)). Probability of randomly

drawn among-species connection is 0.05, and inherited self-connectivity parameter corresponds to

connectivity 0.95.
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A more realistic macroevolution model possibly should initiate with a single

species, followed by further speciations with inheritance, within- and among-

species interactions, and eventual species extinctions. Such a model contains quite

a few parameters, of which any system trajectory will depend on. However it

appears that symmetry of interactions, together with the magnitude of self-

interaction, dominates behavior [cf. 34, 59, 60]. Stationary, antisymmetric systems

with strong self-interaction appear to self-organize into two phases in the fitness

space (Fig. 6). However, paleontological records indicate that the number of

species (or genera) in real living systems fluctuates [4, 5, 7, 8]. In systems with

fluctuating number of species, the Bak-Sneppen − type self-organized criticality

becomes interfered by topology changes induced by speciation-extinction −
dynamics [cf. 39] (Fig. 7). Thus the BS-type self-organized criticality must be

concluded not to apply to biological macroevolution.

In the case of systems with extinctions, it is not only the BS − mutation activity

where self-organized criticality in principle could be detected. The extinction

dynamics might display a variety of extinction avalanche sizes. However the

system does not self-organize: achievement of such a state requires tuning of

parameters [cf. 34]. In addition, no critical phase transition, or any diverging

distribution, is known to appear in real biological extinction dynamics.

[(Fig._8)TD$FIG]

Fig. 8. Symmetry of interactions as a function of the number of speciations in replicator systems with

strong inheritance (I = 0.9 in Eqs. (5) and (6)). Probability of randomly drawn among-species

connection is 0.05, and inherited self-connectivity parameter corresponds to connectivity 0.95.
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Consequently, biological macroevolution probably is not a self-organized critical

process.

It is worth noting that while the parameters describing the existence of among-

species interaction on the one hand and the magnitude of species interaction on the

other are partially inherited, there is no explicit description of spatial segregation in

the present model. In general, segregation is considered a significant speciation

mechanism [1, 2]. In the case of high inheritance, many daughter species tend to

interact rather strongly with its parent species.

Spatial segregation of course could be introduced. That would, however,

complicate the model, and have significance mostly in the case of high inheritance.

The present results appear to be robust regardless the degree of inheritance:

stationary systems are established in the case of high antisymmetry and strong self-

interaction, and they appear to self-organize to two phases in the fitness space

(Fig. 6 and Fig. 9). Regardless of the inheritance, systems with fluctuating number

of species do not self-organize and thus do not obey the BS-type self-organized

criticality (Fig. 7 and Fig. 9).

[(Fig._9)TD$FIG]

Fig. 9. Average activity cycle size in the multidimensional replicator model with speciations and

extinctions, as a function of separation between the self-organizing threshold and the cycle threshold.

Legend refers to the symmetry parameter (Eq. (2)), mean value of self-interaction coefficient,

probability of among-species connection, and inheritance parameter (Eqs. (5) and (6)).
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Quite a few phenomena in Nature obey non-trivial scaling. Some of them show

self-similarity [61, 62]. Some investigators have proposed self-organized criticality

to frequently appear in the complex Nature [9]. Speciation-extinction dynamics

interfering with self-organization, and consequently biological macroevolution not

being a self-organized critical system, indicates that self-organized criticality

possibly is not a phenomenon characteristic to a wide variety of complex systems

in Nature [cf. 7, 40, 41].
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