Heart Failure

TIME-RESOLVED LEFT VENTRICULAR MYOCARDIAL STRESS IN HEART FAILURE WITH REDUCED EJECTION FRACTION REVEALS A MARKED INCREASE IN LATE SYSTOLIC MYOCARDIAL LOAD

Poster Contributions
Poster Sessions, Expo North
Saturday, March 09, 2013, 10:00 a.m.-10:45 a.m.

Session Title: New Diagnostic and Imaging Strategies in Heart Failure
Abstract Category: 15. Heart Failure: Clinical
Presentation Number: 1136-308

Authors: Rahul Chandrashekhar, Scott Akers, Amin Vakilipour, Prithvi Shiva-Kumar, Philip Haines, Snigdha Jain, Hassam Saif, Walter Witschey, Victor A. Ferrari, Julio A. Chirinos, Philadelphia VA Medical Center, Philadelphia, PA, USA, University of Pennsylvania, Philadelphia, PA, USA

Background: Systolic myocardial wall stress (MWS) quantifies myocardial afterload. Despite its time-varying nature, little data exist regarding time-resolved MWS in systolic heart failure (HF).

Methods: We studied 10 subjects with systolic HF (mean LV ejection fraction=40%). We assessed time-resolved LV volume and central pressure with magnetic resonance imaging and carotid tonometry, respectively. We computed time-resolved MWS using the Arts method and compared observed MWS patterns with previously reported data from subjects with preserved systolic function (n=42).

Results: In the presence of preserved systolic function, early systolic ejection determined a change in LV geometry that sharply reduced MWS relative to pressure during mid-systole (dashed arrow, top left panel), resulting in relatively low late systolic MWS (top mid-panel) even with prominent late systolic pressure augmentation (top right panel). The typical triphasic pressure-stress relation was also observed in subjects with systolic HF, but the normal mid-systolic shift in the pressure-stress relation was blunted (dashed arrow, bottom left panel), resulting in a failure to reduce late systolic wall stress (bottom mid panel) despite little or no pressure augmentation (bottom right panel).

Conclusions: Systolic HF is associated with marked abnormalities in the loading sequence due to an intrinsically abnormal pressure-stress relation. This abnormality may promote a vicious circle of adverse LV remodeling and failure.