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Summary

The 24-hour rhythms of the circadian clock [1] allow an
organism to anticipate daily environmental cycles, giving
it a competitive advantage [2, 3]. Although clock compo-
nents show little protein sequence homology across phyla,
multiple feedback loops and light inputs are universal
features of clock networks [4, 5]. Why have circadian
systems evolved such a complex structure? All biological
clocks entrain a set of regulatory genes to the environmental
cycle, in order to correctly time the expression of many
downstream processes. Thus the question becomes: What
aspects of the environment, and of the desired downstream
regulation, are demanding the observed complexity? To
answer this, we have evolved gene regulatory networks
in silico, selecting for networks that correctly predict partic-
ular phases of the day under light/dark cycles. Gradually
increasing the realism of the environmental cycles, we
have tested the networks for the minimal characteristics of
clocks observed in nature: oscillation under constant condi-
tions, entrainment to light signals, and the presence of
multiple feedback loops and light inputs. Realistic circadian
gene networks are found to require a nontrivial combination
of conditions, with seasonal differences in photoperiod as
a necessary but not sufficient component.

Results and Discussion

Evolving Clock Networks

Starting from randomly connected networks of genes
(Figure 1A), we have used a genetic algorithm to create clock
networks in which one gene is designated to be expressed
just after dawn and another just before dusk. This pattern
exemplifies the well-characterized rhythmic profiles of core
circadian clock genes, such as Per1 and Per2 in the mamma-
lian suprachiasmatic nucleus or PRR9 and G/ in Arabidopsis
[1]. A fitness function measures how well the network times
expression of the dawn and dusk genes. Our approach differs
from earlier work, which sought specifically for oscillations in
constant conditions [6-8]. These works demonstrated that it
is possible to evolve simple networks that oscillate and can
be entrained to a light/dark cycle. We now use this technique
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to address the fundamental question of which properties of
the environment are required to evolve the complex circadian
networks found in nature.

To probe the role of the environmental input, we evolved
networks under a range of light conditions. The most basic
was alternating 12 hours of light and darkness (LD 12:12),
and we extended this in two directions: multiple photoperiods
and noise in the timing of the light signal. The former mimics
seasonal differences, hypothesized to be important for the
emergence of complex clocks [9], whereas the latter repre-
sents weather and other stochastic effects on the system.
The effects of molecular noise on circadian clocks have been
studied extensively [10-14], showing that simple one-loop
oscillators can be robust to molecular noise, given the correct
parameter choices. In this study, we focused on the effect of
environmental noise on circadian clock evolution. To compare
the idealized scenarios with natural conditions, we also
evolved networks against a year-long time series of environ-
mental radiometry data from Harvard Forest [15], where
dawn and dusk change gradually and the light intensity fluctu-
ates with the weather.

The networks were modeled as delay differential equations
with parameters for light activation and for the signs,
strengths, and timescales of gene-gene interactions. The
choice of delays over mass action kinetics greatly reduces
the number of parameters without being incompatible with
biological systems [16-19]. For computational tractability, we
limited the networks to no more than four genes. This limit
was selected to allow a wide range of interlocking loop struc-
tures, comparable to the complexity of mechanistic circadian
clock models. Over 10% network architectures were possible
with four genes.

Network Analysis
The goal of using a genetic algorithm to optimize the topology
and parameters was to create an ensemble of realistic
networks. By strongly selecting for correct dawn and dusk
gene expression, we removed most of the generated networks
from further analysis. The absolute fitness and fitness distribu-
tion of the solutions varied significantly among scenarios,
reflecting the challenges of the different environments and
making it inappropriate to apply a single fitness threshold
across scenarios. The 50 best performing solutions, out of
5,000 evolved, were therefore analyzed for each scenario. In
general, biological networks might contain interactions that
slightly increase fitness without being integral to function, so
for the analysis of network structure, we exposed the func-
tional network cores by iteratively removing the least impor-
tant regulatory interaction or light input, stopping when the
fitness would drop below 95% of its original value. The cores
of the best performing networks are shown in Figures 1B-1F.
For the single-photoperiod scenarios, the networks shown
are representative of the 50 best solutions. What has evolved
is a simple light-driven on/off switch for the dawn gene—an
incoherent feed-forward loop with light as its input—with an
additional delay for the dusk gene.

Figure 2 gives a summary of the evolved network structures
and any sustained circadian oscillations. The simplest LD
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Figure 1. The Network Model

(A) The general form of the four-gene networks that we
considered as candidates for generating circadian rhythms.
Gene regulatory interactions may be positive, negative, or
absent, and genes may be activated by light.

(B-F) The highest scoring network for five scenarios: (B) one
photoperiod, (C) one photoperiod with noise, (D) multiple
photoperiods, (E) multiple photoperiods with noise, and (F)
one year of radiometry data. Gene interactions are shown

with signs and delay times, and yellow suns denote light-acti-
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photoperiod scenarios (B and C), the networks shown repre-
sent the architecture of about 80% of the 50 best solutions
(data not shown). The other 20% were functionally very
similar, only replacing the positive regulation with a double
negative. For multiple photoperiods (D), about 30% of the

12:12 conditions only selected for delayed light responses,
never oscillators, regardless of whether noise was added to
the input. Extending the basic fitness function to multiple
photoperiods had relatively little effect. The networks evolved
few or no feedback loops, and circadian oscillations remained
unlikely. In this scenario alone, we saw evidence of a tradeoff
between light inputs and feedback loops, showing that under
some circumstances, additional inputs are an alternative to
increased structural complexity. However, combining multiple
photoperiods with environmental noise eliminated that alter-
native strategy. Instead, the addition of noise led to a sharp
increase in the number of feedback loops and in the probability
of obtaining a circadian clock. Strikingly, networks faced with
real environmental variations (Figure 3) evolved even more
loops and light inputs and were most likely to exhibit circadian
oscillations. Only in this scenario was the light level noisy
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Figure 2. Complexity in Clock Networks Evolved under Different Environ-
mental Input

The distribution of the number of feedback loops (A) and light inputs (B) in
the functional cores of the top 50 networks from each scenario and the frac-
tion of the networks that exhibit circadian oscillations only in constant light,
darkness, or both (C). Increasingly realistic conditions led to more feedback
loops, light inputs, and oscillations. The large numbers of light inputs
selected under multiple photoperiods are discussed in the text.

solutions looked like the one shown, whereas the last two
scenarios did not use any one architecture for more than
three of the solutions. The functional network cores were
exposed by pruning of unimportant interactions (see text).

during the day. Thus noise in the duration and level of the en-
training light input signal appeared to favor greater complexity
in the networks that timed gene expression.

Conclusions

A hallmark of circadian regulation is the ability to robustly
adjust to different photoperiods despite unpredictable varia-
tions in temperature, light intensity, and other environmental
parameters. By evolving systems in silico, we have explored
the interactions between functional requirements on the timing
of gene expression and robustness to noise in order to identify
factors that can explain the ubiquity of multiloop circadian
clocks. We have shown that seasonally changing photope-
riods alone are insufficient to select for network complexity
in a circadian system that can anticipate environmental transi-
tions. However, when coupled with environmental noise,
varying photoperiod strongly selects for complexity and gives
rise to circadian clocks with multiple feedback loops and
multiple light inputs, just as observed in nature.

Experimental Procedures

Network Model

The networks that we evolved are illustrated in Figure 1A. Transcription can
be light activated, and genes might activate or repress the transcription of
themselves and others. Posttranscriptional processes (including transla-
tion) give a discrete time delay of between 15 min and 14 hr. Following the
time-averaged statistical treatment of Shea and Ackers [20], we modeled
the system by four delay differential equations, each taking the form
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where G; (t) is the level of genei at time t, S; its maximum transcription rate, B;
its basal expression level, and D; its decay rate. Gene interactions are
defined by the parameters oy, a; € {0,1}. When o;; = 1, there is repression
(aj = 0) or activation (a; = 1) of gene i by gene j, with strength k; and time
delay T;. Similarly, if o, = 1, then light activates gene i with strength L;
when the entrainment signal ® > 0. The Hill coefficients for gene-gene inter-
actions are fixed at 2. This model of a genetic network is highly simplified but
nonetheless captures a wide range of network dynamics.

Fitness Function
Given parameter values and the input signal ©(t), the G; are determined as
functions of time. The fitness score is based on the expression of one
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Figure 3. Network Dynamics with Real Environmental Input

Examples of network dynamics for the network of Figure 1F.

(A) A small part of the Harvard Forest radiometry data that the
network was evolved against, and the corresponding gene expres-
sion time course, normalized to unit maximum. Periods of darkness
are represented by gray shading. The target expression windows
are indicated by red and green boxes for the dawn and dusk gene,

Litey respectively. The gene traces are plotted in the same colors as in

—

Figure 1, with the parts matching the target expression windows
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shaded in red and green. Time t = 0 is midnight, not dawn, because
there is no well-defined zeitgeber period and phase.

(B-D) The day length varies with the season between about 9 and
15 hr, but the network can be entrained to light/dark (LD) cycles
with a wider range of photoperiods: LD 6:18 (B), LD 12:12 (C), and
LD 18:6 (D). In (B)—(D), t = 0 is dawn.
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gene in a 3 hr time window after dawn and of another gene in a similar
window before dusk. The fitness for a single simulated day is then
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normalized such that 0 < f < 1. The first two terms describe the expression
of the dawn and dusk genes in the time windows, relative to their totals,
whereas the third term discourages very low expression levels. The last
term is a small penalty on superfluous connections and light inputs, which
mostly affects the simplest scenarios where the fitness differences between
solutions are small. Without this term, feedback loops appeared in many
networks even for the single-photoperiod scenarios, where they were not
required for near perfect scores.

Simulations

To evaluate the fitness function for a given parameter set and light input
signal, we implemented a delay differential equation solver in C++ using
a fourth-order ordinary differential equation solver from the GNU Scientific
Library (GSL) [21]. Hermite interpolation of the values and derivatives of
the variables at the time points visited by the variable step-length ordinary
differential equation (ODE) solver were used to provide system history for
the delay terms and to evaluate the integrals of G;. Each parameter set
was thus always accompanied by its recent history, including current vari-
able values. Simulations proceeded one day at a time, failing (reporting
negative fitness) if more than 10* time steps were needed. Following any
change, the system was converged toward a limit cycle for up to 20 days
of identical light input, terminating early if end-of-day state or fitness score
converged to within a 10~ relative difference between several consecutive
days. As a fallback, the worst fitness score of the last 15 days was reported.

Multiple Photoperiods and Noise

For multiphotoperiod scenarios, we used nine photoperiods between LD
6:18 and LD 18:6. The state was converged (as described above) following
every photoperiod change. In scenarios with noise, the system ran for
24 days with dusk at nominal dusk = 2 hr (flat distribution). The total fitness
was the harmonic mean over the individual days. In the environmental data
scenario, the system was converged against the first day of data, then simu-
lated for a further 365 days. The input signal came from Harvard Forest data
set HF102 (available at http://harvardforest.fas.harvard.edu/), specifically
the hourly measurements of total incoming radiation for the year 2000. An
arbitrary transformation was needed to give a level near 0 at night and satu-
rated at 1 on sunny days. We used ® = 0.5tanh(x/30 — 2.5) + 0.5 and inter-
polated between data points by a nonovershooting cubic spline (Figure 3).
Nominal dawn and dusk at Harvard Forest, needed for the fitness scores,
were computed using the date_sun_info function of the PHP programming
language.

Genetic Algorithm
To evolve the networks, we used a real-coded genetic algorithm [22]. Our
particular algorithm is described in detail in the Supplemental Data available

online, and we give a brief summary here. In each generation, the bottom
tenth of the individuals in a population of 50 parameter sets were replaced
through cloning (including mutation of one or more parameters through
multiplication by a random factor) or recombination (with new parameter
values drawn from the vicinity of the two parents’ values). The runs lasted
between 1,500 and 25,000 generations, stopping when fitness could not
be improved. Similar results were obtained from a different genetic algo-
rithm in a separate implementation.

Circadian Oscillations

To test a network for circadian oscillations, we simulated the system for 10
days following entrainment in LD 12:12, switching to constant conditions in
the first day. The expression levels of the dawn and dusk genes for days 4-8
were analyzed with fast Fourier transform nonlinear least squares (FFT-
NLLS) [23] at confidence level 0.95. If any component with period between
15 and 35 hr was found, we considered the network to be a circadian oscil-
lator. Figure S1 of the Supplemental Data shows the period and amplitude of
the oscillations and that these are affected by the functional criteria used to
evolve the networks. To remove very weakly oscillating networks, we
required the root mean square (RMS) distance between the time course
and a detrended version of the same time course to be at least 10% of
the mean level for at least one gene.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures and
one figure and can be found online at http://www.cell.com/current-
biology/supplemental/S0960-9822(09)01704-7.
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