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Abstract

Some comparative theorems are given for the oscillation and asymptotic behavior for a class of high order delay paraboli
differential equations of the form

AM(u(x, t) — pHux, t — 1))
atn

—a(t)Au+c(x, t,u)

b
+/ ax, t, &) fux, g1(t, §)), ..., u(x, g (t, §))) do (§) =0, (x.) e 2 xRy =G,
a

wheren is an odd integer? is abounded domain ilR™ with a snooth boundary 2, andA is the Laplacian operation with three
boundary value conditions. Our results extend some of those @¥dfg, Oscillatory criteria ohonlinear hyperbolic equations
with continuous deviating arguments, Appl. Math. Comput. 106 (1999), 163—169] substantially.

(© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider the following odd-order delay parabolic differential equation:

M(u(x,t) — pHux,t — 1))
atn

—a()Au+c(x,t,u)

b
+/ qx, t, &) f(ux, g1(t, &), ..., ux, gi(t, €))) do (§) =0, (x,t) € G, (1.1)
a

wheren is an odd integer; is a positiveconstantRy = [0, +00); we will assume throughout this work that
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(H1) a(t) € C(Ry, Ry), gi(t, &) € C(Ry x [a,b],R), gi(t,§) < t,& € [a,b] andlim_ Gi(t, &) = oo, for

i=1,...,1I.

(H2) q(x,t, &) € C(2 x Ry x [a,b], Ry), Q(t, &) = min,_5{q(x,t,£)}, f € C(R" x Ry x [a,b], R),uif >0
wheneach 4y > 0,i = 1,...,1, fisconvex—f = f(—ug,...,—up), in which y = u(x, g(t, &)), for
i=1,...,1.

(H3) pt) € C(Ry, Ry), andlimi_ p(t) = p < 1.

(Hg) c(x.t,u) € C(2 x Ry x R R); hihei1(§) < c(x.t,§) < ha(hea(§) for & > 0, in which h(t) €
C(Ry, Rp),¢1(6) € C([a,b], R), p1(§) is a positive and convex function i@, o), and ax,t, —§) =
—C(X, 1, 8), p1(—§) = —p1(8).

We consider the following boundary conditions:

ux,t) =0, x,t) € 92 x R+, (B1)
d ,t
UXD o (x.t) €82 x R+ (B»)
N
d ,t
“a(f\l ) =0, (1) caf xR+, (B3)

whereN is the unit exteriovector normal td {2, andv(X, t) is anonnegative continuous function 62 x R+.

Recently, many authord {8 hawe qudied oscillations for the solutions of parabolic differential equations; they
obtained some comparative theorems for the oscillations of these equations. In more recent timeslOpMaag [
investigated the following nonlinear hyperbolic equations:

32(u(x, t) — p(Hu(x,t — 1))
at2

b
+ f qx, t,&Hu(x, g(t, &) do(§) =0, x,1) € G, 1.2)
a

—a(t)Au+c(x,t,u)

wherea(t), g(t), c(x, t, u), p(t) are defined as above. Some comparatiedlasion for the solutions of the boundary
value poblem (1.2)+(B3) were obtained. But few author®] have gudied oscillation of the high order parabolic
differential equation.

In this work, we investigate Eq1.1)with the boundary condition®1), (B2) and(B3). This work is organized as
follows: in Section 2 we dscuss the comparative oscillation for the solutions of @dl) with boundary conditions
(B1), (B2) and(B3), and some amparative results will be obtained; Bection 3 we will investigate the asymptotic
behavior of non-oscillatory solutions f.1), andwe shall give one example to explain the oscillation and asymptotic
behavior of Eq(1.1)with the above boundary conditions.

We first recall some definitions as follows.

Definition 1.1. A functionu(x, t) € C2(£2) x C"(R,) is said to be a sotion to theproblem(1.1)~(B;) (i = 1, 2, 3)
if it satisfies(1.1)in the domainG and satisfies the boundary conditi@®)) (i = 1, 2, 3).

Definition 1.2. The solutionu(x, t) of problem(1.1)is said to be oscillatory in the domatfa if for any positive
numberu, there exits apoint (x1, t1) € 2 x [u, co) such that the equality(xs, t1) = 0 holds. If every solution of
Eq.(1.1)is oscillatory, then Eq1.1)is called oscillatory.

Definition 1.3. A functionu(x, t) is called eventually positive (negative) if there exists a nuniber 0 such that
u(x,t) > 0 (< 0) forevery(x,t) € 2 x [T, 00).

Remark. If a solution is non-oscillatory, then it is eventually positive or eventually negative.
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2. Comparative oscillation of (1.1) with the boundary value conditions (B1), (B2), (B3)

For convenience, we consider the following Dirichlet boundary value problem in the dafhain
AU+ au =0, in(x,t) € G, (2.1)
u=0, on(x,t) € 92 x Ry, (2.2)
in which« is a @nstant.
It is well known from [L1] that the smallest eigenvalug of problem(2.1)is positive and that the corresponding

eigenfunctiony (x) > 0 forx e (2.
Letu(x, t) be a solution of problerfiL.1)}-(B1); we define throughout this section

S ux, Hyr(x) dx
Jo ¥ () dx
Letu(x, t) be a solution of probler(L.1}-(B;), i = 2, 3; we always define
Jo ux, t)dx
Jodx -
To obtain our results, we first introduce a lemma as follows:

U = (2.3)

V(t) = (2.4)

Lemma 2.1. Suppose thatH1)—(H4) hold; then
2 — p®zt — )™ +hie1(2)
+ /: Qt, &) f(z(;u(t, £)), ..., z(gi(t, §)))do (§) <0, teRy, (2.5)
hasan eventually positive solution if and only if
2® — p®zt — )™ +hie1(2)
+ /b Qt, &) f(z(;u(t, £)), ..., z(gi(t, §))) do(§) =0, teRy (2.6)
hasan eventu:IIy positive solution.

Proof. The sufficiency is obvious. We only need to prove the necessity. Assum@tbghas an eventually positive
solution z(t); this means that there is a numb&r > 0 such thatz(t) > 0,z(t — ) > 0, z(gi(t,£)) > 0 for

t>T,i =1,...,1. Itfollows that there exists a nonnegative integer< n — 1 (if n is odd, them* is even; ifn is
even, them* is odd), such that
zZ0 ) > 0, i=0,1,...,n*
T . 2.7
(-1)'z" ) > 0, i=n*...,n—1,
By using(2.7), (H1)—(H3) and integrating2.5)fromt to oo, n — n* times, we obtain
. . . ) 00 (S _ t)nfn*,l h
— — > -
@ - pwzt - o)™ = [ S [ LS91(2(S)
b
+ f Q(s, &) f(z(g1(s, §)), ..., 2(9 (s, §))) do(é)} ds. (2.8)
a
LetT > Ois large enough thg®.8)holds andz(t — 7) > 0, z(gi(t, &)) > 0,i = 1,...,1. Integating(2.8)from T

tot and using2.8), we have

_ S)n*fl /«oo (r _ S)nfn*fl
S

t (t
2(t) = pyzt — o) + fT = [ [hl(r)m(Z(r))

b
+/ Q(r,é)f(Z(gl(r,é)),...,2(g|(r,é)))da(§)} dr ds. (2.9)
a
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We define a geof functions as followsK = C([T — 7, 00), [0, 1]), anddefine an operatdd on K :

(SY(T), T—t<t<T,
1 . . . t (t — s)n*—l 00 r — S)n—n*—l
% POyt — o)zt — 1) +./T n — 1)1 /s (n—n*— 1)

Sy = X [hl(r)wl(y(r)z(r))

b
+ / Q(r, &) f(y(91(r, §)z(91(r, §)), ..., y(@i(r, §)z(ai (r, §)))
a

X da(%‘)] dr ds} , t>T.
Itis easy to see bg2.9)thatS mapsK into itself, and for any € K, we have(Sy)(t) > 0,forT —t <t < T. Now,
we defire the squencegi(t) in K:
Yo(t) =1, t>T -1,
and
Yik+1(t) = (S¥) (1), fort>T-7,k=0,1,...,
k"_)moo Yk(t) = y(), t>T -1
This means, from Lebesgue’s dominated convergence theorem, that there exists a fumytiat satisfies

_ s)n*—l 00 r — S)n—n*—l
n* — 1)! /s n—n*-=1)!

|:h1(r )e1(y(r)z(r))

= — o) (t—r)z(t—r)+ft(t
YO =20 1P b

b
+ f Q(r, &) f(y(9a(r, £)z(ge(r, §)), ..., Y@ (r, §)z(g (r,é)))do(é)} dr dS} ; t>T.
a

and
y(®) = (Sy(M), T—-7=<t<T.
This being the case, define
w(t) = y®z().
Itis obvious thatw(t) > OforT — 7 <t < T and

t) = pHw(t e M e G Ui
w(t) = pMw( _TH_/T (n* —1)! fs (n—n* — 1)

[h1(r)§01(w(r))

b
+/ Q(r,é)f(w(gl(r,é)),...,w(g|(r,é)))da(§)} dr ds t>T.
a

Thus,w(t) is anonnegative solution of E¢2.6)for t > T. Findly, it remains to show thai(t) > Ofort > T — w.
Assume that there existda> T — u suchthatw(t) > 0forT — 7 <t < t* andw(t*) = 0. Thent* > T, and

) = ottt G Ll el G W

|:hl(r)§0l(w(r))

b
+ f Q(r,é)f(w(gl(r,S)),...,w(g(r,é)))do(&)} dr ds, t">T.
a

which aontradicts the assumption. Thus(t) is an eventually positive solution of ER.6); this is acontradiction to
the supposition too, and the proof is completed

If we lety(t) = —z(t), thenLemma 2.1changes into the following:
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Corollary 2.1. Suppose thatH1)—(H4) hold; then
2® — p®zt — )™ +hie1(2)
+ fb Qt, &) f(z(ou(t, £)), ..., z(gi(t, §))) do(§) = 0, teRy, (2.10)
has an eventua:';llly negative solution if and only2{6) has an eventually negative solution.
Theorem 2.1. Suppose thatH1)—(Ha) hold; if every solution of the differential equation
(2 — p®z(t — )™ +1a®)zt) + hites(2)
+ f: Qt, &) f(z(ou(t, £)), ..., z(gi(t, §))) do(§) =0, teRy, (2.11)

oxillates, then every solution @fL..1)+B) ocillates.

Proof. Assume that there is a non-oscillatory solutiaix, t) of the problem(1.1}{B;). Without loss of generally,
let u(x, t) be an eventuly positive solution of problen{1.1)(B1); then here exists a numbéfF > 0 such hat
ux,t) > 0,u(x,t — 7) > 0,u(x, gk(t,&)) > 0fort > T, k=1,...,1.

Multiplying both sides of Eq(1.1) by v (X), and irtegrating both sids over the domaif? with respect tox, we
have

;T:/Q(u(x,t)— pMUX, t — 1) (X) dx—a(t)/QAmp(x)dx+/Qc(x,t,u)1p(x)dx
+ fg v (X) f:Q(X,t,%‘)f(U(X, 01(t, §)), ..., ux, ai(t, ))) do(§) dx =0, t=T. (2.12)
Using(2.1)and(2.2), and Geen’s formula, we have
/QAuw(x) dx = —)\1/9 uyr(x) dx, t>T. (2.13)

Combining(2.12) (2.13) (H3), (Ha), using Jensen’s inequality and changing the order of integration, we have
dn
ﬁfg(U(x,t) — pOUX, t — )Y (X) dX+Ma(t)fQuw(X) dx + h1(t)fg<p1(U)w(X) dx

b [0 W OOUX. Gt ) AX [ WOOUX, Gi(t, £)) dx
+/a Q(t’@f( Tvo0dx U oyt dx

) da(é)f ¥(x)dx <0,
n
t>T.

Using(2.3), this neans
n

d
F(U ) — pOU( — 1) + 2ab®U ) + hi(t)ei(U)

b
+ f Qt, &) f(U (g, 8). ..., U@t §))do(§) <0, t>T. (2.14)
a

Becauseau(x, t) is positive, from(2.3) again, we have that (t) is eventually positive. It follows thatl (t) is an
eventally positive solution 0f2.5) according toLemma 2.1 Eq. (2.6) has an eventually positive solution, and this
contradictslie supposition.

If u(x,t) is an eventually negative solution of problgi1)}{(B1), then here exists a numbdr > 0 such bhat
ux,t) <0,ux,t — 1) < 0,u(x, gk(t,&)) <Ofort > T,k=1,...,1;then(2.12)changesinto

dn
ﬁ/ ((=u(x, 1) = p(t) — (u(x, t — 7)Y (x) dx
2

—a(t)/ A(—u)w(x)dx+/ c(x, t, —u)yr(x) dx
9] 19,

b
+f0¢(X)f qx, t, &) f(—u(x, g1(t, &), ..., —uX, gi(t, £))) do(§) dx = O, t>T.
a
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Let
v(X,t) = —u(x,t),
Using a method similar to the above, we canded ontradiction too. The proof is completed. O
If p(t) =0, c(x,t,u) =0, then(1.1)has the following special form:

I, B a(t)Au+fb X, 1,8)
T L dots

x fux, g1t, &), ...,uXx, g, &) do(E) =0, x,t) € G. (2.15)

We monsider the following differential equation:

b
zZ™(t) + cza(t)z(t) +/ Qt, &) f(z(cn(t, &), ..., 2(a(t, §))) do(§) =0, te Ry (2.16)
a
Using Theorem 2.1we have:

Corollary 2.2. Suppose thatH1)—(Hz)hold, and every solution of differential equati¢h16)o<cillates; then every
solution of problen{2.15){B;) o<tillates in G.

Now, we investigate the oscillation of probldh1)with boundary value conditio(B>).

Theorem 2.2. Suppose thatH1)—(Ha4) hold; if every solution of the differential equation
@® - p)zt — )™ +h1(Ve12)

b
+ f Q(t, §) f(z(a1(t, £)), ..., 2(gi(t, §))) do (§) =0, te Ry (2.17)
a

oxcillates, then every solution dfL..1)-(B>) ocillates.

Proof. Assume that there is a non-oscillatory solutigix, t) of the problem(1.1){B>). Without loss of generally,
we assumel(x, t) is an eventually positive solution ¢1.1)+(B>)(if it is an eventually negative solution, the proof
is similar). This means that there exists a number 0 such batu(x,t) > 0, u(x, gk(t,€)) > O(fort > T,
k=1,...,I.
Integrating(1.1) on both sides over the domafhwith respect tok, it follows that
dn
—f (u(x, t) — pHu(x, t — r))dx—a(t)/ Au dx+f c(X,t, u)dx
dt" Jo 7 7

b
+/Q/ qx, t, &) f(u(x, gu(t, §)), ..., ux, gi(t, £))) do(§)dx =0, t>T. (2.18)
a

Using Green’s formula an(B;), we obtain

/ Audx = / oux, ) ds =0, t>T. (2.19)
0 a2 ON
Combining(2.18) (2.19) (H2), (H3) and using Jensen’s inequality, we obtain

dn
—/ U, t) — pux,t — 7)) dx + hl(t)/ @1(U) dx
at" Jo Q

b fo u(ga(t, §)) dx Jouai(t, &) dx
+fa Q(t,ég)f( T dx T dx )da(é)/ﬂdxgo, t>T.

According to(2.4), it follows that

n

d
dt_"(v ) — pMOVE — 1)+ hi)e1(V (1)

b
+ f Qt, &) F(V(grt, ), ..., V(g (t, §)) do(§) <0, t>T. (2.20)
a
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Becausai(x, t) is positive, from(2.4)again, we have that (t) is positive eventually. According toemma 2.1V (t)
is an eventually positive solution of E€2.17) this contradicts the suppositi. The proof is completed. O

FromTheorems 2.5nd2.2 Lemma 2.1it is easy b prove:

Corollary 2.3. Suppose thatH1)—(H4)hold; then every solution of the boundary value prob{2m 5)}{B>) ocillates
if and only if every solution of

b
Z™(t) + f Qt, &) f(z(q1(t, £)),...,2(Qi(t, &) do(5) =0, teR; (2.21)
a

is oscillatory.

UsingTheorem 2.&andLemma 2.1 it is easy b show.

Theorem 2.3. Suppose thatH1)—(Ha) hold; if every solution of the differential equation
@®) = p)zt — )™ +hi(V)¢1(2)
+ f: f(z(nt, §), ..., z(gi(t, £))) do (§) =0, teRy, (2.22)
oxillates, then every solution @fL..1)+B3) ocillates.
3. Asymptotic behavior of non-oscillatory solutions

In this section, we will establish the asyrofit behavior of the non-oscillatory solutio(&.1){(B1), (B2), (B3).
For convaience, we let

y®) = z(t) — pt)z(t — 1), (3.1)
and
v(X,t) = u(x,t) — p(HHux,t — 7). (3.2)

Theorem 3.1. Suppose thatH1)—(H4) hold; if z(t) is an eventually positive solution of

b
() — pMzt — )™ + ha(t)g2(2) + f Qt, &) f(z(gu(t, £)),...,2(gi(t, &) do(6) =0, te Ry, (3.3)
a

then there exists a non-oscillatory solution of the boundary value profehi(B1), (B2), (B3) such hat:

9! v(X,t)

5 Is monotonic and

(1) If lim{— o 2(t) = 0, thenlimi_ o U(X, t) =0, liMm{_ oo v(X, 1) =0,

+1
liMio oo 2200 — 3'v(x na ol <o, fori=1,....n—1,

(2) If z(t) #0ast— oo, then ux,t) > 0, v(x,t) > 0, or u(x t) < 0, v(x,t) < 0, where \t), v(x, t) are defined
by (3.1)and(3.2)respetively.

Proof. (1) We only prove that tbre exists a solution fL.1){(B1) which satisfies (1), (2) imTheorem 3.1the rest
is similar. Without loss of generality, assur(®3) has an eventuallpositive sdution z(t) (if it has an eventually
negative stution, the proof is similar) and lei(x, t) = z(t); then it is an gentally postive solution of
"(Ux, t) — pOUX, t — 1))
atn

b
+ / qx, t, &) fux, g1, ), ..., ux, gi(t, §))) do(§) <0, x,t) € G,
a

—a(t)Au+ hat)g2(u)

From(Hy), it follows thatu(x, t) satisfies

M(u(x,t) — pHux,t — 7))
atn

b
+ f qx, t, &) fux, g1, ), ..., ux, gi(t, §))) do(§) <0, x,t) € G, (3.4)
a

—a()Au+c(x,t,u)
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by Lemma 2.1u(x, t) is an eventually positive solution ¢f.1)}-(B1), andAu = 0, that is
"(ux, ) = pOUX, t — 1))
atn

b
= —c(X,t,u) —/ qx, t, &) f(u(x, gi(t, &), ..., u(x, gi(t, €))) do(§) <O, (x,1) € G. (3.5)
a

. . 9l . gn—1 . .
This means that~s>- < 0, andu(x. t) > 0; it follows that 2%-1) is monotone, and— %" is decreaing. Thus
a1y (x,t)

. . . . -1 .
it follows that lim_, 5 ST exids. Assume that lim., 3nmﬁf§’t) = L < 0; then there exists a numbkej < 0,
and a numbeF > tg, such hat

oy, t)
tll)rgo W < Ll, t>T.

This contradicts lim., o v(X, 1) = 0.

On the other hand, if. > 0, then E’n;;’f’l‘*‘) > L > 0, which contradicts lifL, o v(X,t) = 0 also. Thus, we

havelim_, o 3”;3&"0 =0. Moreover,an;ﬁf}"t) > 0,t > T; this means that% is increasing fon > 2. Let
liMmi_ oo 3”;?;’92“) = L. Itis obvious thatL, = 0; by the sinilar proof, we can easily prove that
3l X, t .
lim (. )=0, i=1,...,n—1,
t—o0 ot!
and
dvx,t) dtlu(x, t .
v DIV o i Zq n—1
ot! oti+1
(2) If limisooz(t) # O, thenlimsup_, ., z(t) > 0, becauseu(x,t) = z(t) is eventually positive and

limsup_ o, ux,t) = U(x) > 0. Assume thav(x,t) is not eventually positive; thert is eventally negative. If
z(t) is unbounded, then there exists a sequdpce oo, and axp € {2 suchthatv(Xg, tk) = max<yv(Xo, t), and
limsup, _, o z(tk) = limsup, _, , U(X, tx) = oco. By (3.2), and t&ing xo € (2, we have

v(Xp, tk) = U(Xp, tk) — p(tk)u(Xo, tk — 7)
> u(Xo, tk)[1 — p(tk)] > u(xo, t)[1 — pI. (3.6)

Taking thelimits of both sides of3.6)astx — oo, we can get lim sup(Xo, t) = oo; this mntradictsu(x, t) < 0. If
v(X, t) is bounded, then there exists a sequemce oo suchthat

lim v(x,tx) = limsupv(x,t) = V(x) > 0.
tk—o00 t—o00

Taking Xo € {2, we havéeV (xg) > 0. Comhning (3.2)and(3.6)and taking the limit asc — oo, we have

0> Ilim v(Xp, tk)
ty— o0

tkImr\C>o u(Xo, tk) — tkli_r)noo(p(tk)u(xo, tk — 1))
tkIiﬁmOo u(xo, tk)[1 — p(t)]

tIim u(xo, t)[1 — p] > 0. (3.7)
K—> 00

v

v

This is also a contradiction. The proof is completedd

Example 3.1. Consider the following boundary value problem:

AN(UX, t) — =5 U(X, t — 4)) 1
e U UK.t — 4)

2 ﬂ -
f e~ (t-eDgguxt=4 g _ 0 (x,t) € (0,7) x Ry =G, (3.8)
0

+ -
3n2e¢
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with the following boundary value condition:
gu(0,t) _ au(r,t)
ax  ax

0, t>0, (3.9
wheren is anodd numberf = 2 [F e (teDgguxt-Ags — %%ée*(t*eﬂefu(x’t*“'), P = su.C=
%u(x,t — 4); its corresponding delay differential equation is as follows:

1 ™ 1 t

2(t) — —z(t — 4 —zt—H+ ——e e =0, telt, .foeR, (3.10
(() 3e4( )) +3e4( )+3ee4 [to, +00), to (3.10)
and it is obvious thazr = e~! is an eventually positive solution ¢8.10) andlim;_ ., z(t) = 0. It follows that
u(x,t) = z(t) = et is an eventually positive solution of problgi@8)and(3.9), andlim¢_, o, u(x, t) = 0, v(X, 1) =

. k . k k+1 . k
§e:, Iljr-nt_)Oo v(x,lt) =0, %’,ﬁ—‘) = (—D*Ze !, it is easy to show tha@—giﬁ’—t)% < 0, limi_ o 2 ggx*‘) =
k=1,...,n—-1.
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