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1. INTRODUCTION

Let o be a field. An inverse relation is a pair of identities of the form

˛bn=C
n

k=0
cnkak

an=C
n

k=0
dnkbk ,

where ai, bi, cji, dji ¥ o (0 [ i [ j). For convenience, we let cji=dji=0, for
i > j. Usually, we assume that ak’s (resp. bk’s) are linearly independent over
a certain subfield of o which contains cnk and dnk. This independence
implies the following orthogonal property

C
.

k=0
cmkdkn=dmn, (1)

where dmn is the Kronecker delta function.



Inverse relations are frequently encountered in combinatorial problems
and have been extensively studied by Riordan [22]. Systematic and unified
methods were developed by Egorychev [6] using contour integrals and by
Krattenthaler [12] using operator methods. See also [28] for Möbius
inversion over partially ordered sets and [19] for computational aspects.
More recent work on one-dimensional inverse relations appears in [13, 21].
In this article, we propose a new approach to inverse relations. This
approach, based on inter-change of Schauder bases, is conceptually ele-
mentary. It stems from the observation that formal power series rings can
be variable-free. Traditionally, a formal power series ring is defined in
terms of variables. However, it is truly a local ring characterized by certain
additional algebraic properties free from the notion of variables. To illu-
minate this variable-free phenomenon, it is helpful to first look at vector
spaces: An n-dimensional vector space over a field o is an abelian group
with certain additional algebraic structures. Its elements, once a basis
u1, ..., un is chosen, can be represented uniquely as

C aiui,

where ai ¥ o. One knows that there is no canonical choice of basis. In a
formal power series ring, variables (i.e., regular system of parameters) play
the role as bases in vector spaces. Once variables X1, ..., Xn are chosen for a
(Krull) n-dimensional formal power series ring over a field o, every element
in this ring can be represented uniquely as

C ai1 · · · inX
i1
1 · · ·X

in
n ,

where ai1 · · · in ¥ o. As the case of vector spaces, a formal power series ring, in
its natural guise, has no canonical choice of variables. See the beginning of
Section 2 for the one-dimensional case.
Interplay of different sets of variables has combinatorial significance. Let
X1, ..., Xn and Y1, ..., Yn be two sets of variables of an n-dimensional formal
power series ring over a field o with the following relations:

Yj=C c (j)i1 · · · inX
i1
1 · · ·X

in
n (c (j)i1 · · · in ¥ o)

Xj=C d (j)i1 · · · inY
i1
1 · · ·Y

in
n (d(j)i1 · · · in ¥ o)

It is the theme of Lagrange inversion formulae to find explicit formulae of
d (j)i1 · · · in in terms of c

(j)
i1 · · · in . Such variable-free viewpoint is supported by local

cohomology residues, which provide a convenient framework to compute
the coefficients d (j)i1 · · · in , see [10].
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In this article, we focus on a one-dimensional formal power series ring R
over a field. We introduce Schauder bases, which represent elements of R
more flexible than variables do. Such generalization enables us to produce
inverse relations. Our main result in Theorem 2.1 below provides a new
characterization of inverse relations in terms of Schauder bases. The first
part of our result says: Representations of an element in R by two strictly
monotone Schauder bases give rise to an inverse relation with the orthogonal
property.
Compared with the approaches to inverse relations by the umbral cal-
culus [24, Theorem 3.1] or by the Riordan group [26, Section 4], our
approach goes further by characterizing inverse relations with the orthog-
onal property. The converse of the above statement holds, that is, every
inverse relation with the orthogonal property comes from representations of
an element in R by two strictly monotone Schauder bases.
A strictly monotone Schauder basis {gi} and an infinite lower triangular
matrix (cij) with cii ] 0 give rise to a new strictly monotone Schauder basis
{fi}. One may ask whether another infinite lower triangular matrix (dij)
with dii ] 0, together with {fi}, gives rise to {gi}. This is equivalent to the
orthogonal property (1), or in terms of matrices, equivalent to that (dij) is
the inverse of (cij). Solving (dij) from an explicitly given (cij) may lead to
interesting inverse relations. See [13] for an inverse relation obtained by an
operator method and [19, Theorem 1.7] for a characterization of (dij).
For Schauder bases to be of significant value, it is necessary to have
some technical tools for computing their coefficients. In this article, we
recall some definitions and properties of local cohomology residues, which
serve as our computing tool. Local duality is used to translate the method
in [13] to our language. Besides inverse relations, our applications of
Schauder bases include an Abel identity, a Gould identity, their analogues
and a generalization. The Abel and Gould identities were also generalized
by Sprugnoli [27] using Riordan arrays. We will examine the concept of
Riordan arrays using Schauder bases. In this article, terminology of com-
mutative algebra is used. The reader is referred to [15, Chap. IV, Sect. 9]
for a quick introduction and to [17] for further details.

2. SCHAUDER BASES

A one-dimensional formal power series ring R over a field o is a
complete local ring containing o, whose maximal ideal m is generated by
one element, and satisfying the condition that the canonical map from o to
the residue field of R is an isomorphism. The maximal ideal m of R gives
the notion of convergence of a sequence (gi) in R: a sequence (gi) is said to
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be converging to g ¥ R if and only if, for any power mn, there exists an
integer N such that for all n \N we have

gn−g ¥mn.

If X is a generator for the maximal ideal, every element g in R can be
written uniquely as a power series over o with X acting as a variable

g=C
.

i=0
aiX i (ai ¥ o)

(i.e., g=limnQ. ;n
i=0 aiX

i). In such case, we write R=o[[X]]. This
notation not only indicates that R is a one-dimensional formal power series
ring over o but also specify a variable X.
Borrowing the terminology from Banach spaces, we define Schauder
bases.

Definition 2.1. Let R be a one-dimensional formal power series ring
over a field o. A sequence (fi) of R is called a Schauder basis for R if for
every g ¥ R there exists a unique sequence (ai) … o such that

g=C
.

i=0
aifi.

We call ai the coefficient of g at fi with respect to the Schauder basis (fi).

The coefficients of representations by a Schauder basis (fi) are o-linear
in the following sense: If a ¥ o and

g1=C
.

i=0
a (1)i fi (a (1)i ¥ o),

g2=C
.

i=0
a (2)i fi (a (2)i ¥ o),

then

g1+g2=C
.

i=0
(a (1)i +a

(2)
i ) fi,

ag1=C
.

i=0
(aa(1)i ) fi.

We look at some examples of Schauder bases. Let R=o[[X]]=o[[Y]].
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Example 2.1. The sequence (X i) is a Schauder basis, which we name
an ordinary Schauder basis, or an ordinary basis for short.

Example 2.2. Given p ¥ Z, the sequence (Y i(1+X)p) is a Schauder
basis, which we name a Gould–Schauder basis, or a Gould basis for short.
See Identity 4.1 for the choice of such name.

Assume furthermore that o is of characteristic zero.

Example 2.3. The sequence (X i/i!) is a Schauder basis, which we
name an exponential Schauder basis, or an exponential basis for short.

Example 2.4. Given p ¥ o, the sequence (Y iepX) is a Schauder basis,
which we name an Abel–Schauder basis, or an Abel basis for short. See
Identity 4.1 for the choice of such name.

Example 2.5. Given p ¥ Z, the sequence (Y i(X/(eX−1))p) is a
Schauder basis, which we name a Bernoulli–Schauder basis, or a Bernoulli
basis for short.

The above examples of Schauder bases are of the type (Y iji), where
ji ¥ R=o[[Y]] is invertible. They are encountered in concrete problems
and deserve a name.

Definition 2.2. Let R be a one-dimensional formal power series ring
over a field o. Let m be the maximal ideal of R. A Schauder basis (fi) is
called strictly monotone if fi ¥m i0m i+1.

If R=o[[X]], it is easy to see that a Schauder basis (fi) is strictly
monotone if and only if it is of the form (X iji), where ji ¥ R is invertible.
The method of generating functions is a powerful tool in combinatorics.
To transform a sequence a0, a1, a2, ... in a combinatorial problem to a
power series for analytic or algebraic machineries, one usually uses the
ordinary generating function

a0+a1X+· · ·+anXn+·· ·

or the exponential generating function

a0+a1X+· · ·+an
Xn

n!
+· · · .

These two generating functions correspond to representations by the ordi-
nary basis (X i) and the exponential basis (X i/i!) respectively. The concept
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of Schauder bases suggests that generating functions may be put in a more
general context. The following theorem underlies the importance of
Schauder bases.

Theorem 2.1. Let (fi) and (gi) be two strictly monotone Schauder bases
for R with the following inter-relations:

fi=c0i g0+c1i g1+c2i g2+c3i g3+·· · (2)

gi=d0if0+d1if1+d2if2+d3if3+·· · (3)

(cji, dji ¥ o). Then the following orthogonal relation holds.

C
.

k=0
cmkdkn=dmn . (4)

Given h ¥ R represented as

h=a0f0+a1f1+a2f2+·· ·=b0 g0+b1 g1+b2 g2+·· · (5)

(aj, bj ¥ o), the following pair of identities holds.

˛bn=C
n

k=0
cnkak

an=C
n

k=0
dnkbk .

(6)

Conversely, given any pair of identities (6) with the orthogonal property (4)
and the convention cji=dji=0 for i > j, there exist strictly monotone
Schauder bases (fi) and (gi) for R and an element h ¥ R satisfying (2), (3),
and (5).

Proof. Let (fi) and (gi) be strictly monotone Schauder bases for R
with the relations (2) and (3). Then cji=dji=0 for i > j. So ;.

k=0 dkncmk is
a finite sum. We compare gn and ;.

m=0 (;.

k=0 dkncmk) gm: For any i > 0,
their images in R/m i+1 are the same as the images of

C
i

k=0
dknfk=C

i

k=0
dkn1 C

.

m=0
cmk gm 2= C

.

m=0

1 C
i

k=0
dkncmk 2 gm
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and

C
i

m=0

1 C
i

k=0
dkncmk 2 gm= C

i

m=0

1 C
.

k=0
dkncmk 2 gm.

Therefore

gn− C
.

m=0

1 C
.

k=0
dkncmk 2 gm ¥ 3

.

i=0
m i=(0).

Equating coefficients, we get

C
.

k=0
cmkdkn=dmn.

Now we compare ;.

n=0 bn gn and ;.

n=0 (;.

k=0 akcnk) gn: For any i > 0, their
images in R/m i+1 are the same as the images of

C
i

k=0
akfk=C

i

k=0
ak1 C

.

n=0
cnk gn 2=C

.

n=0

1 C
i

k=0
akcnk 2 gn

and

C
i

n=0

1 C
i

k=0
akcnk 2 gn=C

i

n=0

1 C
.

k=0
akcnk 2 gn.

Therefore

C
.

n=0
bn gn=C

.

n=0

1 C
.

k=0
akcnk 2 gn .

Equating coefficients, we get

bn=C
.

k=0
akcnk=C

n

k=0
cnkak.

Similarly, we have

an=C
n

k=0
dnkbk.

Conversely, given the inverse relation (6) with the orthogonal property (4)
and the convention cji=dji=0 for i > j, we consider the lower triangular
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matrices C=(cji)n×n and D=(dji)n×n for a fixed n ¥N. As the product of
C and D is the n×n unit matrix, we know cnn ] 0 for any n. Let

fi :=c0i+c1iX+c2iX2+c3iX3+·· · .

Then (fi) is a Schauder basis. Let

gi=X i

h=b0+b1X+b2X2+b3X3+·· · .

As in the previous paragraph, we may switch summations:

C
.

n=0
dnifn=C

.

n=0
C
.

a=0
dnicanXa=C

.

a=0
C
.

n=0
dnicanXa=gi

C
.

n=0
anfn=C

.

n=0
C
.

a=0
ancanXa=C

.

a=0
C
.

n=0
ancanXa=C

.

a=0
baXa=h. L

3. COMPUTING TECHNIQUES

Our main techniques of computation is based on local cohomology resi-
dues. We recall some definitions and properties. The reader is referred to
[9] for details.
Let R be a one-dimensional formal power series ring over a field o with
maximal ideal m. The universal finite differential module of R over o is a
finite R-module W̃R/o together with a o-derivation d: RQ W̃R/o (that is, a
o-linear map satisfying d(fg)=fd(g)+gd(f)) which is universal among
all such finite o-derivations. If R=o[[X]], then elements of W̃R/o can be
written uniquely as fdX for some f ¥ R.
Let H1m(W̃R/o) be the first local cohomology of W̃R/o supported at m. If
g ¥ R is not invertible and not zero, then there is a canonical exact sequence

W̃R/o Q (W̃R/o)g QH
1
m(W̃R/o)Q 0,

where (W̃R/o)g is the localization of W̃R/o at the multiplicatively closed set
{1, g, g2, ...}. If R=o[[X]], elements of (W̃R/o)g are of the form fdX/gn,
where f ¥ R and n ¥N. We denote the image of fdX/gn in H1m(W̃R/o) by

rfdX
gn
s
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and call it a generalized fraction. Generalized fractions satisfy the following
properties.

Proposition 3.1 (Linearity Law). For w1, w2 ¥ W̃R/o, and k1, k2 ¥ R,

rk1w1+k2w2
gn
s=k1 r

w1

gn
s+k2 r

w2

gn
s .

Proposition 3.2 (Vanishing law).

rfdX
gn
s=0

if and only if f ¥ Rgn.

Proposition 3.3 (Transformation Law). For a non-zero element h ¥ R,

rfdX
gn
s=rhfdX

hgn
s .

If R=o[[X]], the above properties imply that elements in H1m(W̃R/o)
can be written uniquely as a finite sum

C
n > 0

randX
Xn
s (an ¥ o).

So we can make the following definition.

Definition 3.1. The residue map

resX : H
1
m(W̃R/o)Q o

is defined to be the o-linear map satisfying

resX r
dX
Xn
s=˛

1, if n=1;

0, if n > 1.

What makes residue map interesting is that it is independent of the
choice of a variable. Then next theorem also explains why universal finite
differential modules are needed in our definition of residue map.
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Theorem 3.1. If R=o[[X]]=o[[Y]]. Then resX=resY.

Example 3.1. Assume that R=o[[X]] and Y=X/(1−X). Consider
the elements

w1=r
dX
X
s=rdY

Y
s ,

wn=r
dX
Xn
s=r (1+Y)

n−2 dY
Yn
s ,

where n \ 2. We see directly from the definition that resX w1=resY w1=1
and resX wn=resY wn=0 for n \ 2.

We will write resX simply as res. Generalized fractions and residues can
be extended to formal power series rings of several variables over a
complete local ring; see [8]. Inverse relations also have multidimensional
generalizations. See [2, 14, 18, 20, 25] for some recent developments.
Viewpoints and methods in this article are expected to extend naturally to
the multidimensional case.
Given an element w ¥H1m(W̃R/o), there is a o-linear map Fw from R to o
defined by fW res(fw). The kernel of Fw contains a power of m. There-
fore Fw is continuous for the m-adic topology of R and the discrete topol-
ogy of o. We denote the R-module of these continuous homomorphisms by
Homco(R, o).

Theorem 3.2 (Local Duality). The map

H1m(W̃R/o)QHom
c
o(R, o)

given by wW Fw is an isomorphism.

Now we illustrate how local cohomology residues are used for comput-
ing coefficients of a representation by a Schauder basis.

Example 3.2. Let (fi)=(X i/(1−X)p+i+1) be a Schauder basis of
o[[X]]. We want to find a representation

Xk=d0kf0+d1kf1+d2kf2+d3kf3+·· · (dnk ¥ o).

Let Y=X/(1−X). Then
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dnk=res r
Xk(1−X)p+1 dY

Yn+1
s

=res r Yk

(1+Y)p+k+1
dY

Yn+1
s

=(−1)n+k 1 p+n
p+k
2 .

Example 3.3. Let o be a field with characteristic zero and (fi)=
(X ie (p+i) X) be an Abel basis of o[[X]]. The coefficient dnk of the repre-
sentation

Xk=d0kf0+d1kf1+d2kf2+d3kf3+·· ·

is given by

dnk=res r
Xke−pXd(XeX)
(XeX)n+1
s

=res r (1+X) e
(−p−n) XdX

Xn−k+1
s

=
(−p−n)n−k

(n−k)!
+
(−p−n)n−k−1

(n−k−1)!

=
p+k
p+n

(−p−n)n−k

(n−k)!
.

The next example involves Bernoulli numbers B (n)i of order n ¥ Z, which
are rational numbers defined by

1 X
eX−1
2n=C

.

i=0

B (n)i
i!
X i;

see [16].

Example 3.4. Let o be a field with characteristic zero and (fi)=
(X i(X/(eX−1))p+i) be a Bernoulli basis of o[[X]]. The coefficient dnk of
the representation

Xk=d0kf0+d1kf1+d2kf2+d3kf3+·· ·
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is given straightforwardly by

dnk=res rX
k 1 X
eX−1
2−p d 1X X

eX−1
2

1X X
eX−1
2n+1
s

=res r2 1 XeX−12
−p−n

dX

Xn−k+1
s− res r1 XeX−12

−p−n

dX

Xn−k
s

− res r1 XeX−12
−p−n+1

dX

Xn−k+1
s

=2
B (−p−n)n−k

(n−k)!
−
B (−p−n)n−k−1

(n−k−1)!
−
B (−p−n+1)n−k

(n−k)!
.

Using the following relation

nB (n+1)i =(n−i) B (n)i −niB
(n)
i−1,

see [16, Eq. (15)], we may simplify the above expression for dnk and get

dnk=
p+k
p+n

B (−n−p)n−k

(n−k)!
.

4. INVERSE RELATIONS AND DUAL BASES

This section consists of examples of inverse relations and combinatorial
identities. Assume that R=o[[X]]. Apply Theorem 2.1 with the ordinary
basis (X i) and the Schauder basis

(fi)=1
X i

(1−X)p+i+1
2 ,

where p \ 0, we get the following inverse relation:
Inverse Relations 4.1 [22, Table 2.1, class 4].

˛bn=C
n

k=0

1 p+n
p+k
2 ak

an=C
n

k=0
(−1)n+k 1 p+n

p+k
2 bk .

214 I-CHIAU HUANG



Assume that o has characteristic zero. Apply Theorem 2.1 with the
ordinary basis (X i) and the Abel basis (fi)=(X ie (p+i) X), where p ¥N, we
get the following inverse relation:

Inverse Relations 4.2

˛bn=C
n

k=0

(k+p)n−k

(n−k)!
ak

an=C
n

k=0

p+k
p+n

(−n−p)n−k

(n−k)!
bk

Apply Theorem 2.1 with the ordinary basis (X i) and the Bernoulli basis
(fi)=(X i(X/(e

X−1))p+i), where p ¥N, we get the following inverse
relation:

Inverse Relations 4.3

˛bn=C
n

k=0

B (p+k)n−k

(n−k)!
ak

an=C
n

k=0

p+k
p+n

B (−n−p)n−k

(n−k)!
bk

Now we translate the operator method in [13] to our language. Let (cij)
be an infinite lower triangular matrix with cii ] 0. To find its inverse, let
R=o[[X]] and

fj=c0j+c1jX+c2jX2+·· · .

An infinite lower triangular matrix (dij) is the inverse of (cij) if and only if
the elements

wi :=C
i

n=0

rdindX
Xn+1
s ¥H1m(W̃R/o)

satisfy res(fjwi)=dij. If (dij) is the inverse of (cij), the elements wi form a
o-vector basis for H1m(W̃R/o). In fact,

w=C
.

i=0
res(fiw) wi

for any w ¥H1m(W̃R/o). In such case, we call (wi) the dual basis of (fi). The
dual basis defined above depends only on a strictly monotone Schauder
basis for R. It is independent of the representation R=o[[X]].
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Let U be a continuous linear operator on R (that is, a o-linear map
RQ R continuous for the m-adic topology of R). Each w ¥H1m(W̃R/o)
determines a continuous o-linear map RQ o by fW res((Uf) w). By local
duality, there exists a unique Ugw ¥H1m(W̃R/o) such that

res((Uf) w)=res(f(Ugw)).

Ug is a linear operator on H1m(W̃R/o), that is, the map wW Ugw is o-linear.

Lemma 4.1 (cf. [13]). Let (cij) and fj be as above and let wi be the dual
basis of (fi). Suppose that

Ufj=ejVfj

holds for j \ 0, where ej ¥ o satisfying ei ] ej for i ] j and U, V are continu-
ous linear operators on R. If tk is a solution of

Ugtk=ekVgtk

for k \ 0, then

res(fkVgtk) wk=Vgtk.

Proof. If i ] k, from the computation

ek res(fiVgtk)=res(fiUgtk)=res((Ufi) tk)=ei res((Vfi) tk)

=ei res(fiVgtk),

we get res(fiVgtk)=0. Therefore

Vgtk=C
.

i=0
res(fiVgtk) wi=res(fkVgtk) wk. L

Let (ai), (bi), and (ei) be sequences of elements of o such that ei ] ej if
i ] j. Let A, B, E be continuous linear operators defined by AXk=akXk,
BXk=bkXk and EXk=ekXk. Let

cnk=
<n−1
j=k(aj+ekbj)

<n
j=k+1(ej−ek)

.

(By convenience, products of the form <n−1
j=n are defined to be equal to 1.)

and fk=;.

n=0 cnkX
n. As observed in [13],

(E−XA) fk=ek(1+XB) fk
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and

tk=C
k

a=0

<k−1
j=a(aj+ekbj)

<k−1
j=a(ej−ek)

r dX
Xa+1
s

satisfies the equation

(Eg−AgX) tk=ek(1+BgX) tk.

By Lemma 4.1, we can compute the dual basis of (fi) and obtain an
inverse relation.

Inverse Relations 4.4 [13]. Assume that an+enbn ] 0 for all n.

˛bn=C
n

k=0

<n−1
j=k(aj+ekbj)

<n
j=k+1(ej−ek)

ak

an=C
n

k=0

ak+ekbk
an+enbn

<n
j=k+1(aj+enbj)
<n−1
j=k(ej−en)

bk .

This inverse relation is quite general and useful. The case ek=k is an
inverse relation obtained by Gould and Hsu [7]. The case ek=qk is
equivalent to a q-analogue of [7] obtained by Carlitz [5]. Andrews [1]
showed that the Bailey transform is equivalent to the case aj=1,
bj=−bq j, ek=qk. The case aj=aq−j−1+b2q j−1, bj=−b/q, ek=q−k+aqk

is equivalent to a transform used by Bressoud in finite forms of
Rogers–Ramanujan identities [3, 4].
Every inverse relation consists of two identities. Some of them are
interesting in their own right.

Identity 4.1. Let p, q, r be non-negative integers and j ¥ o[[X]] be an
invertible formal power series. Assume that q does not divide r. Write

jn=C
.

i=0
b (n)i X

i (b (n)i ¥ o).

Then

C
n

k=0

r
r−qk

b (r−qk)k b (p+qk)n−k =b
(p+r)
n .

Proof. Let (fi) be the Schauder basis (X ijp+iq), (gi) be the ordinary
Schauder basis (X i) and h=jp+r. We use the notation as in Theorem 2.1.
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It is easy to check that bn=b
(p+r)
n and cnk=b

(p+qk)
n−k . The identity follows

from the first equation of (6) and the computation

ak=res r
j rd(Xjq)
(Xjq)k+1
s

=res rj r−qk−q 1jq+qXjq−1 djdX2 dX
Xk+1

s

=res rj
r−qkdX
Xk+1
s+ q
r−qk

res rXdj
r−qk

Xk+1
s

=b (r−qk)k +
qk
r−qk

b (r−qk)k

=
r

r−qk
b (r−qk)k . L

This identity generalizes some classical identities. For instance, with
j=eX, we recover the Abel identity. Note that (fi) in this case is an Abel
basis.

Identity 4.2 (Abel). Let p, q, r be elements in a field o of characteristic
zero. Assume that r−qk ] 0 for all k \ 0. Then

C
n

k=0

r
r−qk

(r−qk)k

k!
(p+qk)n−k

(n−k)!
=
(p+r)n

n!
.

With j=1+X, we recover the Gould identity. Note that (fi) in this case
is a Gould basis.

Identity 4.3 (Gould). Let p, q, r ¥N. Assume that q does not divide r.
Then

C
n

k=0

r
r−qk
1 r−qk
k
21p+qk
n−k
2=1p+r

n
2 .

If j=1/(1−X), we get the following identity.

218 I-CHIAU HUANG



Identity 4.4. Let p, q, r be non-negative integers. Assume that q does not
divide r. Then

C
n

k=0

r
r−qk
1 r−qk+k−1

k
21p+qk+n−k−1

n−k
2=1p+r+n−1

n
2 .

If j=X/(eX−1), we get the following identity.

Identity 4.5. Let p, q, r ¥ Z. Assume that q does not divide r. Then

C
n

k=0

r
r−qk

B (r−qk)k

k!
B (p+qk)n−k

(n−k)!
=
B (p+r)n

n!
.

5. RIORDAN ARRAYS

The Abel and Gould identities were also generalized in [27, Theorem
3.1] using Riordan arrays. In this section, we examine the viewpoint of
Riordan arrays and compare it with that of Schauder bases. In short, a
variable in the theory of Riordan arrays is a ‘‘dummy variable’’; while
variables from the viewpoint of Schauder bases are elements in a formal
power series ring with relations.
Let o be a field. Given g ¥ o[[X]] and f in the maximal ideal m of R,
write

g(X)=a0+a1X+a2X2+·· · (ai ¥ o),

f(X)=b1X+b2X2+·· · (bi ¥ o).

We define the value of g at f with respect to X by

g(f(X)) :=a0+a1(b1X+b2X2+·· · )+a2(b1X+b2X2+·· · )2+·· · .

Let R0 be the subset of R consisting of all invertible elements. With respect
to X, for f, g ¥ R0, we define

f f g=f(X) g(Xf(X)).

It is easy to check

f f 1o=1o f f=f

f f (g f h)=(f f g) f h
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for all f, g, h ¥ R0. Given f ¥ R0, let Y=Xf, we represent 1/f as power
series in Y:

1
f
=a0+a1Y+a2Y2+·· ·+ (ai ¥ o).

In the theory of the Lagrange groups and the Riordan groups, X and Y are
treated as dummy variables. Replacing Y by X on the left hand side of the
above equation, we define (with respect to X)

f̄=a0+a1X+a2X2+·· ·+.

It was shown that

f f f̄=f̄ f f=1o.

Hence (R0, f ) is a group, which we call the Lagrange group.
Given f ¥ R0 and g ¥ R, let Y=Xf, we represent g as power series in Y:

g=b0+b1Y+b2Y2+·· ·+ (bi ¥ o).

Replacing Y by X, we define

ĝ(f)=b0+b1X+b2X2+·· ·+.

As one of the main theorems in [27], it was proved that

ĝ(f)(Xf(X))=g(X) (7)

and

g(Xf̄(X))=ĝ(f)(X). (8)

In our language, where X and Y are not dummy variables but satisfy the
relation Y=Xf(X), identities (7) and (8) are conceptually trivial: Identity
(7) simply states that the same elements ĝ(f)(Y) and g(X) are represented
in different ways. Identity (8) should be stated in the equivalent form

g(Yf̄(Y))=ĝ(f)(Y). (9)

Note that

X=Xf(X) f̄(Y)=Y f̄(Y).
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Hence identity (9) also states that the same elements ĝ(f)(Y) and g(X) are
represented in different ways.
A Riordan array is a pair (g, h), where g, h ¥ R0. Given two Riordan
arrays (g1, h1) and (g2, h2), we define

(g1, h1) f (g2, h2)=(g1(X) g2(Xh1), h1 f h2). (10)

It is straightforward to check that

(g, h) f (1o, 1o)=(1o, 1o) f (g, h)=(g, h),

((g1, h1) f (g2, h2)) f (g3, h3)=(g1, h1) f ((g2, h2) f (g3, h3)),

(g, h) f (ĝ−1(h) , h)=(ĝ−1(h) , h) f (g, h)=(1o, 1o),

for all Riordan arrays (g, h), (g1, h1), (g2, h2) and (g3, h3). Hence the set of
Riordan arrays together with the operation (10) forms a group, which we
call the Riordan group. We remark that our definition of the Riordan
group, following [27], is essentially the same as the original definition in
[26], although in slightly different guise. We remark also that the group
structure of Riordan arrays was found in [23, p. 43] in terms of Sheffer
operators using the umbral calculus.
A Riordan array (g, h) determines an infinite lower triangular matrix
(cnk), where cnk ¥ o, by the relation

g(Xh)k=C
.

n=0
cnkXn.

For instance, the Riordan array (1/(1−X), 1/(1−X)) determines the
Pascal triangle

R
1 0 0 0 · · ·

1 1 0 0 · · ·

1 2 1 0 · · ·

1 3 3 1 · · ·

x x x x z

S .
The product in the Riordan group is in fact coming from product of
matrices: Given two infinite lower triangular matrices (cn1k1 ) and (cn2k2 )
determined by Riordan arrays (g1, h1) and (g2, h2), the product
(cn1k1 )(cn2k2 ) of matrices is determined by the product (g1, h1) f (g2, h2) of
Riordan arrays.
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Given an infinite lower triangular matrix (cnk) defined by the Riordan
array (g, h) and a power series

f=a0+a1X+a2X2+·· · (ai ¥ o),

the generating functions of the column of

R
c00 0 0 0 · · ·

c10 c11 0 0 · · ·

c20 c21 c22 0 · · ·

c30 c31 c32 c33 · · ·

x x x x z

S R
a0

a1

a2

a3

x

S
is g(X) f(Xh(X)). From the viewpoint of the Riordan group, this fact with
a suitable choice of f gives rise to the following identity.

Identity 5.6 [27, Theorem 3.1]. Assume that R=o[[X]]=o[[Y]]
and g, f ¥ R are invertible. Let

g=b0+b1X+b2X2+b3X3+·· · ,

g=a0f−1g+a1f−1Yg+a2f−1Y2g+a3f−1Y3g+· · · , (11)

f−1Y ig=c0i+c1iX+c2iX2+c3iX3+·· · , (12)

where aj, bj, cji ¥ o. Then

bn=C
n

k=0
akcnk.

We interpret the above generalization in terms of Schauder bases. Equa-
tion (11) describes the element g in terms of f−1Y jg. Equation (12) gives
the relation between the ordinary basis (X i) and the Schauder basis
(f−1Y jg). So we are able to find the representation of g by the ordinary
basis (X j):

bn=res r
gdX
Xn+1
s=res r C

.

k=0
akf−1YkgdX

Xn+1
s=C

n

k=0
res rakf

−1YkgdX
Xn+1
s

=C
n

k=0
akcnk .
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