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We suggest that the solution to the cosmological vacuum energy puzzle is linked to the infrared sector
of the effective theory of gravity interacting with standard model fields, with QCD fields specifically.
We work in the framework of low energy quantum gravity as an effective field theory. In particular,
we compute the vacuum energy in terms of QCD parameters and the Hubble constant H such that the
vacuum energy is εvac ∼ H · mq〈q̄q〉/mη′ ∼ (3.6 · 10−3 eV)4, which is amazingly close to the observed
value today. The QCD ghost (responsible for the solution of the U (1)A problem) plays a crucial rôle
in the computation of the vacuum energy, because the ghost’s properties at very large but finite
distances slightly deviate (as ∼ H/ΛQCD) from their infinite volume Minkowski values. Another important
prediction of this framework states that the vacuum energy owes its existence to the asymmetry of the
cosmos. Indeed, this effect is a direct consequence of the embedding of our Universe on a non-trivial
manifold such as a torus with (slightly) different linear sizes. Such a violation of cosmological isotropy is
apparently indeed supported by WMAP, and will be confirmed (or ruled out) by future PLANCK data.

© 2010 Elsevier B.V. Open access under CC BY license.
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1. Introduction

Fairly thought of as one of the most intricate and puzzling
problems in modern physics is that of the present day acceler-
ation of the Universe [1–3], (see also [4,5] for more up-to-date
references). Observational results tell us that the Universe is per-
meated with an unknown form of energy density which makes
up for about 75% of the total energy density, which appears to be
exactly the critical ratio for which the three-dimensional spatial
curvature is zero. It is customary to associate the “dark” energy
density with vacuum fluctuations, whose energy density would be
proportional to the fourth power of the cutoff scale, associated to
the highest energy wave modes, at which the underlying theory
breaks down. If this argument were true, we would be faced with
a disagreement between theory and observation varying between
40 to 120 orders of magnitude.

This Letter wants to tackle the problem from an upside down
perspective. More precisely, our guiding philosophy [6] is that
gravitation cannot be a truly fundamental interaction, but rather
it is a low energy effective interaction. In such a case, the corre-
sponding gravitons should be treated as quasiparticles which do
not feel all the microscopic degrees of freedom, but rather are
sensitive to the “relevant excitations” only. We note that such a
viewpoint represents a standard effective Lagrangian approach in
all other fields of physics such as condensed matter physics, atomic
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physics, molecular physics, particle physics. We should say that
this philosophy is neither revolutionary nor new, rather, it has
been discussed previously in the literature, see some relatively re-
cent papers [7–9] and references therein.

If we accept the framework of the effective quantum field the-
ory for gravity, than the basic problem of why the cosmological
constant is 120 orders of magnitude smaller than its “natural”
Plank scale M4

Pl is replaced by a fundamentally different questions:
what is the relevant scale which enters the effective theory of
gravitation? How does this scale appear in the effective quantum
field theory for gravity? This effective scale obviously has nothing
to do with the cutoff ultraviolet (UV) scale MPl; instead, the rel-
evant effective scale must appear as a result of a subtraction at
which some infrared (IR) scale enters the physics.

According to this logic, it is quite natural to define the “renor-
malised cosmological constant” to be zero in Minkowski vacuum
wherein the Einstein equations are automatically satisfied as the
Ricci tensor identically vanishes in flat space (see the discussion
after Eq. (8)). Thus, the energy–momentum tensor in combination
with this “bare cosmological constant” must also vanish at this
specific “point of normalisation” to satisfy the Einstein equations.
With this definition the effective QFT of gravity has a predictive
power. In particular, once this procedure is performed, it predicts
the behaviour of the system in any non-trivial geometry of the
spacetime. From this definition it is quite obvious that the “renor-
malised energy density” must be proportional to the deviation
from Minkowski spacetime geometry.

This effect can therefore be understood as a Casimir type of
vacuum energy. Notice that the usual Casimir energies (e.g., from
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photons) are all typically irrelevant in understanding the observed
vacuum energy, for they scale as (L2d2)−1 ∼ H4 where d is the dis-
tance between plates, L is the size of the plates and H the Hubble
parameter.

2. The mechanism

With this big picture in mind, it must be clear that the any
information related to possible deviations from R

4 flat spacetime
could manifest itself in local observables only when there are
strictly massless degrees of freedom which can propagate at very
large distances ∼ H−1. It is well known that if the correspond-
ing massless degrees of freedom are free, not interacting fields,
they contribute to the energy–momentum tensor as 〈T μ

μ 〉 ∼ H4 as
a result of gravitational anomaly [10]. This is an exceedingly small
contribution which can be neglected for all practical purposes.

Our crucial observation is that while naïvely all QCD degrees of
freedom can propagate only to very short distances Λ−1

QCD, there is
a unique (unphysical) degree of freedom which is exactly massless
and can propagate to arbitrary large distances. This is the justly
celebrated Veneziano ghost [11], which is analogous to the Kogut–
Susskind (KS) ghost [12] in the Schwinger model [13]. Indeed,
despite its being unphysical (and defined with ghost commutation
relations) it leads to physically observable consequences: it plays
a crucial rôle in explaining the value of the η′ mass as a result of
the mixing between the “would be” Nambu–Goldstone (NG) boson
and the ghost itself. We note that this mechanism does not violate
unitarity as discussed in details in the 2d example [12]. Nowadays
this mechanism is considered as the standard Witten–Veneziano
resolution of the famous U (1)A problem [11,14].

The key element of their proposal, which is of chief importance
in our discussion, is the topological susceptibility χ defined as fol-
lows,

χ ≡ i

∫
dx

〈
0
∣∣T {

Q (x), Q (0)
}∣∣0〉

,

Q ≡ αs

16π
εμνρσ Ga

μνGa
ρσ ≡ αs

8π
Ga

μν G̃μνa ≡ ∂μKμ,

Kμ ≡ g2

16π2
εμνλσ Aa

ν

(
∂λ Aa

σ + g

3
f abc Ab

λ Ac
σ

)
, (1)

where Aa
μ are the conventional QCD color gluon fields and Q

is the topological charge density, and αs = g2/4π . The standard
Witten–Veneziano solution of the U (1)A problem is based on
the assumption (confirmed by numerous lattice computations, see
e.g. the recent review paper [15] and references therein) that χ
does not vanish despite of the fact that Q is a total derivative
Q = ∂μK μ . It implies that there is an unphysical pole at zero mo-
mentum in the correlation function of Kμ , similar to the KS ghost
in the Schwinger model [12].

As we argue below, the existence of this pole is protected,
while the corresponding ghost’s matrix elements may slightly de-
viate from their Minkowski values when the theory is defined on a
large but finite manifold. As a result, the topological susceptibility
χ on a finite manifold such as a torus is slightly different from its
Minkowski value. Such a deviation in χ will be eventually trans-
lated into energy density εvac(θ) as the topological susceptibility is
directly related to it [14],

χ = −∂2εvac(θ)

∂θ2

∣∣∣∣
θ=0

. (2)

As last step, we recover the θ -dependent portion of the vacuum
energy and its deviation from R

4 flat space: this, in our setup, by
definition, is the cosmological constant ρΛ .
In short, the Veneziano ghost which solves the U (1)A problem
in QCD is also responsible for a slight mismatch in energy den-
sity between a finite manifold of size L ∼ H−1 and Minkowski R

4

space, such that ρΛ ∼ HΛ3
QCD ∼ (10−3 eV)4. Notice that the ap-

pearance of the QCD scale could shed some light on the “cosmic
coincidence” problem, as it may be the scale at which dark matter
forms [16].

3. Dark energy from the Veneziano ghost

We begin by reviewing the solution of the U (1)A problem as
put forward by Veneziano [11]. Let us consider gluodynamics with-
out quarks where, at large number of colours Nc , the correlation
function (1) is saturated by the Veneziano ghost with matrix ele-
ments defined as 〈0|Kμ|ghost〉 = λYMεμ , such that

lim
q→0

i

∫
dx eiqx〈0∣∣T {

Q (x), Q (0)
}∣∣0〉 = −λ2

YM
gμνqμqν

q2
, (3)

where we introduce the ghost’s propagator +i gμν/q2. An impor-
tant remark here is that the propagator has positive sign (it is a
ghost), which results in the negative sign in Eq. (3) in contrast with
the expected contributions from conventional particles. This nega-
tive sign, as is known, is at the core of the solution of the U (1)A

problem [11,14]. Notice that the correlation function (3) is sen-
sitive to arbitrary large distances; moreover, the existence of the
pole is protected by the topological nature of Q , as Eq. (1) requires.
It is because of these properties that, when the system defined in
a very large but finite manifold, with typical size L ∼ H−1, a differ-
ence from Minkowski space can arise. We do not make any specific
assumptions on the topological nature of the manifold, on whether
it is a 4-torus or any other compact manifold, we only assume that
there is at least one compact coordinate with size L � H−1, as ob-
servational constraints require [17,18].

Now we introduce a single light quark with mass mq (this con-
struction, as is known, can be easily generalised to arbitrary num-
ber of quark flavours [11]). We define the corresponding η′ matrix

elements as 〈0|Kμ|η′〉 = i
λη′√

Nc
qμ such that

lim
q→0

i

∫
dx eiqx〈0∣∣T {

Q (x), Q (0)
}∣∣0〉

= −λ2
YM

[
1 +

λ2
η′/Nc

(q2 − m2
0)

+ · · ·
]

= − λ2
YM(q2 − m2

0)

(q2 − m2
0 − λ2

η′/Nc)
, (4)

where m2
0 ∼ mq is the mass of the “would be NG particle” if the

ghost’s contribution is ignored, while m2
η′ = m2

0 + λ2
η′/Nc is the

mass of the physical η′ field. One can easily check that in the
chiral limit mq = 0 the topological susceptibility χ ∼ λ2

YMq2 → 0
vanishes as it should for massless quarks. One can also check that
the relevant Ward identity (WI) for QCD with light quarks

χ ≡ i

∫
dx

〈
0
∣∣T {

Q (x), Q (0)
}∣∣0〉 = mq〈q̄q〉 + O

(
m2

q

)
, (5)

is also satisfied because m2
0 ∼ mq .

Finally, the famous Witten–Veneziano relation 4λ2
YM = f 2

πm2
η′

can be obtained by expressing m2
0 in terms of the chiral conden-

sate, m2
0 f 2

π = −4mq〈q̄q〉. We want to emphasise that the sign in (4)
remains negative for q2 = 0, but its absolute value is drastically re-
duced in comparison with the pure YM case (3) as a result of the
cancellation of the negative contribution from the Veneziano ghost
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with the positive one from the physical “would be the NG” state.
The cancellation is exact for mq = 0, but a small negative contribu-
tion remains for non-vanishing mq 
= 0 as required by the WI (5).

For our following discussions it is instructive to represent the
correlation function (4) in coordinate space,

i
〈
T
{

Q (x), Q (0)
}〉 = −λ2

YM

[
δ4(x) −

λ2
η′ Dc(mη′ x)

Nc

]
, (6)

where Dc(mη′ x) is the Green’s function of a free massive particle
with standard normalisation m2

η′
∫

dx Dc(mη′ x) = 1. In this expres-

sion the δ4(x) represents the ghost’s contribution while the term
proportional to Dc(mη′ x) represents the η′ contribution. In such a
form the correlation function (6) is analogous to the known ex-
act result of the 2d Schwinger model, where the corresponding
generalisation to a curved and/or topologically non-trivial manifold
can be performed and the relevant lessons for the 4d case can be
learnt [19]. We do not assume that Eq. (6) is the exact expression
for i〈T {Q (x), Q (0)}〉 in QCD; however, we do assume that it grasps
all the important features of this correlation function. In particular,
it satisfies the WI (5).

Our next step is to study the corresponding Veneziano ghost’s
contribution to the topological susceptibility and vacuum energy
in curved space and on a manifold with a boundary such as torus,
when at least one dimension is large but compact [17,18]. In what
follows we will heavily rely on the results of our accompanying
paper on the 2d Schwinger model [19], where the ghost’s con-
tribution to the vacuum energy on a non-trivial manifold can be
analytically calculated.

As we mentioned above, a deviation from infinite Minkowski
flat space may only occur if a true massless degrees of freedom
(which can propagate to arbitrary large distances) does exist in the
system. We do not have any physical massless degrees of freedom
in QCD or in the massive Schwinger model (it is the QFT of a sin-
gle scalar massive particle). Our main point here that in both cases
(QCD and Schwinger model) the corresponding ghost field, despite
its being unphysical and unobservable as an asymptotic state, may
nevertheless contribute to physically observable parameters as the
solution of the U (1)A problem (reviewed above) explicitly demon-
strates.

The main assumption here is that the correlation function (6),
defined on a topologically non-trivial manifold such as torus, has
this same structure. Of course some appropriate changes, such as
the replacement of the Green’s function of free massive particle
Dc(mη′ x) in Eq. (6) by that defined on a finite on the new man-
ifold, are necessary. The δ4 function in Eq. (6) is defined on R

4

and is also to be replaced by its counterpart defined on the same
non-trivial finite manifold. This argument is supported by the fact
that this generalisation saturates the WI with the Veneziano ghost.
What is more important is that this assumption can be explic-
itly tested in the 2d Schwinger model [19], where it is shown
that the effects of the embedding in compact space can be mim-
icked by the structure (6), which remains thus untouched, with
the only difference that the corresponding ghost’s matrix elements
〈0|Kμ|ghost〉′ = λ′

YMεμ on a finite manifold sightly differ from its
Minkowski values: (λ′

YM − λYM) ∼ 1/L.
The key point we are making here is that the corrections due

to the very large but finite size L of the manifold are small,
(λ′

YM − λYM) ∼ 1/L ∼ H but not exponentially small, exp(−L), as
one could naïvely anticipate for any QFT where all physical de-
grees of freedom are massive. We parametrise this departure from
flat Minkowski space with a dimensionless coefficient of order one
as follows: �λYM = (λ′

YM − λYM) = −c(H/mη′ )λYM , where �A =
AL − A is defined as the difference between the values of A on a
large torus and Minkowski space. The sign of c in general could
be positive or negative. This is our basic ingredient, and it is well
grounded on the explicit computations for the akin 2d Schwinger
model [19].

To be more concrete, as the WI shows (5) the deviation in the
topological susceptibility �χ is related to that of the chiral con-
densate �〈q̄q〉. The corresponding exact 2d computation indeed
demonstrates that the magnitude of the chiral condensate on a
large torus of size L slightly changes from its infinite Minkowski
value as �〈q̄q〉 = 〈q̄q〉 π

Lmη′ (
1
|τ | − 1

τ0
), where τ = τ1 + iτ0 is the

Teichmüller parameter for the torus. This formula exhibits the lin-
ear term so intensely sought after: despite the fact that, due to
the theory containing only a massive degree of freedom, one ex-
pects that this correction should be exponentially small, in fact,
the modification is linear (Lmη′)−1. This result comes from the
ghost’s contribution, which is very sensitive to the specific bound-
ary conditions at very large distances. We cannot perform a similar
explicit analytical computation in the 4d case. However, the pres-
ence of the Veneziano ghost suggests that the scenario would be
very similar to what we observed in the Schwinger model.

Now we want to demonstrate that the small correction we have
just obtained is translated into extra energy density when quantis-
ing on the torus. The sign of ρΛ is correlated with the sign of the
ghost’s contribution to the topological susceptibility. To be precise,
from Eqs. (2), (4), (5) we arrive at

�

[
∂2εvac(θ)

∂θ2

∣∣∣∣
θ=0

]
= −�χ = �

λ2
YMm2

0

(m2
0 + λ2

η′/Nc)

� −c · 2H

mη′
· λ2

YMm2
0

(m2
0 + λ2

η′/Nc)

� −c · 2H

mη′
· ∣∣mq〈q̄q〉∣∣ < 0. (7)

The θ -dependent portion of vacuum energy at θ � 1 is well
known, and for N f quarks with equal masses is given by εvac(θ) =
−N f |mq〈q̄q〉| cos(θ/N f ) [20,21], such that ∂2

θ εvac = −εvac/N f (see
also the generalisation for finite Nc and unequal N f masses in
[22]). Therefore, our relation (7) for N f = 1 can be written in the
following final form,

ρΛ ≡ �εvac = c · 2H

mη′
· ∣∣mq〈q̄q〉∣∣ ∼ c

(
3.6 · 10−3 eV

)4
, (8)

to be compared with the observational value ρΛ = (2.3 ·10−3 eV)4.
The similarity in magnitude between these two values is very en-
couraging. It is also important to notice that the non-vanishing
result for ρΛ is parametrically proportional to mq , and only oc-
curs if the θ -dependence is non-trivial. In particular, in the chiral
limit mq = 0 when all θ -dependence is gone from every physical
observable, the effect under consideration (8) also identically van-
ishes. The same phenomenon can be explicitly seen in 2d massless
Schwinger model [19]. Such a feature can be easily understood if
one recalls that the starting point of the calculation is based on
the ghost’s contribution to the correlation functions for the oper-
ators K μ and Q = ∂μK μ which are intimately coupled to θ , the
ghost being related to this gapless excitation (it represents its ex-
tra generalised degree of freedom).

Let us also point out that the result (8) is based on our under-
standing of the ghost’s dynamics: it can be analytically computed
in the 2d Schwinger model and hopefully it can be tested in 4d
QCD using lattice QCD computations. More than that, the effective
Lagrangian describing 4d QCD chiral dynamics turns out to be ex-
actly the same as that of 2d QED [23]. Finally, this contribution to
the vacuum energy is computed using QFT techniques in a static
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non-expanding universe; as it stands, it cannot be used for study-
ing its evolution with the expansion of the universe (in order to
do so one needs to know the dynamics of the ghost field coupled
to gravity on a finite manifold [23]).

A final comment on our definition (or prescription) for the
physical vacuum energy. As we have discussed in the introduc-
tion, we define the observable vacuum energy as the differential
stress tensor between infinite Minkowski and finite compact space-
time. Therefore, with this prescription, all the usual contributions
such as gluon condensates, or the condensate from the Higgs field,
etc., will cancel out in the subtraction as they appear with almost
equal magnitude in both compact size L and non-compact mani-
folds. The relevant difference will behave as exp(−mL) due to their
massiveness and can be safely neglected. The Veneziano ghost’s
contribution is unique in all respects: its masslessness is protected
and is therefore the only field linearly sensible to the global topol-
ogy.

4. Conclusion

The main result of the present study is that the QCD ghost,
which solves the U (1)A problem, contributes a non-standard
Casimir-type term to the vacuum energy of the confined phase
of 4d QCD. This effect is interesting in itself and deserves to be
looked for in dedicated numerical approaches. We therefore urge
the lattice community to undertake searches for a topological sus-
ceptibility which is sensitive to the boundary conditions, with
deviation from its asymptotic value decaying only as 1/L in spite
of the fact that all physical degrees of freedom in QCD are massive.

We do not claim that the ghost field becomes a propagating
degree of freedom capable to produce a Casimir effect. Rather,
we argue that the topological properties of 2d QED and 4d QCD
are very similar as both theories are described by the same effec-
tive Kogut–Susskind Lagrangian. In addition, they also both support
the construction of the θ vacuum state resulting from large gauge
transformations. The description in terms of the ghost is a con-
venient way to account for such kind of physics hidden in the
non-trivial boundary conditions.

There is an immediate application to the cosmological con-
stant problem, which the Veneziano pole would be essentially a
source for. This is due to the fact that the ghost’s properties at
very large distances on a topologically non-trivial manifold slightly
differ from its Minkowski ones as (H/ΛQCD). Explicit and exact an-
alytic results in the 2d Schwinger model [19] support our claim.
Essentially we claim that the dark energy ρΛ in principle can be
studied by doing numerical lattice QCD computations by analysing
the L dependence of the topological susceptibility.

Another important consequence of this proposal is the observa-
tion that if the cosmological constant ρΛ indeed arises from the
finiteness of the torus we live in, than the corresponding topologi-
cal structure on the scale 1/L ∼ H can be already probed using the
CMB [17,18]. Our original additional statement here is that dark
energy and the topological structure of the Universe are intimately
linked one another, and we predict that there must be an asym-
metry in the CMB if the cosmological constant ρΛ is explained by
the mechanism suggested in this Letter where a preferred direc-
tion is determined by the position and the structure of a compact
manifold with typical size L ∼ H−1. In fact, WMAP data apparently
has been pointing towards such kind of asymmetry for quite some
time, see the recent paper [24] and references therein. Hopefully,
PLANCK will finally settle the issue in the nearest future, and we
have some specific suggestions on how this proposal can be tested
[25].

Acknowledgements

We thank P. Naselsky for discussions on the observed asymme-
try in the CMB, D. Scott for valuable conversations, A. Starobinsky
for explaining his model [18], and G. Volovik for correspondence.
This research was supported in part by the Natural Sciences and
Engineering Research Council of Canada.

References

[1] D.N. Spergel, et al., WMAP Collaboration, Astrophys. J. Suppl. 148 (2003) 175,
arXiv:astro-ph/0302209.

[2] A.G. Riess, et al., Supernova Search Team Collaboration, Astron. J. 116 (1998)
1009, arXiv:astro-ph/9805201.

[3] S. Perlmutter, et al., Supernova Cosmology Project Collaboration, Astrophys.
J. 517 (1999) 565, arXiv:astro-ph/9812133.

[4] E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15 (2006) 1753,
arXiv:hep-th/0603057.

[5] S. Sarkar, Gen. Rel. Grav. 40 (2008) 269, arXiv:0710.5307 [astro-ph].
[6] E.C. Thomas, F.R. Urban, A.R. Zhitnitsky, JHEP 0908 (2009) 043, arXiv:0904.3779

[gr-qc].
[7] J. Bjorken, arXiv:hep-th/0111196.
[8] R. Schutzhold, Phys. Rev. Lett. 89 (2002) 081302.
[9] F.R. Klinkhamer, G.E. Volovik, Phys. Rev. D 80 (2009) 083001, arXiv:0905.1919

[astro-ph.CO].
[10] N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Univ.

Press, Cambridge, UK, 1982, 340 p..
[11] G. Veneziano, Nucl. Phys. B 159 (1979) 213.
[12] J.B. Kogut, L. Susskind, Phys. Rev. D 11 (1975) 3594.
[13] J.S. Schwinger, Phys. Rev. 128 (1962) 2425.
[14] E. Witten, Nucl. Phys. B 156 (1979) 269.
[15] E. Vicari, H. Panagopoulos, Phys. Rep. 470 (2009) 93, arXiv:0803.1593 [hep-th].
[16] M.M. Forbes, A.R. Zhitnitsky, Phys. Rev. D 78 (2008) 083505, arXiv:0802.3830

[astro-ph].
[17] D. Stevens, D. Scott, J. Silk, Phys. Rev. Lett. 71 (1993) 20.
[18] A.A. Starobinsky, JETP Lett. 57 (1993) 622, arXiv:gr-qc/9305019.
[19] F.R. Urban, A.R. Zhitnitsky, Phys. Rev. D 80 (2009) 063001, arXiv:0906.2165

[hep-th].
[20] E. Witten, Annals Phys. 128 (1980) 363.
[21] P. Di Vecchia, G. Veneziano, Nucl. Phys. B 171 (1980) 253.
[22] I. Halperin, A.R. Zhitnitsky, Phys. Rev. Lett. 81 (1998) 4071, arXiv:hep-ph/

9803301;
I. Halperin, A.R. Zhitnitsky, Phys. Rev. D 58 (1998) 054016, hep-ph/9711398.

[23] F.R. Urban, A.R. Zhitnitsky, arXiv:0909.2684 [astro-ph.CO].
[24] F.K. Hansen, A.J. Banday, K.M. Gorski, H.K. Eriksen, P.B. Lilje, Astrophys. J. 704

(2009) 1448, arXiv:0812.3795 [astro-ph].
[25] F.R. Urban, A.R. Zhitnitsky, JCAP 0909 (2009) 018, arXiv:0906.3546 [astro-

ph.CO].


	The cosmological constant from the QCD Veneziano ghost
	Introduction
	The mechanism
	Dark energy from the Veneziano ghost
	Conclusion
	Acknowledgements
	References


