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Abstract

Complete spectroscopy (measurements of a complete sequence of consecutive levels) is often considered as a prerequisite t
extract fluctuation properties of spectra. It is shown how this goal can be achieved even if only a fraction of levels are observed.
The case of levels behaving as eigenvalues of random matrices, of current interest in nuclear physics, is worked out in detail.

0 2004 Elsevier B.VOpen access under CC BY license.

It is by now well established that, at least with nances of microwave cavities with adequate bound-
present statistical significance limited by the rela- aries or of quartz or metallic blocks (elastodynamics)
tively scarce amount of high quality data available, (see, for instance, contributions by A. Richter, H.J.
the statistical properties of compound nucleus reso- Stdckmann and C. Ellegaai@]).
nances with fixed quantum numbers are consistent Efforts have also been devoted to find out from
with the predictions of the Wigner—Dyson random ma- which excitation energy on, starting from the ground
trix model (Gaussian orthogonal ensemble, GQE) state (where, by analyzing the systematics of ground
It is presently understood, not in the form of math- state energies, evidence for the coexistence between
ematical theorems but rath&om numerical experi-  regular and chaotic motion has been gij@h) the
ments and from theoretical insight based on semiclas- ‘random matrix theory’ behavior hold$]. This is a
sical approaches, that the origin of this (universal) be- difficult task because, below neutron threshold, one
havior has to be found in the chaotic character of the can hardly be sure that all levels are detected. Work is
underlying classical motiof2]. Analyses have been also currently performed to investigate the statistical
mainly performed for two degrees of freedom systems properties of the fine structure of analog or other giant
(one particle in a two-dimensional box), which can resonant states, at excitation energies which may be
be also experimentally exemplified in studying reso- below or far above the neutron thresh{gd.

At different degrees, most of these studies must
face the difficulty of establishing the extent to which
 E-mail address mpato@if.usp.br (M.P. Pato). the sequences of energies analyzed are complete (no
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distort the statistical properties of the otherwise ideal serving one given level. We can therefore write the re-
(complete) sequence. It is the purpose of this Letter lation

to present some results which may be useful in this .
context. "m(E1, E2, ..., En) = f"Ry(E1, E2,..., En), (1)

The most ambitious goal may be stated as the one where small cases denote the actual observed quanti-
of detecting the location of, say, one missing level on ties and capital letters those of the complete spectrum.
an otherwise complete sequence. Dyson, in arecentre-We shall keep this notation in what follows, namely
view [7], uses information theory concepts and argues use the same letter, capital or small case, to refer to
that correlations in a sequence may provide the nec- corresponding quaities for complete or incomplete
essary redundancy from which error correcting codes sequences, respectively. For the spectral der{gity
can be constructed. At one extreme where no correla- gives
tions and therefore no redundancy are present (Pois-
sonian sequence), there is no possibility of detecting ri(k) = fRi(E). @)
one missing level. At the other extreme, a sequence of and, from(2), the unfolding procedure that maps the
equally spaced levels (picket fence), there is a maxi- levels onto a new spectrum whose density is equal to
mum redundancy and a missed level can be obviously one yields the relation
detected as a hole in the esgrum. Eigenvalues of E
random matrices, which exhibit characteristic correla-
tions, correspond to an intermediate situation between ** = / ri(E)dE = f X, ®)
these two extremes. The attempts to locate in the last —o0
case a single missed level have remained unsuccesswherek = 1,2, ... labels the levels which are ob-
ful so far. However, it should be mentioned that for served. The normalization will always be kept the
two-dimensional chaotic systems where, besides cor- same (the mean spacing) = 1 for the complete as
relations of the order of one mean spacing as describedfor incomplete sequences). This is in contrast to some
by random matrices, the presence and the role of long of the expressions given [8].
range correlations governed by the shortest periodic  One is usually interested in the-point cluster
orbits and reflected in Weyltaw describing the aver-  functionsY, (X1, Xo, ..., X,,) from which lower order
age spectral density, is well understood. It is then pos- correlations are subtracted. From their definitjh@]
sible to approximately locate, from the study of spec- and(1) we deduce
tral fluctuations, a single missed le\8].

" . X1 x2 Xp

Here we address a less ambitious question, namely y, (x1, x2, ..., x,) =Y, (—, — ..., —) (4)
to study how the spectral fluctuations of an ideally ff f
complete sequence are affected when a fraction ~ These important equations show that the correlation
(0 < f <1) of levels are detected. It will be assumed functions keep their form, the only modification is a
that the sequence is infinite and stationary and that rescaling of variables. Thus, if the fractigiis known,
the levels are dropped at random from the complete the correlation functions can be reconstructed from the
sequence (random sampling). The last assumptionpartially observed spectrum.
is presumably justified when observing compound It is well known that the number variancg®(L)
nucleus resonances with limited detection sensitivity. (variance of the number of levels contained in an in-
Indeed, in random matrix theory level positions and terval of lengthL) and the Dyson—Mehta-statistics
widths are uncorrelated, a feature which is confirmed (least square deviation, in an interval of length
by the analysis of experimental data. of the actual staircase counting function from its lin-

We start considering the-point correlation func- ear approximation) are related to the two-point cluster
tions R, (E1, Eo, ..., E,) that give the joint probabil- ~ function througH10]
ity density of finding levels located around each of the
valueskEy, E», ..., E,. For the incomplete sequence
these functions keep their form and they are only re-

L
>(L)=L— 2/(L —x)Y2(x)dx, (5)
duced by a factor” since f is the probability of ob- 0
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L
AL = £ 1/(L =
=15 1504 .
0

X (2L2 —9xL — 3x2)Y2(x)dx.

From(4) it follows immediately that

o?(L)=(1— )L+ f222(§) ®)
and
_a-nLt oAk
s(L)=(@1 f)15+f A<f)- )
Notice the appearance of a linear term in both equa-

tions, if f < 1.

Another set of statistical measures are i, s)
functions that give the probabilities of findingevels,
withn =0,1,2,..., inside an interval of lengthk. If
for the complete spectrum they are given By, s),
then their expressions if only a fractighof levels is

observed is
e(n s)=iLf”(l—f)k”E(k i) (8)
’ = nlk —n)! )

This follows from the fact that + f is the proba-
bility that one level is missedf that it is not and
k!/n!(k — n)! counts the number of wayis— n points

can be removed frorh points. Frone(n, s), the spac-
ing distributions p(n, s), the probability density of
finding n levels @ =0, 1,2,...) between two given
levels separated by a distangecan be derived using
the relation

d?
P(n,s):szzo(n—Hl)E(k,s); (9)
one obtains

- k! n k—n S
p(n,s)zgmf ) P(k,;).

(10)

For the nearest neighbor distribution (NND), i.e.,
p(s) = p(0,s) (10) becomes

> N
p(s) :Z(l—f)kP<k, ?).

k=0

11)

173

The equations derived above imply that the general
relation

oo

y2(x) =1 p(n,x)
n=0

is fulfilled, as it should.

Expression(11) was first proposed as amnsatz
in Ref. [11], and in Ref.[9] it has been shown that
the coefficientsf(1 — f)¥ maximize the Shannon
entropy with constraints appropriately defined. Here
it is obtained in a direct way.

We first apply, as a check, the previous equations
to a Poissonian spectrum of uncorrelated levels in
which case they must remain invariant (they should not
depend ory). If, for example, we substitute i&q. (8)
the expression

n

E(n,s)= % exp(—s) (12)

for the E-functions of a Poisson sequence, one obtains

oo

k!
e(n, 5) = kZ 2k —n)!

) )

X JEN—
=E(n,s).

A

(13)

It follows that any other measure derived from the
E(n,s) functions will also remain invariant. Since
Y2(X1, X2, ..., X,) =0, then-point cluster functions
of the incomplete sequence also vanish and all other
measures derived from them also remain invariant.
Before considering GOE spectra with a fraction of
observed levels, let us first recall some of the GOE
expressions [ = 1) to be used10]. The two-point
cluster function reads

- 2
Ya(x) = [S'n(”)} — [Si(rx) — me)]
" [cos(nx) 3 Sin(nx)]’ (14)
TX (7 x)?

where S{zx) is the sine-integral and(x) = +1/2 if
x>0o0rx <0ande() =0 if x =0. The number
varianceX2(L) is given by

2,y _ 2 1 i
z (L)——nz[ln(an)+y+1]_Z+0(L ).
(15)
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wherey = 0.577... is Euler’s constant and tha- 10 ' ' ' '
statistics is given by
1 5 1
A(L)=—|In2rL e LY. 08
(L) nz[n( T )+y+4] 8+0( )
(16)
The NND distribution is well approximated by the 06
Wigner surmise (X 2 matrices)
P05 = Tsexe -T2 '
P(s) = P(0,s) = 2sexp( 4s ) an , 04
The next to nearest neighbor distributidh(1, s) is 2
given by the NND of the symplectic ensemble which
again is well approximated by thex22 matrix result 0.2
8 [4)\° 1652 i
PLs)==—=(=]) s*exp| —— 18
0=35(5) oo %) W
(care has been take to insu¢® = 2). The higher
(k =2,3,...) spacing distributionsP (k, s) are well
approximated by their (Gaussian) asymptotic form, -0.2 : L : L

centered at + 1 and variance¥ (k) given by[12]
x/f

Fig. 1. The two-level cluster functiory,. Full line: Egs. (4) and (14)
Points: obtained with numerical simulation for different values of
the fractionf of levels observed.

V2(k)~ %L =k) — é. (19)

We apply now the above expressions to GOE spectra
when only a fractiory of levels is observed. OFrig. 1
is displayed for different values of the functionY>,
illustrating the scaling behavidtq. (4)using(14).
By comparingEq. (6) with (15) and (7) with
(16) one immediately sees one major effect of the . ;
\ .. tinuous variable
incompleteness of a sequence. Instead of a logarithmic
increase of the number variance or of the Dyson— X X s
p)= Y L-kpP k=
k=0

form. Let us first separate the firkt terms in the sum
and approximate the rest (the infinite sum from K
to k = 00) by an integral in whiclt is treated as a con-

Mehta statistic { = 1), one has a linear increase for
f < 1ofslope(l— f)or(1— f)/15, respectively.

Consider finally p(s), the NND very often dis- dk |
cussed in the literature. It is given Ky1), (17), (18), + / T— EXP[k nad-r
(19). The range of the argument determines the num- K 2m VA(k)
ber of terms to be included ifL1). The slope at the 1 s 2
origin given by the first term if11)is increased by a - W(k)<? —k— ) } (20)

factor 1/ f with respect to the GOE value. Let us also
mention that, in factzqg. (11)was already used to ana-
lyze high quality data 038U neutron resonancés3]
and of*8Ti proton resonancef]. It was concluded
that a fraction of about 10% of the resonances is miss- 1 s 2
ing in both cases and that the correction is important £ (k) = —kIn(1— f) + 220 (7 —k— )
in investigating the parity dependence of nuclear level 2
densitieq14]. = Fks) +17, (21)

It is convenient, in particular to exhibit the asymp- where kg, the stationary point, is the root of the
totic behavior ofp(s), to rewriteEqg. (11)in a different equationF’(k) = 0. This transcendent equation can

A steepest descent approximation to the integral can
be worked out by mapping the exponent in the
integrand onto a parabola as
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be solved approximately if one considers the variance
V2(k) as a slowly varying function of its argument, in

. . 0.8 - —
which case one can write

S s

ks==—1+ Vz(——l) In(1— £). (22) 067
f f 1

Replacing then the coefficient/ /2 V2(k)(dk/dt)

by its value at the stationary point, we obtain the

closed expression

p(s)

0.4

0.2+

k=K-1

L s 0.0 —t—t
p&)= Y (1-1) P(k, —) ] \

~ / | RN

+ % exp — F (ky)|[1 — erf(zy)]. (23)
where 2
o VFE —Fk), forks <K, 24)
T =VF(K) = F(ky), fork,>K.
In the asymptotic regions/f large, (23) takes the
simple expression

~ 1 el Sina 25 S

e e FLCEN (25)

. . . L . Fig. 2. Nearest neighbor spacing distributipis) for two values
illustrating that the spacing distribution approaches a of f. Fullline: theoryEqg. (11) or (23) Dashed line: Wigner surmise

Poisson distribution ag tends to zero. We have there-  gq. (17) Dotted line: asymptotic behavior as given Ey. (25)
fore a family of NND distributions, parametrized by Histograms: numerical simulation.

the fractionf of the observed levels, that interpolates

between the GOE and the Poisson statistics.

In Fig. 2 comparison is made with numerical let us emphasize that the linear increase of the number
simulations. It can be seen that fgr = 0.90 the variance and of theA-statistics accompanied by an
asymptotic regimé=q. (25)is not yet reached in the  exponential decrease of the NND can be a signature of
range considered whereas fgr= 0.50 it is already the incompleteness of the spectrum. It is also possible
reached fos = 2. in some cases to obtain independent complementary

In conclusion, we have shown how the problem of information. In the case discussed here the analysis of
missing, at random, a fraction of levels of a correlated resonance intensitig9] may provide an independent
spectrum can be solved. From the observation of an information, to be crosschecked with the results of
incomplete spectrum the results presented here havespectral fluctuations.

a twofold application: (i) if the missing fraction is Some final remarks are in order: (i) a straightfor-
known, one can recover the statistical properties of ward extension of the present Letter can be performed
the complete spectrum, (i) if the statistical nature in order to include effects not of missed but of spu-
of the complete spectrum is known, an estimate rious levels; (ii) in order to extract parameters from
of the fraction of missed levels can be obtained. the data, effects due to the finiteness of experimen-
This may at first sight appear as too constraining. tal samples must be added; (iii) with the advent of the
Remember, however, that one of the first concerns in neutron nTOF facility at CERNIL5] a new generation

a given experimental setup is to have the efficiency of measurements of compound nucleus resonances is
of the detectors under cant, without which little likely to take place, for which the methods discussed
statistically significant can be extracted. In this respect here may be particularly adapted; (iv) besides its prac-
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tical interest, the one parametgf)(family interpolat-
ing spectral fluctuations between Wigner-Dyson and
Poissonian correlations is interesting in its own.
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