Three Moves on Signed Surface Triangulations

Shalom Eliahou

Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville,
Université du Littoral Côte d’Opale, B.P. 699, 62228 Calais Cédex, France

and

Sylvain Gravier and Charles Payan

CNRS, Laboratoire Leibniz, 46 avenue Félix Viallet, 38031 Grenoble Cédex, France

Received July 13, 2000

We consider finite triangulations of surfaces with signs attached to the faces. Such a signed triangulation is said to have the Heawood property if, at every vertex x, the sum of the signs of the faces incident to x is divisible by 3. For a triangulation G of the sphere, Heawood signings are essentially equivalent to proper 4-vertex-colorings of G. We introduce three moves on signed surface triangulations which preserve the Heawood property. We then prove that every Heawood signed triangulation of the sphere can be obtained from a Heawood signed triangle by a suitable sequence of our moves.

© 2001 Elsevier Science

1. INTRODUCTION

Let $G = (V, E)$ be a triangulation of a closed surface S. We mean that G is a finite graph, loop-free but possibly with multiple edges, embedded in the surface S and subdividing it into triangular faces (i.e., all faces have exactly three incident edges). In this paper we are interested in the triangulations of the sphere S^2. We denote by $\mathcal{F}(G)$ the set of faces of a triangulation G of the sphere, and by \mathcal{F}_v the subset of faces incident to some vertex $v \in V$. A polygon T is an induced subgraph of G where all faces are faces of G except one, the boundary face which is a cycle of G (see Fig. 1).

By Euler’s formula, we have that a triangulation G of the sphere has $3n - 6$ edges (where n denotes the number of vertices in G) and so:
Proposition 1.1. If G is not a triangle then there exist at least 4 vertices of degree ≤ 5 in any triangulation of the sphere.

If G is a triangulation of the sphere then the neighborhood $N(x)$ of a vertex x induces a cycle x_1, \ldots, x_t (with edges x_ix_{i+1} and $t \geq 2$) in G. We will denote $F_{x_ix_{i+1}}$ the triangle formed by x_i, x_{i+1}.

- A coloring of G is a mapping $c: V(G) \to \{1, \ldots, 4\}$ such that for all adjacent vertices u, v we have $c(u) \neq c(v)$. A strict 4-coloring of G is a 4-coloring of G which uses the four colors.

- A signing of G is a mapping $s: \mathcal{F}(G) \to \{-1, +1\}$ (in the figures we will represent the sign as in $\{+, -\}$). We denote by \bar{s} the signing obtained from s by changing all signs and $s(v)$ the sum of the signs of the faces F incident to v, i.e.,

$$s(v) = \sum_{F \in \mathcal{F}} s(F).$$

A signing s is a Heawood signing if at every vertex v of G, one has $s(v) \equiv 0 \mod 3$. This notion is dual to the notion of “Heawood vertex characters” for cubic graphs on S, where signs are attached to the vertices of the graph, with the condition that the sum of the signs of the vertices around every region is divisible by 3.

- A valuation of G is a mapping $v: E \to \{0, 1\}$. Let s be a Heawood signing of a triangulation G of the sphere. We define the Heawood valuation v of G associated to s by: for all edge $xy \in E$, set $v(xy) = 0$ iff the two triangles of G containing xy have the same sign under s (see Fig. 2).

Now, from a Heawood valuation v of G, we may construct a unique coloring c of G (up to permutation of colors). First color with 3 colors an
arbitrary triangle of G. Now apply the following rule: for all quadrilateral $xyzt$ composed from two triangles of G adjacent to the edge yt, color the vertices x and z with the same color iff $v(yt) = 1$.

Observe that to a 3-coloring of G there corresponds a Heawood valuation where all edges are valuated 1; the Heawood signing corresponding to this valuation will be called *alternating* (this is a 2-coloring of the faces of G).

Moreover, Heawood discovered (see [5]) that, for a triangulation G of the sphere S^2, every 4-coloring yields a Heawood signing, and conversely. Hence, Heawood signings, Heawood valuations and 4-colorings are equivalent notions for a triangulation of the sphere. So in the sequel, if G is a triangulation of the sphere then (G, e) means as well a Heawood signing $s(G, e)$, the valuation $v(G, e)$ associated to $s(G, e)$ and the coloring $c(G, e)$ associated to $v(G, e)$. Such a pair will be called a *Heawood triangulation*; moreover if $c(G, e)$ is a strict 4-coloring of G then we specify a *strict Heawood triangulation*.

Let (G, e) be a Heawood triangulation of the sphere. We set $s = s(G, e)$ and $v = v(G, e)$. We consider the following four moves (see Fig. 3):

(I) Let $Q = xyzt$ be a quadrilateral of G formed by the two faces F_1, F_2 of G adjacent to yt. The *flip* is only defined if $s(F_1) = s(F_2) = \mu$. Removing yt and replacing it by the opposite edge xz, we obtain a new triangulation G'. Let F'_1, F'_2 be the two faces adjacent to the new edge xt of G'. Set $s'(F'_1) = s'(F'_2) = -\mu$, whereas for the other inner faces F of G', which are also inner faces of G, there is no sign change, i.e. $s'(F) = s(F)$. As observed in [3], s' is still a Heawood signing of G'.
(II) Let $F = xyz$ be a face of G and $s(F) = \mu$. The add of a vertex a in F consists to replace the face F by the three faces $F_{xy} = axy$, $F_{yz} = ayz$ and $F_{xz} = axz$ and to set $s'(F_{xy}) = s'(F_{yz}) = s'(F_{xz}) = -\mu$, $s'(A) = s(A)$ for every face $A \neq F$. The resulting signing s' is clearly still a Heawood signing of the triangulation G'. We will denote G' by $G + a$.

(III) The deletion of a vertex a of degree 3 is the converse of move (II).

(IV) Let x be a vertex of a triangulation of the sphere and let x_1, \ldots, x_t be the cycle induced by the neighborhood of x. If the faces $F_{x_{i}x_{i+1}}$
have alternating signs then the *switch* at \(x \) consists to modify \(s \) by changing the sign of \(F_{x_{i+1} y} \) for every \(i \). Again, he resulting signing is clearly still a Heawood signing of \(G \).

Observe that the move (I) does not modify the coloring of the vertices of \(G \), and modifies the valuation as follows: \(v'(xy) = 1 - v(xy) \), \(v'(yz) = 1 - v(yz) \), \(v'(zt) = 1 - v(zt) \), \(v'(tx) = 1 - v(tx) \), \(v'(xz) = v(yt) = 0 \) and \(v'(ab) = v(ab) \) for all other edges of \(G \). The move (II) consists to add a new vertex with a fourth color distinct from the three colors of \(x, y, z \). For the valuation this consists to change all the valuations of the edges \(xy, yz, zt \) and to assign 0 to the edges \(ax, ay \) and \(az \) (conversely for move (III)). The move (IV) consists to change the color of \(x \) and to change the valuation of edges \(x_i x_{i+1} \).

The link between signed flips and colorings of a triangulation was first introduced independently by Eliahou [3] and in dual form by Kryuchkov [6]. In [4], the authors proved the following theorem which settled a conjecture proposed in [3]:

Theorem 1.2 [4]. Let \(n \geq 3 \), and let \(T_1, T_2 \) be two triangulations of a convex plane polygon \(P \). There is a sequence of signed flips from \(T_1 \) to \(T_2 \) if and only if there is a 4-coloring of \(P \) which induces a proper coloring of \(T_1 \) and \(T_2 \).

Let \((G, e), (G', e')\) be two Heawood triangulations of the sphere. We write \((G, e) \sim_0 (G', e')\), if we can obtain \((G', e')\) from \((G, e)\) by applying moves (I) and/or (II). We write \((G, e) \sim_1 (G', e')\), if we can obtain \((G', e')\) from \((G, e)\) by applying moves (I), (II) and once (III) or (IV). Notice that \(\sim_0 \) is a transitive relation.

Let \((T_0, e_T)\) be the "smallest" triangulation of the sphere, i.e., where \(T_0 \) is a triangle, the inner face is signed +1 and the other −1. Clearly this signing is the unique Heawood signing of \(T_0 \). Let \((K_0, e_K)\) be the signed triangulation of the sphere obtained from \((T_0, e_T)\) by applying once the move (II) (see Fig. 4).

![Prime triangulations](image_url)
The aim of this paper is to prove that \((K_0, e_K)\) is the prime signed triangulation for all the strict Heawood triangulations under moves (I) and (II), and that \((T_0, e_T)\) is the prime signed triangulation for all the Heawood triangulations under moves (I), (II) and (III) or (IV).

Theorem 1.3. Let \((G, e)\) be a Heawood triangulation of the sphere. Then \((K_0, e_K)\) is \(\alpha_0(G, e)\) if and only if \(c(G, e)\) is a strict 4-coloring of \(G\).

Corollary 1.4. Let \((G, e)\) be a Heawood triangulation of the sphere. Then \((T_0, e_T)\) is \(\sigma_1(G, e)\) if and only if \(c(G, e)\) is a 4-coloring of \(G\).

By the 4-colors theorem [1, 2], we obtain

Corollary 1.5. For all triangulations of the sphere \(G\), there is a Heawood triangulation \((G, e)\) which satisfies \((T_0, e_T)\) is \(\sigma_1(G, e)\).

Moreover Theorem 1.3 implies a result due to Penrose [7] and Vigneron [8]:

Corollary 1.6. Let \(s\) be a Heawood signing of a triangulation of the sphere. Then

\[
\sum_{F \in \mathcal{F}} s(F) \equiv 0 \mod (4).
\]

The proofs are given in the next section.

2. PROOFS

Proof of Theorem 1.3. Observe that the flip does not modify the coloring \(c(G, e)\), moreover if \(c(G, e)\) is a strict 4-coloring then adding a new vertex \(x\) to \(G\) provides still a strict 4-coloring of \(G + x\). Hence since \(c(K_0, e_K)\) is a strict 4-coloring of \(K_0\), if \((K_0, e_K)\) is \(\alpha_0(G, e)\) then \(c(G, e)\) is a strict 4-coloring of \(G\).

For the converse, assume that there is counter-example to Theorem 1.3. Let \((G, e)\) be a minimal such counter-example. By Proposition 1.1, there are at least 4 vertices of degree \(\leq 5\), since \(G\) has more than 4 vertices. Then at least one vertex \(x\) of degree \(\leq 5\) satisfies that \(G - x\) is still strictly 4-colored. Such a vertex will be called a removable vertex. Consider \(\mathcal{F}\) the set of Heawood triangulations of the sphere obtained from \((G, e)\) by applying move (I). Observe that all triangulations in \(\mathcal{F}\) are still minimal counter-examples of Theorem 1.3 with \(x\) removable. We restrict our attention...
to the subset $\mathcal{G}(x)$ of Heawood triangulations of G where the degree of x remains ≤ 5. By hypothesis $(G, e) \in \mathcal{G}(x)$. Our aim is to prove that $\mathcal{G}(x) = \emptyset$, thus yielding a contradiction. First we partition $\mathcal{G}(x)$ in two disjoint subsets \mathcal{G}_1 and \mathcal{G}_2: a Heawood triangulation of \mathcal{G}_1 verifies that the neighborhood of x is 3-colored with 3 colors and $\mathcal{G}_2 = \mathcal{G} \setminus \mathcal{G}_1$. Remark that in all triangulations of \mathcal{G}_1, the vertex x has degree 3, 4, or 5 and in all triangulations of \mathcal{G}_2, the vertex x has degree 2 or 4.

First we prove that $\mathcal{G}_1 = \emptyset$. Let $(G', e') \in \mathcal{G}_1$. We may assume that x has color 4. If x has degree 3 in G' then remove it. By minimality of G' and by applying (II), we have $(K_0, e_K) \circ (G' - x, e') \circ (G', e')$. By transitivity of α_0, this yields a contradiction.

If x has degree 5 in G' then let $C = x_1, x_2, x_3, x_4, x_5$ be the cycle induced by the neighborhood of x. Every vertex x_i has a color distinct from the one of x. Since there is a unique, up to rotation, 3-coloring of the cycle with 5 vertices, we may assume that x_1 is the only vertex colored 3. Hence, if we flip the edges xx_2 and xx_5 then we obtain by move (I) a new Heawood triangulation (G'', e'') where x has degree 3 and so we conclude like in the previous case.

If x has degree 4 in G' then let $C = x_1, x_2, x_3, x_4$ be the cycle induced by the neighborhood of x. Every vertex x_i has a color distinct from the one of x. Since there is a unique, up to rotation, 3-coloring of the cycle with 4 vertices, we may assume that x_1 is the only vertex colored 3. Hence, if we flip the edge xx_2 then we obtain by move (I) a new Heawood triangulation (G'', e'') where x has degree 3 and so we conclude like in the previous case.

Now, we prove that $\mathcal{G}_2 = \emptyset$. For any triangulation in \mathcal{G}_2, we let C the cycle induced by the neighborhood of x. Recall that C is a four or two cycle. And we may assume that x has color 3 and C is 2-colored with colors 1 and 2. Among all elements of \mathcal{G}_2, choose one (G', e') which minimizes the number of faces of a maximal polygon $P(G')$ induced by the vertices of colors 1, 2, and 3 and which contains $x \cup C$. This means that all edges of $P(G')$ are valuated 1 except the edges of the boundary of $P(G')$ which are valuated 0. Now, flip any edge e of the boundary of $P(G')$ and so we obtain a new Heawood triangulation (G'', e'') for which either $(G'', e'') \in \mathcal{G}_2$ and G'' has a maximal polygon $P(G'')$ with number of faces smaller than $P(G')$, or x has degree 3 or 5 in G'' and so $(G'', e'') \in \mathcal{G}_1 = \emptyset$ (in this case e is an edge of C). In both cases we obtain a contradiction.

Proof of Corollary 1.4. First observe that if $c(G, e)$ is a 4-coloring then the Heawood coloring $c(G', e')$ obtained from $c(G, e)$ by applying (III) or (IV) is still a 4-coloring (not necessarily strict). For the converse, it is sufficient to observe that by Theorem 1.3 if $c(G, e)$ is a strict 4-coloring of G then we are done. Else apply once (III) or (IV) to (G, e) in order to obtain a new Heawood coloring $c(G', e')$ which is strictly 4-colored.
Proof of Corollary 1.6. By Corollary 1.4, it is sufficient to check that
\((T_0, e_0)\) satisfies the requirement and that moves (I), (II), (III), and (IV)
preserve this property.

ACKNOWLEDGMENT

We thank the anonymous referee who pointed out a little gap in the original version of the
proof of Theorem 1.3 and helped us to improve the presentation of this manuscript.

REFERENCES

1. K. Appel and W. Haken, Every planar map is four colorable. Part I. Discharging, Illinois
2. K. Appel, W. Haken, and J. Koch, Every planar map is four colorable. Part II. Reducibility,
3. S. Eliahou, Signed diagonal flips and the four color theorem, European J. Combin. 20
(1999), 641–646.
4. S. Gravier and C. Payan, Flips signés et triangulations d’un polygone, submitted for
publication.
6. L. H. Kryuchkov, The four color theorem and trees, preprint I. V. Kurchatov Institut of
Atomic Energy IAE-5537/1, Moscow, 1992.
7. R. Penrose, Applications of negative dimensional tensors, in “Combinatorial Mathematics
Sci. Paris 223 (1946), 705–707. [In French]