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1. Introduction
1.1. Motivation: Deformations of dg categories

The infinitesimal deformation theory of abelian categories and their Hochschild cohomology have recently been
established by Lowen and Van den Bergh [32,31]. This theory is motivated by non-commutative algebraic geometry and
in particular the need to give a theoretical framework for the ad hoc arguments used in the construction of important
classes of non-commutative projective varieties. Further development of this theory requires a good understanding of the
deformation theory of ‘non-commutative schemes’. These can be modeled by differential graded (=dg) categories [7,42,28,
29], and this is the motivation for this paper. The initial observation is that the full Hochschild complex of a dg algebra does
not parametrize the deformations in the category of dg algebras but rather in the category of curved A,,-algebras, which we
also call Ay, o-algebras (cf. [27]). Key examples of these are curved dg algebras, i.e. graded algebras endowed with a degree
one derivation whose square is not necessarily zero but equals the commutator with a given element of degree 2. These
algebras were introduced by Positsel’skii [36], who showed that they occur in nature when one generalizes Koszul duality
to non-homogeneous quadratic algebras.

Ao.oor-algebras appear in the work of Getzler and Jones [11] and the work of Getzler, Jones and Petrack [12] on S!-
equivariant differential forms on the free loop space of a smooth manifold, in the work of Flgystad [8] on Koszul duality and in
the work of Alberto S. Cattaneo and Giovanni Felder [3] on the relative version of Kontsevich’s formality theorem. In Physics,
curved dg algebras appear in the work of Schwarz [39,40] as non-commutative generalizations of Q-manifolds, in the work
of Kapustin and Li [19,20] on topological D-branes in Landau-Ginzburg models, in the work of Kajiura [ 18] on deformation
of holomorphic line bundles over higher dimensional complex tori, in the work of Tang [41] on strict quantization.
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1.2. Contents

The aim of this paper is to develop the basic theory of curved A,,-algebras and curved dg algebras, their module categories,
their link with a suitable class of dg coalgebras via the bar construction, and to investigate the analogue of the relative derived
category for a curved dg algebra.

More precisely, we extend certain results on A,-algebras and their modules obtained in [30] in two directions:

- instead of working over a field we work over an arbitrary commutative ground ring;
- instead of considering A.,-algebras and dg algebras we more generally consider Ajo .(-algebras and curved dg algebras.

Our results concern the bar/cobar adjunction for algebras and modules and the existence of Quillen model structures on
suitable categories of modules.

In Section 3, we study how to construct certain Quillen model structures (cf. [17,16]) in Frobenius categories (cf. [23])
inspired by the techniques of [17, Section 2.3]. In particular, let

u

be an adjoint pair of functors and let  : 1 — RLand § : LR — 1 be the adjunction morphisms. Assume that ¢ and D
are Frobenius categories and L and R are exact functors (and so they preserve injectives). Put We (resp. Wy ) for the class
of morphisms of € (resp. £) mapped to a stable isomorphism by R (resp. L). We prove that if R(6y) and L(ny) are stable
isomorphisms, then

(a) There is a model structure in € (resp. in £ ) having We (resp. Wy ) as the class of weak equivalences. In some sense, these
are the minimal model structures such that the morphism 8y, : LRM — M is a cofibrant approximation and ny : N — RLN
is a fibrant approximation.

(b) The localizations C['W; '] and D[ W] exist and they are triangulated quotients of the corresponding stable categories.
The pair of adjoint functors (L, R) induces mutually quasi-inverse triangulated equivalences

Clws"

I

DIWy']

(c) If both € and £ have finite direct limits and colimits, then they are model categories endowed with those model
structures, and the pair of adjoint functors (L, R) is a Quillen equivalence.

(d) If € has kernels and £ has cokernels, then they are relevant derivable categories (cf. [6]) and the pair of adjoint functors
(L, R) induces mutually quasi-inverse equivalences between the corresponding derivators (cf. [33,34]).

In Sections 4-7 we extend the bar/cobar formalism (cf. [30,27] for this formalism in the absence of the curvature, and
[36,11,3] for some of this formalism in the presence of a non-vanishing curvature) to Ay, o(-algebras and their modules,
stressing the importance of Maurer-Cartan equations. It turns out that these constructions somehow behave more naturally
when applied to a dg algebra not regarded as without curvature but rather as a curved dg algebra with zero curvature. In
Section 4, we give the basic definitions concerning Ao -(-algebras, introduce the cocomplete graded-augmented counital
dg coalgebras and present the bar construction of an Ajg -(-algebra A as a representative of the functor which takes such a
coalgebra C to the set of ‘twisting cochains’ Tw(C, A). In Section 5, we define the cobar construction of a cocomplete graded-
augmented counital dg coalgebra C as a corepresentative of the functor which takes a curved dg algebra A to the set of
‘twisting cochains’ Tw(C, A). It is a left adjoint to the restriction of the bar construction to the category of curved dg algebras.
In particular, for each Ajg,«-algebra A, we have a canonical curved dg algebra 2BA and a natural morphism of Ao .(-algebras
A — 02BA universal among the morphisms of Ajg (-algebras from A to a curved dg algebra. In Section 6, we present the basic
definitions concerning Ajo,..;-modules, define the ‘linearized’ Maurer-Cartan equation of an Ajg,-;-module and construct (in
great generality) the bar construction of an Ajp,.-module M as a representative of a functor which takes certain comodules
N to the ‘linearized’ Maurer-Cartan equation of an Ay .;-module defined from M and N. In Section 7, we define the cobar
construction of a counital dg comodule N as a corepresentative of the functor which takes a unital curved dg module M to
the ‘linearized’ Maurer—Cartan equation of a curved dg module defined from M and N. This is a left adjoint of the restriction
of the bar construction to the category of unital curved dg modules. From this adjunction we introduce in Section 8 the
bar derived category of a unital curved dg algebra as a certain homotopy category, by using some results of Section 3. In
Section 9, we prove that the bar derived category of a curved dg algebra with zero curvature is the relative derived category
(cf. [24]) of the underlying dg algebra. In particular, this gives a model structure for the relative derived category, proves
that the bar derived category of a dg algebra over a field coincides with the classical derived category and allows us a better
comprehension of Kenji Lefévre-Hasegawa'’s theorem [30, Théoréme 2.2.2.2]. Some results of [30] suggest that the spirit of
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As-theory is to replace quasi-isomorphisms by homotopy equivalences, up to increasing the amount of morphisms and/or
objects. In Section 10, we show that the A,.-theory over an arbitrary commutative ring still allows us to describe the relative
derived category of an augmented dg algebra A as the category of unital dg A-modules, with (strictly unital) morphisms of
As.-modules, up to (strictly unital) homotopy equivalences of A,,-modules.

2. Notation

Unless otherwise stated, k will be a commutative (associative, unital) ring. Also, ‘graded’ will always mean ‘Z-graded’. If

Vis a graded k-module, i.e.
v=@v,
pel

we denote by SV or V[1] the graded k-module with (SV)? = v**! for all p € Z. We call SV the suspension or the shift of V. The
shift extends to an automorphism of the category of graded k-modules, with inverse denoted by S~'. Notice that, given a
graded k-module V, we have two homogeneous morphismss: V — SVand w: V — SV, of degree —1 and 1 respectively.

Iff:U— U and g:V — V' are homogeneous morphisms between graded k-modules, their tensor product

fRg:UQV>UQV
is defined using the Koszul sign rule: We have

FRgu®V) = (—1)*"fu) @ g(v)

for all homogeneous elements v € V and w € W, where |g| and |v| are the degrees of g and v, respectively.
An exact category in the sense of Quillen [38] is an additive category € endowed with a distinguished class & of sequences

X5y z

closed under isomorphisms such that (i, p) is an exact pair, i.e. i is the kernel of p and p is the cokernel of i. Following [9], the
morphisms p are called deflations, the morphisms i inflations and the pairs (i, p) conflations. The class of conflations have to
satisfy the following axioms:

(Ex0) The identity morphism of the zero object is a deflation.
(Ex1) The composition of two deflations is a deflation.

(Ex1") The composition of two inflations is an inflation.

(Ex2) Deflations admit and are stable under base change.
(Ex2') Inflations admit and are stable under cobase change.

As shown by Keller [22], these axioms are equivalent to Quillen’s and they imply that if € is small, then there is a fully faithful
functor from € into an ambient abelian category €’ whose image is an additive subcategory closed under extensions and
such that a sequence of € is a conflation if and only if its image is a short exact sequence of €’. Conversely, one easily checks
that an extension closed full additive subcategory € of an abelian category €’ endowed with all exact pairs which induce
short exact sequences in €’ is always exact.

A Frobenius category is an exact category C with enough &-injectives and enough &-projectives and where the class of
&-projectives coincides with the class of &-injectives. In this case, the stable category C obtained by dividing € by the ideal
of morphisms factoring through an &-projective-injective carries a canonical structure of triangulated category, cf. [15,14,
21,10]. We write f for the image in € of a morphism f of C. The suspension or shift functor S of € is obtained by choosing a
conflation

X5 x5 sx
for each object X, where IX is required to be &-injective. Each triangle is isomorphic to a standard triangle (i, p, €) obtained

by embedding a conflation (i, p) into a commutative diagram

Pt

X——IX—5X

For the notation concerning model categories we refer to [17,16]. However, our notion of model structure is weaker than
that of [17] since we do not impose functorial factorizations. We will say that a model structure on a category C is the data
of three classes of morphisms, W, Cof and ¥ ib, the weak equivalences, cofibrations and fibrations respectively, closed under
composition, containing all identity morphisms and satisfying the following axioms:

(1) (2-out-of-3) If f and g are morphisms of € such that gf is defined and two of f, g and gf are weak equivalences, then so
is the third.
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(2) (Retracts) The three classes of morphisms are closed under retracts (in the category of morphisms of C).

(3) (Lifting) Define a map to be a trivial cofibration if it is both a cofibration and a weak equivalence. Similarly, define a
map to be a trivial fibration if it is both a fibration and a weak equivalence. Then trivial cofibrations have the left lifting
property with respect to fibrations, and cofibrations have the left lifting property with repect to trivial fibrations.

(4) (Factorization) For any morphism f of C there exist factorizations

f f
X Y, X Y
NN A
Y X'

where « is a cofibration, f is a trivial fibration, y is a trivial cofibration and ¢ is a fibration.

We will say that a model category is a category with finite direct and inverse limits endowed with a model structure.

A category has a model structure if and only if it satisfies axioms (M2), (M5) and (M6) of [37]. Hence, if a category has a
model structure and finite direct and inverse limits, it is what D. Quillen called a closed model category in [37].

For the more general notion of derivable category we refer to [6]. In short, a derivable category is a category C endowed
with three classes of morphisms ‘W, Cof and £ ib satisfying some familiar axioms which ensure that its homotopy category
HoC := C[W™1], ie. the localization of @ with respect to the class W, is still understandable, that is to say, it is a
category whose morphisms can be calculated by homotopy relations and calculus of fractions. A relevant derivable category
(cf. Section 5.1 of [6]) is a derivable category satisfying a certain ‘lifting property’. One of the good properties of relevant
derivable categories is that the morphisms in the homotopy categories can be calculated just by using homotopy relations
[6, Proposition 5.11], and so the homotopy categories have small Hom-sets.

Notice also that if a category has a model structure, an initial object, a final object, pullbacks and pushouts, then it is a
relevant derivable category.

3. Model structures on Frobenius categories

3.1. Arecognition criterion in Frobenius categories

Recall that if X is a class of morphisms of a category €, then X-inj is the class formed by those morphisms of € having
the right lifting property with respect to every morphism in X, X-proj is the class formed by those morphisms of € having
the left lifting property with respect to every morphism in X and X-cof = (X-inj)-proj.

The proof of [17, Theorem 2.1.19] gives us a kind of ‘recognition criterion’ to detect model structures. Indeed, consider
three classes of morphisms, ‘W, 4 and ¢ in a category C. Then, there is a model structure on € with {-cof as the class of
cofibrations, g-cof as the class of trivial cofibrations, and ‘W as the class of weak equivalences if

(1) W has the 2-out-of-3 property and is closed under retracts.

(2) Any morphism of € factors as a morphism in -cof followed by a morphism in {-inj.
(3) Any morphism of € factors as a morphism in g-cof followed by a morphism in g-inj.
(4) g-cof € W N 4-cof.

(5) I-inj € 'WN g-inj.

(6) Either W N 4-cof C g-cof or W N g-inj C 4-inj.

The following result is a generalization of the techniques of [ 17, Section 2.3]. Thanks to the recognition criterion, it tells us
thatifin a Frobenius category we find a class @ of objects (closed under shifts) such that the class £ of morphismsip : Q — I1Q
with Q in @, and the class § of morphisms 0 — IQ with Q in @, satisfy the conditions (2) and (3) above, then we have a
model structure.

Theorem. Let C be a k-linear Frobenius category and let @ be a class of objects of C closed under shifts. Consider the classes {
formed by the morphisms i : Q — I1Q where Q runs through the class @, § formed by the morphisms 0 — IQ where Q runs
through the class @ and ‘W of morphisms f such that C(Q, f) is an isomorphism of k-modules for all the objects Q in Q. If 4 (resp.
4 ) allows factorizations of any morphism as a map in {-cof (resp. g-cof) followed by a map in {-inj (resp. g-inj), then there is a
model structure on C with J-cof as the class of cofibrations, g-cof as the class of trivial cofibrations and ‘W as the class of weak
equivalences. Moreover, with respect to this model structure we have that

every object is fibrant,

every cofibration is an inflation,

every inflation with cokernel in @ is a cofibration,

two morphisms are left homotopic if and only if their difference factors through an injective.

1
2
3

(
(
(
(4

OO —
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Proof. Define Fib := g-inj and Cof := {-cof. The elements of Fib will be called fibrations, and the terms of Cof will be
called cofibrations.

e Let us prove that if p : X — Y is a morphism of {-inj, then the induced map p"¥ : €(Q, X) — C(Q, Y) is surjective for all
Q in @. Given a morphismy : Q — Y, we consider the (solid) commutative square with its (dotted) lifting

s1g—2 > x

7
s ‘Qi B lp

-1 S
I57Q YPs-1q
Since zis;-1, = 0, there exists a unique morphismz : Q — X such that z'ps-1, = z, and so from pz = yps-1, we deduce pz' = y.
e Let us prove the inclusion {-inj C g-inj. Indeed, given a (commutative) diagram

with p in {-inj, since p¥ : €(Q,X) — C(Q, Y) is surjective, there exists a morphism x : Q — X such that px = yio. Now, the
following (solid) commutative diagram has a (dotted) lifting

e Hence {-inj C ¢-inj, and therefore g-cof C J-cof.

o Let us prove that if p : X — Y is a morphism in {-inj, then the induced map p" : €(Q, X) — C(Q, Y) is bijective for all
Q in @. It is surjective because at the level of Frobenius categories it was surjective. Assume that x : Q — X is a morphism
such that the composition px : Q — Y factors through an injective. Then it is forced to factor also through iq, and so it is of
the form px = yiq. Then, the lifting in the following commutative diagram tells us that x factors through an injective:

e Hence £-inj € ‘W N ($-inj).

e Let us prove that if p : X — Y is a morphism in ‘W N (g-inj), then C(Q, kerp) = 0 for all Q in Q. Observe that p € g-inj
means that p¥ : €(IQ, X) — C(IQ, Y) is surjective for all Q in @. Hence, by diagram chasing in the following commutative
diagram with exact columns and exact rows

C(Q,X) ——= C(1Q,Y) —=0
(i)" (i)"

e@Q.x) —=c@.v)

QX 2 =e@Qy) —>0
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we deduce that p¥ : C(Q,X) — C(Q,Y) is surjective for all Q in @. Now, we apply the Snake Lemma to the commutative
diagram with exact rows

ky\V \/
0 —> C(IQ, kerp) > C(IQ, X) ——= C(IQ,Y) —= 0

l(ia)A J{(:'Q)A i(iQ)A
kyv v

0 — C(Q, kerp) > C(Q,X) —— €(Q,Y) —>0

and we deduce the following long exact sequence

v K\ N%
s 00,0 5 ese, ) S e kerp) B @0 % e@.Y) >0
Since pY is surjective (as proved before), then § = 0. Since (p)" is injective, then (p¥)" = 0. Therefore, C(Q, kerp) = 0.
e Let us prove that if p € W N (g-inj), then p € J-inj. Consider the following commutative diagram

Q*X>X

IQT>Y

Since p belongs to g-inj, there exists a morphism w : IQ — X such that pw = y. Now p(wiy —x) = 0, and so wiy — x = p*u for
some morphism u : Q — ker p. But since C(Q, kerp) = 0, there exists v : IQ — ker p such that vi, = u. Thus, (w — p*v)ip = x
and p(w — p*v) = y.

e We have {-inj = W N (F-inj)

e Let us prove that every morphism in {-cof is an inflation. Given f : X — Y in J-cof, we consider a lifting in the following
diagram

ix
X—IX

I

Yy —=0
This proves that f is a monomorphism in € (and in the ambient abelian category [22, Proposition A.2], since iy is a
monomorphism in that abelian category), and we get the following commutative diagram

X*f>Y*f>cokf

T 7

X—IX———>5X
ix bx

Since the right square is cocartesian, then f° is a deflation. Since f is a mono in the ambient abelian category, then f is the
kernel of f¢, and so f is an inflation.

e Let us prove that if f is a morphism in g-cof, then its cokernel cokf is projective relative to fibrations. Indeed, let
p : M — N be a fibration and consider a morphism g : cokf — N. We form the following (solid) commutative diagram
and consider its (dotted) lifting

0
—_

X
o
v

—_
C

z<_—X

Since hf = 0, then there exists a unique h’' : cokf — M such that h'f° = h. From ph = gf° we deduce ph'f° = gf*, and so
ph' =g.
e In particular, since ib = g-inj contains all the deflations, the cokernel of a morphism in §-cof is projective(-injective).

e Given a morphism f in g-cof, since g-cof C {-cof, we have that f is an inflation. Hence the conflation X Lyl cokf
yields a triangle

XLy L cokf - sx
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But cok f is projective, and so f is an isomorphism. In particular, f € 'W.

e Then g-cof € ‘W N (4-cof).

e We have proved that {-inj = W N (g-inj) and g-cof € W N (4-cof). Therefore, the hypotheses of the recognition
criterion are satisfied.

e Now, notice that for an arbitrary object M the morphisms

iy 0
1y 1y [0 0 1y]

Mo M IM®IMdM M

form a factorization of [1y 1y] ending in a weak equivalence, and so it is a cylinder object. Then, if two morphisms
f,g : M — N are left homotopic then their difference factors through an injective. On the other hand, if f — g = hiy for
some h, then by considering [h 0 g] we prove that f and g are left homotopic.

That every object is fibrant is obvious, and that every cofibration is an inflation has been seen when proving the existence
of the model structure.

Now, let f : X — Y be an inflation with cokernel Q in @, and let g : M — N be a trivial fibration. We fit any commutative
square of the form

X—M
Pl
Y—N

in a commutative diagram

sIQ——=X—>M

where the top left square is bicartesian. Since g has the right lifting property with respect to h, then the same holds with
respect to f. This proves that f € {-cof. O

Lemma. Let C be a category with initial and final object. Assume that C is endowed with a model structure (W, Fib, Cof) such
that the class of cofibrations admit cobase changes. If C has pullbacks, then it is a relevant derivable category.

Proof. By using the retract argument and [16, Lemma 7.2.11], one shows easily that a category with a final object and
pullbacks endowed with a model structure is a left derivable category. Let us see that € is also a right derivable category.
Indeed, the only axioms which are not trivially satisfied are D2°P) and D3°P), but they hold since cofibrations admit cobase
changes. O

Corollary. Let C be a k-linear Frobenius category and let @ be a class of objects of C closed under shifts. Assume that Q is such
that induces a model structure as in the theorem above. If C has kernels, then it is a relevant derivable category. In particular, its
homotopy category HoC := C['W~'] has small Hom-sets.

Proof. Since € has finite products and kernels, then it has pullbacks. On the other hand, inflations admit cobase changes
and cofibrations are inflations. Therefore, we can apply the lemma above. O

In what follows, we present two situations in which a class @ of objects allows good factorizations.

3.2. Small object argument in Frobenius categories

If @ is a set (resp. a class) such that £ (resp. and ¢ ) allows the (generalized) small object argument [16,5], then we easily
get a model structure.
The following result is a generalization of [17, Theorem 2.3.11].

Corollary. Let C be a k-linear Frobenius category with small colimits. Let @ be a set of objects of C closed under shifts. Define
4 to be the class of morphisms iy : Q — IQ where Q runs through the set @, ¢ the class of morphisms 0 — IQ where Q runs
through @ and ‘W the class of morphisms f such that C(Q, f) is an isomorphism for all Q in Q. Assume that the objects of @ are
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small relative to {-cell (cf. [16, Definition 10.4.1.]). Then the classes above define a model structure on C, and so, if C has kernels,
it is a relevant derivable category. Moreover, its homotopy category HoC is the triangle quotient of C by the full triangulated
subcategory whose objects are the M such that C(Q, M) = 0 for all Q in @, and is triangle equivalent to Tria(Q), the smallest full
triangulated subcategory of C containing @ and closed under coproducts.

Proof. The hypotheses (2) and (3) of the recognition criterion are satisfied thanks to the small object argument
[16, Propositions 10.5.16 and 10.5.10]. Hence, € has a model structure. To prove the last statement, consider the full
triangulated subcategory .V of € whose objects are the M such that €(Q, M) = 0 for all Q in @. Let us show that (Tria(Q), V)
is a t-structure on C. For this, it is enough to see that for each object M, there exists a triangle

M—->M —- M — SM

in @ with M € & and M” € Tria(@). Now, given M, thanks to the factorization associated to {, we have a relative {-
cell complex f : M — M such that M — 0 is in {-inj, i.e. M’ € V. Since every relative {-cell complex is a cofibration

[ 16, Proposition 10.5.10] and cofibrations are inflations, we have a triangle M LM M = sm coming from a conflation

ML M — M”. Since fis arelative f-cell complex, its cokernel M” is an {-cell complex and, by the lemma below, it belongs
to Tria(@).
Therefore, (Tria(@Q), ) is a t-structure and we have a series of equivalences

Tria(Q) ~ /N ~ C[W ] =HoC. O

Lemma. Under the hypotheses of the corollary, each J-cell complex belongs to Tria(Q).
Proof. First step: Let A be an ordinal. If we have a direct system of conflations

e 0= Xy > Yy —>2Z,— 0, a<A,

such that the structure morphisms Z, — Zg are inflations for all « < 8 < A, then the colimit of the system is a conflation.
Indeed, it suffices to check that for each injective I, the sequence of abelian groups

0— e(imz,, ) - C(limYy,I) — C(limX,,I) —> 0
— — —
is exact. This follows from the Mittag-Leffler criterion [13, Oy, 13.1] since the maps
C(Zp, ) — C(Za, D

are surjective forallo < 8 < A.
Second step: If we have an acyclic complex of €

s X x5 5 X0 s Yy 50,

then Y belongs to the smallest triangulated subcategory of € containing the XP and stable under countable coproducts.
Indeed, by Lemma 6.1 of [22], for each complex K over C, there is a triangle

aK - K — iK — SaK

of #(€) such that iK has injective components and aK is the colimit (in the category of complexes) of a countable sequence
of componentwise split monomorphisms of acyclic complexes. The functor iK is the left adjoint of the inclusion into #(C)
of the full subcategory of complexes with injective components. Thus, it commutes with coproducts. The composed functor

F: 3(C) — C, K Z°(aK)

is a triangle functor which commutes with coproducts and extends the projection € — € from € to #(C). Moreover, it
vanishes on acyclic complexes. Thus, it maps the truncated complex

X=(C ->Xo>xt15...5xX505..0)

to an object isomorphic to Y in €. Since F commutes with coproducts, it suffices to show that the complex X’ is in the smallest
triangulated subcategory of #(C) containing the X? and stable under countable coproducts. This holds thanks to Milnor’s
triangle (cf. [25,35])

[[x* = [[x** - X' > s[[x*,
where X=P is the subcomplex

0-X x5 ... x>0
and the leftmost morphism has the components

s

XzP ot XzP @ xzr+l —— [ X249,

where i is the inclusion X=? — X=P*1,
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Third step: The claim. Let X be an f-cell complex. Then there is an ordinal A and a direct system X,, « < A, such that we
have X = X; and

- Xo =0,
- for all@ < A, the morphism X, — X,.1 is an inflation with cokernel in @,

- for all limit ordinals 8 < A, we have Xg = lim __X,.
—>a<f

We will show by induction on 8 < A that Xg belongs to Tria(@). This is clear for Xo. Moreover, if X, is in Tria(@), so is
Xa+1- S0 let us assume that B is a limit ordinal and X,, belongs to Tria(@) for each o < B. We wish to show that Xg belongs
to Tria(@). Let @# be the category of functors 8 — €. The evaluation

(LN C,Y—>Y,
admits a left adjoint denoted by Z — Z ® «. For each Y € G#, the morphism
[[Ye®@a—Y

a<f
is a pointwise split epimorphism. By splicing exact sequences of the form

0—>Y — ]_[Ya®oe—>Y—>O

a<f
we construct a Complex
s XX 5 X0 X0

which is acyclic for the pointwise split exact structure on €# and such that each X is a coproduct of objects Y®«, Y € Tria(@),
o < B. By the first step, the colimit C of the above complex is still acyclic. Moreover, the components of C are coproducts of
objects

lim(Y®a)(y) =Y
Y

belonging to Tria(@). Thus, each component of C belongs to Tria(@Q). Now, the claim follows from the second step. O

Notice that if in the corollary above, € has finite inverse (resp. small) limits, then it is a (resp. cofibrantly generated)
model category.

The fact that the pair (Tria(@), ') in the proof of Corollary 3.2 is a t-structure in € is a generalization of [ 1, Proposition
4.5]. With the same techniques, we can also show that if @ is a set of objects closed under non-negative shifts in a k-linear
Frobenius category C such that the associated set {, formed by the maps iy : Q — IQ where Q runs through @, is small
relative to f-cell, then the smallest full suspended subcategory of € containing @ and closed under arbitrary coproducts is
an aisle in C. This is a generalization of [2, Proposition 3.2].

Example. Let A be a unital dg k-algebra. The category of unital dg right A-modules, CA, has a structure of k-linear Frobenius
category since it is the category of 0-cocycles of a certain exact dg category, cf. [26,28]. The conflations are those short exact
sequences which split in the category of graded A-modules, and an object M of CA is injective-projective if and only if its
identity morphism 1y is null-homotopic, i.e. 1, = dyh + hdy for some morphism h of graded A-modules homogeneous of
degree —1. The corresponding stable category is the category of unital dg A-modules up to homotopy, #A. If we take @ to be
the set formed by all the modules of the form A[n], n € Z, then the smallness condition is satisfied (cf. [17, Example 2.1.6])
and the model structure leads to the derived category HoCA = DA.

Example. Let A be a unital curved dg k-algebra with curvature c € A? (cf. Section 4). Let CA be the category of unital curved
dg k-modules (cf. Section 7). One could define the graded k-module

H*(M) := kerdy;/(im d,'\,,_1 N ker dy;)
to be the naive cohomology of a curved dg module M. Notice that A is not a curved dg module with its regular structure, but
A:=A/cA

is a curved dg right A-module with the natural multiplication by scalars. If we apply Corollary 3.2 to the class @ formed
by the objects A[n], n € Z, then A becomes a model category whose weak equivalences are those morphisms inducing
isomorphisms in naive cohomology. Its homotopy category would be a naive derived category. Getzler and Jones define
in [11] a unital curved dg algebra to be standard if the curvature is in the center of the algebra. For these standard algebras
they define a cohomology in the usual way. It is straightforward to prove that a morphism between standard unital curved
dg algebras which induces an isomorphism at the level of that cohomology induces a triangle equivalence between the
corresponding naive derived categories.
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Remark. If the curvature of a unital curved dg algebra vanishes, then its naive derived category is precisely the classical
derived category of the underlying dg algebra, and its bar derived category (cf. Section 8.2) is precisely the relative derived
category of the underlying dg algebra. This seems to suggest that for an arbitrary unital curved dg algebra there would exist
a fully faithful triangulated functor from its naive derived category to its bar derived category. However, the presence of a
non-vanishing curvature makes things considerably less clear.

3.3. Factorizations provided by adjunctions

This section is motivated by the need of understanding the Quillen equivalence of Kenji Lefévre-Hasegawa's theorem
[30, Théoréme 2.2.2.2], via the bar/cobar constructions of Section 7.
Let € and D be k-linear Frobenius categories. We will prove that, under mild assumptions, an adjunction of exact functors

u

(notice that this already implies that both L and R preserve injective objects) always gives rise to a class of objects @ of ©
whose associated classes of morphisms 4 and g of Section 3.1 allow the factorizations required in conditions (2) and (3)
of the recognition criterion. Dually, we also get a model structure in £ and, moreover, the localizations with respect to
the corresponding classes of weak equivalences, C[Wg and :D[W;], are triangle equivalent triangulated categories with
small Hom-sets.

Let ny : N — RLN be the unit of the adjunction, 8y, : LRM — M the counit of the adjunction,

Ty ¢ CUN, M) = D(N, RM)

the adjunction isomorphism.

Theorem. If R(Sy) has injective kernel for each object M of G, then C admits a model structure in which

(a) The cofibrations are the inflations with cokernel of the form LN and their retracts.
(b) The fibrations are the morphisms with the right lifting property with respect to 0 — PLN for every object N of D.
(c) The class of weak equivalences, We, is formed by the morphisms f such that R(f) is a stable isomorphism.

With respect to this model structure every object is fibrant and an object is cofibrant if and only if it is a direct summand of some
LN. Also, we have the following description of the trivial cofibrations and the trivial fibrations:

(d) The trivial cofibrations are the inflations with cokernel of the form PLN and their retracts.
(e) The trivial fibrations are the morphisms with the right lifting property with respect to the morphisms S'LN — PLN for every
object N of D.

Moreover, the localization of C with respect to the weak equivalences is the triangle quotient of C by the full triangulated
subcategory whose objects are the M such that (LN, M) = O for all N in D, and is triangle equivalent to Tria({LN}ycp), the
smallest full triangulated subcategory of C containing LN, N € D and closed under coproducts. The objects of this subcategory
are precisely the direct summands, in C, of the images LN of objects N of O under L.

Proof. We apply Theorem 3.1 to the class @ formed by the objects LN, where N belongs to D. It is closed under shifts since
L commutes with the shift.

e let g : A — Bbe an inflation with cokernel of the form LN. Let us show that g is in {-cof. Indeed, if f is a morphism of
I-inj, we can fit a commutative square of the form

A——C
Pl
B——D
into the commutative diagram
STUUN——>=A——>C
Pl
PIN——>B —>D

L

LN LN




P. Nicolds / Journal of Pure and Applied Algebra 212 (2008) 2633-2659

Since h belongs to {-cof and the left top square is bicartesian, then g is in {-cof.
e Since R(8y) is a retraction with injective kernel, we have that §y, is in {-inj.
e Factorization associated to {:

e

N,
N

It has been constructed by forming a conflation over [Lﬂ thanks to the diagram

X —2s X —>sX

bk

Y——C—>5X

2643

made via the pushout C, and then by forming the pullback E. We know already that 8 is in 4-cof and that [0 1] belongs to

4-inj. Since §¢ is in 4-inj, then the composition [0 1]« is in J-inj.
e Factorization associated to g:

! Y
H A:y 1

PLRY & X

X

formed by using the composition

7 4]
0 1 [py  f]
PLRY © X = LRPY & X PY ® X Y

It is clear that m belongs to g-cof and that [‘SZY ﬂ belongs to g-inj (since 8py is in L-injC F-inj). Also, since [py f]isa

deflation it belongs to g-inj, and so [pydpy  f] belongs to g-inj.

o Characterization of weak equivalences: f : X — Y is a morphism of € such that C(LN, f) is an isomorphism for all N, if
and only D (N, Rf) is an isomorphism for all N, if and only if €(N, Cone (Rf)) = 0 for all N. For N = Cone (Rf) we conclude that

Cone (Rf) = 0, i.e. Rf is a stable isomorphism.

e Characterizations of cofibrations: use the factorization associated to { and the retract argument to show that {-cof is

included in the class of inflations with cokernel of the form LN, for N an object of £, and their retracts.

e Characterization of trivial cofibrations: Letg : A — Bbe aninflation with cokernel of the form PLN, and let f be a morphism

in g-inj. A commutative square of the form
A——=C
|
B——=D
is isomorphic to one of the form
A—C

b b

A®PLN——D

which admits an easy lifting map. On the other hand, by using the factorization associated to § and the retract argument we
see that §-cof is included in the class of inflations with cokernel of the form PLN, for N an object of £, and their retracts.
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o Cofibrant objects: It is clear that every object is fibrant. By Lemma 3.3 we have that every object LN is cofibrant. Now, if
M is a direct summand of LN then 0 — M is a retract of 0 — LN, and so it is a cofibration, i.e. M is cofibrant. Finally, if M is
cofibrant we have a lifting

0 ——LRM

M*]>M

and so M is a direct summand of LRM.
o The t-structure: Given any object M, the factorization of M — 0 associated to { gives a conflation

ML E RsM

with E — 0in {-inj, i.e. E belongs to the full subcategory & of € formed by the objects M such that €(LN, M) = 0 for all N in
D. Then, there is a triangle in ¢

M — E — LRSM — SM

with Ein & and LRSM in the full subcategory & of € formed by the objects M’ such that €(M’, M) = 0 for all M in ¥, and so
(*V, N) is a t-structure on C. Since the weak equivalences are the morphisms with cone in ., we have that HoC ~ + . It
is clear that Tria({LN}yep) C*.V. On the other hand, if M belongs to +., in the triangle we have

M > E — LRSM — SM
and so LRSM = E @ SM. But since E € .V, we deduce E = 0 and so SM = LRSM, which implies that M € Tria({LN}ycp). O

Notice that by applying the proposition above to D we get the dual model structure in D, the dual t-structure and the
dual description of the localization of £ with respect to the class Wy of morphisms g such that L(g) is a stable isomorphism.

Corollary. Assume R(8y) has injective kernel for each object M of € and L(ny) has projective cokernel for each object N of D.

(1) The functors L and R induce mutually quasi-inverse triangle equivalences between C[Wg '] and D[W3'1].

(2) If both € and D have finite direct and inverse limits, then they are model categories and the pair (L, R) becomes a Quillen
equivalence between C and D.

(3) If C has kernels and D has cokernels, then they are relevant derivable categories and the functors L and R induce mutually
quasi-inverse equivalences between the corresponding derivators

DC

DD

Proof. (1) Let Me be the full subcategory of € formed by the objects M such that C(LN, M) = 0 for all N in D. Let Ny be
the full subcategory of © formed by the objects N such that H(N, RM) = 0 for all M in C. We know that N is an aisle in C
and that G[ng] is the triangle quotient C/Ne. Dually, we have that Ny is a coaisle in D and that JD[W;] is the triangle
quotient D /Np. Notice that Ne is formed by all the objects M such that RM = 0 in D, and that Ny is formed by all the
objects N such that LN = 0 in €. Then, we have well defined adjoint triangle functors

C/Ne

D/Nop

Since the unit of the adjuntion ny : N — RLN becomes an isomorphism in /Ny and the counit of the adjuntion
8y : LRM — M becomes an isomorphism in € /.Ne, we have that these functors are mutually quasi-inverse.
(2) Let us show that (L, R) is a Quillen adjunction. To see that L preserves cofibrations, thanks to the retract argument

applied to the appropriate factorization for 9, it suffices to show that L (["”;‘XD is a cofibration. Since the cofibrations are

closed under compositions it suffices to show that L ([”(’]X 2]) and L ([L}‘]) are cofibrations. Since [‘f] is an inflation, then

Lemma 3.3 tells us that its image under L is a cofibration. Now, since L (["(’)X 2]) is a section with projective cokernel direct
summand of LRLIX, by Lemma 3.3 it is cofibration. Dually, R preserves fibrations.
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Let us show that (L, R) is a Quillen equivalence. Let f : LN — M be a weak equivalence, where N is an object of £ (and so
cofibrant) and M is an object of € (and so fibrant). Since R is a right Quillen adjoint functor, it preserves weak equivalences
between fibrant objects. Therefore, Ty (f) = (Rf)ny is a weak equivalence.

(3) We use Corollary 3.1 to see that ¢ and D are relevant derivable categories. Now, since ¢ and D are derivable
categories, then the associated prederivators are in fact derivators (cf. Corollaire 2.28 of [6]). It is easy to prove that R is
left exact in the sense of Section 1.9 of [6]. For instance, since R has a left adjoint, then it preserves pullbacks. On the other
hand, it is easy to prove that R satisfies the “approximation property” of Section 3.6 of [6]. Therefore, by Theorem 3.12 of [6]
we know that the corresponding derived functor RR : D€ — DD is an equivalence of derivators. Dually, LL : DD — DC is
an equivalence of derivators. O

Lemma. (a) If a morphism f of D is an inflation, then L(f) € {-cof.
(b) If f is an inflation of C with cok(f) a direct summand of some LRM, then f € {-cof.

Proof. (a) We do the factorization associated to J for L(g). By the retract argument, it suffices to have that L(g) has the left
lifting property with respect to the composition [0 1] c. But it is clear that L(g) has the left lifting property with respect to
[0 1]and with respect to « (since R(x) is a retraction with injective kernel).

(b) Consider the conflation X Ly cok(f) with cok(f) & Q = LRM. By adding the conflation 0 — Q B Q we get the
conflation
9
0

X——=Y®Q ——IRM.

Hence, f is a retract of and inflation with cokernel LRM. O

Example. Let A be a unital dg algebra over k, and let CA be the category of unital right dg A-modules. As we will see in
Section 9.2, Theorem 3.3 provides a model structure on CA whose associated homotopy category HoCA is the relative derived
category DA (cf. [24]).

Example. Let C be a k-linear Frobenius category. By considering the adjuntion

U

we deduce from Theorem 3.3 that € admits two model structures according to which every object is fibrant and cofibrant,
with the following classes of morphisms:

(1) The projective model structure:
(a) The weak equivalences are the stable isomorphisms.
(b) The cofibrations are the inflations and their retracts.

(c) The fibrations are the morphisms with the right lifting property with respect to the morphisms of the form 0 — P
for some projective P.

(d) The trivial cofibrations are the inflations with projective cokernel and their retracts.
(e) The trivial fibrations are the morphisms with the right lifting property with respect to the morphisms of the form
S~'M — PM for some M.
(2) The injective model structure:
(a) The weak equivalences are the stable isomorphisms.

(b) The cofibrations are the morphisms with the left lifting property with respect to the morphisms of the form I — 0
for some injective I.

(c) The fibrations are the deflations and their retracts.

(d) The trivial cofibrations are the morphisms with the left lifting property with respect to the morphisms of the form
IM — SM for some M.

(e) The trivial fibrations are the deflations with injective kernels and their retracts.

The localization with respect to these weak equivalences is triangle equivalent to the stable category C. Hence, from the
viewpoint of Homotopy Theory, things work nicely in Frobenius categories because they have model structures according
to which every object is fibrant and cofibrant. See the preprint of Cisinski [6] for related considerations.



2646 P. Nicolds / Journal of Pure and Applied Algebra 212 (2008) 2633-2659

4. Ajo,[-algebras and their bar construction

An A -algebra over k, also called curved A-algebra or weak A-algebra, is a graded k-module A = @,z AP together
with a family of morphisms of graded k-modules (‘multiplications’)

m: A% — A, i>0,
homogeneous of degree |m;| = 2 — i, satisfying the identity
> =1"m(1¥ @m @ 1) =0, foreachp > 0.

JH+k+l=p

Notice that mg is uniquely determined by the homogeneous element mg(1) of degree 2 called the curvature of A, and
that A,.-algebras are precisely curved A.-algebras with vanishing curvature. Following M. Kontsevich, we visualize the
multiplication m;, i > 1, as a halfdisk whose upper arc is divided into segments, each of which symbolizes an ‘input’, and
whose base segment symbolizes the ‘output’:

a_2
a_l
m i

The morphism 1¥ ® my ® 1% can be visualized as a bubble between positions j and j + 1:

a_2
a_ m_0

Using these representations, the defining identity is depicted as follows:

a_2
P | 4
m i
a2 ‘
+y + a_ =0
m i

For instance, for p = 0 we have mymg = 0, for p = 1 we have mym; = my(my ® 1 — 1 ® mg) and for p = 2 we have
ms(me ® 1% —1®@ my ® 1+ 1%2 @ mg) + mymy = my(m; ® 1+ 1 ® my). In particular, and in contrast with the situation
when dealing with A, -algebras, m; might not be a derivation and might not have vanishing square. Thus, it is not clear how
to define the ‘cohomology’ of an Ay -algebra.
An Ao, r-algebra A is strictly unital if it is endowed with a homogeneous morphism 7 : k — A of degree 0, called the unit
of A, such that
ML - 11N 1,Q---®1,) =0
foralli # 2 and
m(1a®@n) =m( @ 1x) = 14
Let (A, {m;}i=0) and (A", {m{}i>0) be two Ao -algebras over k. A morphism of Ay ~o[-algebras is a sequence of morphisms
of graded k-modules
fi:A® > AL ix>1,
homogeneous of degree |f;| = 1 — i, satisfying the identity
Y ¥ eme@1®) = Y (D'm(, @ - ® ),

Jjt+k+I=p i1+ +ir=p

1=r=p
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for all p > 0, where

s= Yy ((1—1'“) > 1)
2<u<r 1<v<u—1

The right hand side of the equation is to be interpreted as my whenp = 0,and s = 1 whenp = 1. Letf = {f;};>; : A - A’ and

f = 1{f}i=1 : A > A” be morphisms between Ay (-algebras. The composition is the morphism f’f : A — A” with components

o= Y, DHE®--®f), p=1,
i1+ Hr=p

1=r=p

where

s= ) ((1—1'“) > 1)
2<u<r 1<v=<u-—-1

A morphism f of A o(-algebras is strict if f; = 0 for i > 2. For an Ajp ~(-algebra, the identity of A is the strict morphism

f A — Agiven by fi = 1,. The category of Ajo [-algebras over k will be denoted by Algg ;. Given an integer n > 1, the

category of Ajp nj-algebras over k, denoted by Algyq ,;, is the subcategory of Algo . formed by the algebras with multiplications

m; = 0 fori > n and morphisms f; = 0 fori > n — 1.

Example. The objects of Algg ,; are the curved differential graded (=cdg) algebras of [36] (also called Q-algebras sometimes).
They are graded k-modules A = @,z AP together with a homogenous element c of degree 2, a morphism of graded k-modules
d : A— Ahomogeneous of degree 1 called the predifferential, and a morphism of graded k-modules A ® A — A, (a, b) — ab
homogeneous of degree 0 called the multiplication, satisfying

(1) d(c) =0,
(2) d(d(a)) = ca — ac for each a € A,
(3) d(ab) = (da)b + (—1)!a(db) for each a (homogeneous) and b.

The morphisms of Algj, 5, are the morphisms of graded k-modules homogeneous of degree 0 preserving the curvature,
commuting with the predifferentials and preserving the multiplications. Thus, the morphisms of Alg, 5, are instances of
the morphisms between cdg algebras of [36]. One can easily construct cdg algebras. Indeed, if A is a graded algebra and x is
a homogeneous element of degree 1, then we may set mg(1) = x?, m;(a) = xa — (—1)!”ax for a homogeneous and m, equal
to the product on A.

The bar construction of an A, -algebra over k yields a cocomplete augmented dg k-coalgebra [30]. In the presence of a non-
zero curvature, the corresponding coalgebra is still a counital dg k-coalgebra, but the coaugmentation ¢ is not compatible
with the codifferential d anymore, since one has de # 0. However, the coalgebra obtained is cocomplete augmented as a
graded coalgebra. It means that itis an augmented graded coalgebra whose associated reduced coalgebra is cocomplete, i.e. it
is the colimit of the primitive filtration formed by the kernels of the successive comultiplications. This leads to the category
of cocomplete graded-augmented counital dg k-coalgebras, CgaCdg, whose objects are (C, d, A, €, ), such that (C, d, A, n)isa
counital dg coalgebra and (C, A, ¢, n) is a cocomplete augmented graded coalgebra, and the morphisms are morphisms of
coalgebras compatible with the augmentations, the counits and the codifferentials.

Let A be an A ~(-algebra over k and let C be a cocomplete graded-augmented counital dg k-coalgebra. A straightforward
calculation shows that we can endow the graded k-module Hom;(C, A), whose nth component is formed by the k-linear
morphisms C — A homogeneous of degree n, with the curvature by := mf#, the first multiplication by (f) := mjf — (—=1)VIfdc
and the following convolutions

bn(flv"'7fn) = mﬁ(f]@@fn)A(n)v nzz

such that Homj (C, A) becomes an Ay -algebra over k. The set of twisting cochains from C to A is the subset Tw(C, A) of
Hom] (C, A) formed by the maps 7 such that:

(1) e =0,
(2) 7 satisfies the Maurer-Cartan equation associated to Homg (C, A), i.e. 3, b (z®") = 0.

Notice that the sum above makes sense since 7 is killed by the augmentation and C is cocomplete graded-augmented.

Proposition. Given an Ay o(-algebra A over k, the functor
CgaCdg — Sets, C —> Tw(C, A)

is representable. The bar construction of A is a representative BA. Moreover, the assignment A — BA extends to a fully faithful
covariant functor

B : Algjp, o = CgaCdg
such that the isomorphism Tw(?, A) = CgaCdg(?, BA) is natural in A.
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Proof. One checks that we can take BA to be the tensor coalgebra T°(SA) = Eszo(SA)@, such that its comultiplication
‘separates tensors’

i
A(SX1, ...y SX) = Z(sxl, ey SX) ® (SXjg1s - - .5 SXi),
=0

where (sx1, ..., sx;) stands for sx; ® --- ® sx; and the empty parentheses () are to be interpreted as 1,, endowed with a
codifferential dgs which takes into account the multiplications m;, i > 0 of A. More precisely, dg,4 is the unique coderivation
of BA such that the composition

BA Y A RS

vanishes (where py is the projection on k), and the composition

BA %% Ba PL sp

(where p; is the projection on SA) has components —smw®, i > 0. It is straightforward to check that m;,i > 0, define a
structure of Ajp w(-algebra on A if and only if d2, = 0. The bijection CgaCdg(C, BA) — Tw(C, A) takes F to the map t given by
the composition

chpalsaXa

Observe that e = 0. It is straightforward to check that F is compatible with the codifferentials if and only if 7 is a solution
of the Maurer-Cartan equation of the Ay »-algebra Hom} (C, A). To define B on morphisms we do the following. Let A and
A’ be two Ajg (-algebras, and let f; : A% — A’,i > 1, be a family of morphisms of graded k-modules of degree |fj| = 1 — i.
Consider the morphism of coaugmented graded coalgebras Bf : BA — BA’ which is compatible with the counits and the
coaugmentations and takes into account the morphisms f;,i > 1. More precisely, Bf is the unique morphism of graded
coalgebras which is compatible with the counits and the coaugmentations and such that its associated morphism of graded
coalgebras Bf : BA — BA’ between the corresponding reduced tensor coalgebras satisfies

B =R F .. ]""a", n>1,

where p, : BA — (SA)®" is the projection, A is the ‘separating tensors’ comultiplication of BA and F; = sfw®,i > 1.1tis
straightforward to check thatf;, i > 1, define a morphism of Ao oo(-algebras if and only if Bf commutes with the codifferentials
of BAand BA'. O

It is clear from the proof of the proposition that the Ajg -(-algebra structures on a graded k-module A are in bijection with
the coderivations d of the graded coalgebra (T°(SA), A) making (T(SA), d, A, €, n) into a cocomplete graded-augmented
counital dg k-coalgebra.

5. Bar/cobar adjunction for cdg algebras

Proposition. Given a cocomplete graded-augmented counital dg k-coalgebra C, the functor
Alg[o’z] — Sets, A TW(C, A)

is corepresentable. The cobar construction of Cis a corepresentative (2C. Moreover, the assignment C > 2C extends to a covariant
functor

{2 : CgaCdg — Alg[O,Z]
such that the isomorphism Tw(C, ?) = Algg 5;(£2C, ?) is natural in C.

Proof. Let w : C — C be the cokernel of ¢ and p : C — C its canonical section whose image is the kernel of the counit 7.
Notice that d does not induce a map in C. We put d = wdp. We let A be the associative comultiplication of C induced by
A. One checks that one can take £2C to be the reduced tensor algebra T(S™'C) = Bizn (s~1C)®, endowed with a differential

which takes into account the maps d : C — Cand 4 : C — C ® C induced by the codifferential d and the comultiplication A
of C. The curvature of 2C is given by the composition

wde : k — S7IC,
where w is the degree shift morphism. O

As a consequence, we get
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Corollary. The bar and cobar constructions

Algpo 2

CgaCdg
form a pair of adjoint functors.
Given an Ajo ~(-algebra A we have the following isomorphisms
Algg 2 (2BA, 2BA) = CgaCdg(BA, BS2BA) %Alg[o,o@[(A, QBA).
Therefore, the identity morphism 154 corresponds to a morphism of Ajg .o(-algebras from A to the so-called envelopping cdg
algebra of A
A — (BA.

Moreover, this morphism is universal among the morphisms of Ajp ~-algebras from A to a curved dg algebra. We expect this
to be a homotopy equivalence of precomplexes (i.e. ‘complexes’ such that the square of the differential is not necessarily
zero) over k, at least when A is an augmented Ao «(-algebra.

6. Aj,o-modules and their bar construction

6.1. Basic notions

Let A be an A, «-algebra over k. A right Ao oo[-module over A is a graded k-module M = @,.; M” endowed with a family
of morphisms of graded k-modules

m" M@A®Y > M, i1,
homogeneous of degree [m}| = 2 — i satisfying the identity

Y= m 1 em®1%) =0, p>1.
j+k+I=p

Forj > 0 the term m"(1¥ ® m, ® 1®') should be interpreted as

m'(1¥ @ m} ® 1) : M @A%™) — M,
and forj =0 as

m(m ® 1%) : M ® A2P~D — M.
For instance, for p = 1 we have m{'m} = —m} (1 ® m}), and for p = 2 we have m}'m} = m}(mY @ 1+ 1@ m}) + my(1 ®
mh ® 1+ 1® 1® m)). In particular, A is not an Ajp -(-module over itself with the regular structure, m}" is not a derivation
and it is not clear what the cohomology of an A .-module should be.

If A is strictly unital with unit n, an Ajg .;-module M over A is strictly unital if m(1y ® ---®1®71®1®---® 1) = 0 for
alli > 3 and

Let M and N be two Ajg -(-modules over A. A morphism of Ajg,.o(-modules from M to N is a family of morphisms of graded
k-modules

fiMA®D SN i1,
homogeneous of degree |f;| = 1 — i satisfying the identity
Y EYR¥ em 1) = Y oml L (Fe1%), p=1.

Jk+l=p rs=p
Notice that we can not have j = k = 0. A morphism f is strict if f; = 0 for all i ## 1. A morphism f : M — N between strictly
unital A oi-modules is strictly unital if

fy®1® - 3111 ---1) =0, i>2.

If M, N and T are three Ajg o(-modules over A,andg : M — Nand f : N — T are two morphisms of Ajg .(-modules, the
composition fg is defined by the family

=Y fin@®1®), p>1.

k+l=p
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Letf,g : M — N be two morphisms of Ay ~(-modules over A. A homotopy of Ay -o(-modules from f to g is a family of
morphisms of graded k-modules

hi:M®A®D > N, Q> 1,

homogeneous of degree |h;| = —i satisfying the identity
= > Umf (he1®)+ > DY'na¥eme1®), p>1.
r+s=p jtk+I=p

If f and g are two strictly unital morphisms of Aj,, o;-modules, a homotopy h between f and g is strictly unital if
h(ly®1®---®@n®1®---®1) =0, i>2.

Two morphisms of Ajp, -modules f and g are homotopic if there exists a homotopy between f and g. A morphism f of Ajg, (-
modules is null-homotopic if f and 0 are homotopic. An Ajg,.(-module M is contractible if 1), is null-homotopic.

We denote by Nodpg A the category of all the right A .(-modules over A, and by Nod“”“ (A the subcategory formed by
all the right A o(-modules over A with strict morphisms. (The ‘N’ in NodA comes from * non umtal' and goes back to Kenji
Lefévre-Hasegawa’s thesis [30].) Also, if A is a strictly unital Ay-algebra, then Mod| oA is the category of strictly unital
Ajs,0i-modules over A with strictly unital morphisms.

If (M, m}, mdl,...) is an Ajg ;-module over A, then the shifted graded k-module SM inherits naturally a structure of
right Ao .(-module over A with multiplications m$" := (—1)'m"(w ® 1®°“). Moreover, the shift easily extends to an
automorphism

S : Nodff'{|A — Nodff',A.

Given an Ajp [-algebra A, we denote by MC(A) the set of elements a € A! such that m#(a®) = 0 fori > 0 and a satisfies
the Maurer—Cartan equation associated to A:

> mf@®) =0.
=0

Since the world of modules is a ‘linearization’ of the world of algebras, we do not have the concept of the Maurer-Cartan
equation of an Ajp --module, but rather the concept of the tangent space to such a (phantom) equation. Indeed, let M be
a right A oo(-module over A and let a be an element of MC(A) such that for each m € M there exists iy > 1 satisfying
mM(m®a®i-D) = 0foralli > iy. We define the tangent space in a to the Maurer-Cartan equation of M to be the k-submodule
T,MC(M) of M' formed by the elements m € M! such that

> om'(m® a®i=Dy = .

i>1

6.2. Twisting cochains

Now we need a technical lemma which will be very useful for understanding the tangent space to the Maurer-Cartan
equation of an A .(-module (cf. Proposition 6.2) and so, for the bar construction of an A ~.(-module.

Lemma. Let C be a cocomplete graded-augmented counital dg k-coalgebra, A an Ao, ~[-algebra, T a twisting cochain from C to A
and M an Ao .o-module over A. Then the map g : M ® C — M defined by

g:=) (-)mf;(1y ® 2 A0)
i>0

(with A® := yand AV := 1) satisfies the identity
gy ®dc) +8(g®10)(Iy ® A) = 0.

Proof. By taking into account that 7 is killed by the augmentation and that C is a cocomplete graded-augmented coalgebra,

i.e. that C = k @ (colimysaker Z(")), one can check that for each element m ® c of M ® C the expression g(m ® c) makes sense
since it becomes a finite sum. It suffices to prove that the expression above vanishes when applied to an element of the form

m® 1orm® x with x € ker 2D for some n > 1. The first case is trivial, and in the second case, one can prove that

My ®de) +8(g®10)(1y ® A)) (M ® x)

equals the following vanishing sum of n sums

n
> ((—1)“” Y DR e m @ 1) me @ - 8 rxu)) :

=1 jktI=t+1
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where we assume 2" (x) = x1 ® - - - ® x,, for the sake of simplicity, and where

sO=tm+D+ Y Y |xl O

2<u<t 1<v=<u-1

The next proposition is the Ao -;-counterpart of [4, Lemma 3.4.1], which allows us to describe the tangent space in a
to the Maurer—Cartan equation of an Ajg (-module as the space of the 1-cocycles of a certain complex defined by twisting
with a.

Proposition. Let A be an A ~(-algebra, M an Ajp,o(-module over A and a an element of MC(A) such that for each m € M there
exists i > 1 satisfying mM(m ® a®=) = 0 for all i > i.
(1) The graded k-module M becomes a complex over k endowed with the map

dy(m) := Z(_])(Fl)(lm\ﬂ)mg\d(m ® a®(i71)).

i>1
Moreover, (M, d¥) underlies a functor
F, : Nod®™s A — Ck
compatible with the shift.

(2) m € M! belongs to T,MC(M) if and only if d,(m) = 0.
(3) For m € M°, the map a — d,(m) yields a ‘vector field’ on MC(A), i.e. d,(m) € T,MC(M) for alla € MC(A).

Proof. If we apply Lemma 6.2 to the coalgebra C = BA we have
do(m) = )" g(m ® (s0)®),

i>0
and so

dq(da(m))

Y g(g® 1) (1y ® A)(m @ (s0)®)

p=0

— Y g1y ® dsp) (M ® (s0)®) = (=)™ g (m ®y dBA«sa)@p)) :

p=0 p>0
But, taking into account that |sa| = 1 + |a| = 2, we have

dea((s0)®) = — Y (s0)® @ (smpw®)((s0)®*) ® (s)®

J+k+I=p

- ) (0¥ @smp(@®) @ (sa)®,
J+k+I1=p

and so

da(da(m) = (DY Y gm® () @ smii(a) ® (s0)®)

p=0 j+k+l=p
= (=DM Y gm® (s)¥ @ (Ssz(a)> ® (sa)®) =0,
J,1=0 k>0

since a € MC(A). The rest of the proof is straightforward. O

6.3. The bar construction

Given an A o(-algebra A over k, an A o-module M over A, a cocomplete graded-augmented counital dg k-coalgebra C
and a dg right C-comodule N, we can endow the graded k-module Hom}, (N, M) with the multiplications

pi(f) == mif — (=1)Ifdy
and
mfeu ® @) =mlfeau ® - @a1AY, i>2,

so that Homj (N, M) becomes a right Ajg o;-module over Hom} (C, A) regarded as an Ajg «-algebra with the multiplications
b;, i > 0, defined in Section 4.

Let T be a twisting cochain from C to A. Notice that in general it is not true that b;(z®") = 0 for i >> 0 and that for each
f in Hom} (N, M) there exists a natural number iy > 1 such that u;(f ® T ) = 0 fori > iy. However, for each ¢ € C we
do have b;(t®)(c) = 0 fori > 0, and for each f € Hom$(N, M) and n € N we do have u;(f ® tV)(n) = 0fori > 0.
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Therefore, in practice it still makes sense to speak of the tangent space in t to the Maurer-Cartan equation of the A, (-
module S~'Hom? (N, M), denoted by T,MC(S~"Hom} (N, M)). By using the techniques of Proposition 6.2 we can check that
this tangent space identifies with the space of 0-cocycles of the cochain complex F;(Homj (N, M)), consisting of the graded
module Homg (N, M) together with the differential given by

d.(f) := Z(_l)(ifl)(lflﬂ)m(f ® .L.®(ifl))'

i>1

To find the bar construction over C of M, we need to consider the category of counital dg right C-comodules, ComC. It is
a Frobenius category since it is the category of 0-cocycles of a certain exact dg category Comg,C, cf- [26,28]. The conflations
are the short exact sequences which split in the category of graded C-comodules, and an object N of ComC is injective-
projective if and only if its identity morphism 1y is null-homotopic, i.e. 1y = dyh + hdy for some morphism h of graded
C-comodules homogeneous of degree —1. The corresponding stable category, denoted by #C and called the category of
counital C-comodules up to homotopy, is the quotient of ComC by the ideal of the null-homotopic morphisms. We also need
the category of counital graded right C-comodules, GrmodC, with homogeneous morphisms of degree 0.

Notice that the counital graded right C-comodule, (M ®; C, 1y ® Ac), becomes a counital dg right C-comodule, M ®. C,
with the codifferential induced [30, Lemme 2.1.2.1] by the map of the Lemma 6.2. Now, the isomorphisms of k-modules

(Grmod C) (N[—p], M®; C) — Homi (N, M), f = (1u ® 1)f,
induce an isomorphism of complexes over k
(Comgg O)(N, M ®, C) = F;(Hom¢ (N, M)),
and the isomorphism between the 0-cocycles gives us
(ComO)(N, M®, C) = T,MC(S""Hom? (N, M)).

Therefore, we have

Proposition. Let A be an Ajo ~-algebra, M an Ao ~.;-module over A, C a cocomplete graded-augmented counital dg coalgebra
and t a twisting cochain from C to A. The functor

Com C — Modk, N = TMC(S™'Hom¢ (N, M))

is representable. The bar construction over C of M is a representative, denoted by M ®, C. The assignment M — M ®. C extends to
a functor

?®. C : Nodjg e A — ComC, M - M ®; C

such that the isomorphism (ComC)(?, M ®; C) — T:MC(5™" Homg (?, M)) is natural in M.

Given an Ao, «-algebra A, the composition of the projection with the shift to the right, 7 : BA nosaXaisa twisting
cochain from BA to A. By using the Lemma 6.2 one can prove that the structures of Ay -;-module over A of a graded k-
module M are in bijection with the codifferentials making the counital graded comodule M ® BA into a counital dg comodule.
Similarly, the morphisms of Ajg .;-modules from M to N are in bijection with the morphisms of dg BA-comodules from
M ®. BAto N ®, BA, and the homotopies of A o(-modules from f to g are in bijection with the homotopies of dg BA-comodules
from the morphism induced by f to the morphism induced by g.

7. Bar/cobar adjunction for cdg modules

Given an Aj n-algebra, A, the category of Ay ,;-modules over A is the subcategory Nod|o,,jA of Nod|o, o formed by the Ajg oo~
modules M with multiplications m¥ = 0 for i > n and morphisms f; = 0 fori > n — 1. For n = 2 we get the so-called curved
dg (=cdg) modules over a cdg algebra.

Let us consider a fixed (strictly) unital cdg algebra A and denote by CA the category of unital cdg A-modules. CA is the
category of 0-cocycles of the exact dg category (cf. [26,28]) CqeA whose objects are the unital cdg A-modules and whose
morphisms are given by complexes of k-modules C4(A)(L, M) with nth component formed by the morphisms of graded
k-modules homogeneous of degree n and with differential given by the commutator d(f) = dyf — (—1)¥Ifd;. Thus, as in the
case of a dg algebra, CA has a structure of a k-linear Frobenius category whose stable category is the category of unital cdg
A-modules up to homotopy, #A, defined precisely as in the case of unital dg algebras (cf. the first example of Section 3.2).

Given a counital dg coalgebra C we still have a cdg algebra Homg(C, A) as before (cf. Section 4). A solution t of the
Maurer-Cartan equation of this cdg algebra will suffice to ‘twist the cochain’ since almost all the multiplications of A are
zero, and so we do not need any extra assumption on t.



P. Nicolds / Journal of Pure and Applied Algebra 212 (2008) 2633-2659 2653

7.1. Bar construction for unital cdg modules

For a unital cdg A-module M, the counital graded C-comodule (M ®, C, 1y ® Ac) becomes a counital dg C-comodule,
M ®. C, with the codifferential

dvg,c =du® e+ 1y ®dc — (MY D1 R TR 1D(1Q A).
As in Section 6.3, the isomorphism of complexes over k
(ComggC)(N, M®; C) = Fr(Hom} (N, M))
induces an isomorphism between the 0-cocycles which gives us

(ComCO)(N, M®; C) = T-MC(S™"Hom} (N, M)).

Proposition. Let A be a cdg algebra, M a unital cdg A-module, C a counital dg coalgebra and t a solution of the Maurer-Cartan
equation of the cdg algebra Hom},(C, A). The functor

ComC — Modk, N = TMC(S~'Hom¢ (N, M))

is representable. The bar construction over C of M is a representative, denoted by M ®. C. Moreover, it can be chosen to yield a
functor

?7®:C:CA— ComC,M > M®,C

such that the isomorphism (ComC)(?, M ®; C) — T,MC(S~'Hom$(?, M)) is natural in M.

7.2. Cobar construction for counital dg comodules

For a counital dg C-module N, the unital graded A-module (N ® A, 1y ® m3) becomes a unital cdg A-module, N ®, A, with
the differential

dvga =@ L+ 1y@m +(1m)(1RTR1)(Ay®1).
Now, the isomorphisms of k-modules
(Grmod A) (N ® A, M[p]) — Hom{(N, M), f = f(1y ® 715)

where Grmod A is the category of graded unital A-modules and 7, is the unit of A, induce an isomorphism of complexes over
k

(CgA) (N ®: A, M) = Fr(Hom (N, M))
which yields an isomorphism between the 0-cocycles

(CAYN®; A, M) = T,MC(S™"Hom} (N, M)).

Proposition. Let A be a cdg algebra, C a counital dg coalgebra, N a counital dg C-comodule and t a solution of the Maurer-Cartan
equation of the cdg algebra Hom},(C, A). The functor

CA — Modk, M — T,MC(S™Hom} (N, M))

is corepresentable. The cobar construction over A of N is a corepresentative, denoted by N ® . A. Moreover, it can be chosen to yield
a functor

?®;A: ComC — CA, N> N®, A

such that the isomorphism (CA)(N®. A, ?) > T,MC(S~'Hom¢ (N, ?)) is natural in N.
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7.3. The adjunction between Frobenius categories

Let A be a unital cdg algebra, and C a counital dg coalgebra. Let us consider the category CA of unital cdg right A-modules,
which is a Frobenius category as explained at the beginning of Section 7. Also, let us consider the category Com C of counital
dg right C-comodules, which is a Frobenius category as explained in Section 6.3.

Corollary. Let t be a solution of the Maurer-Cartan equation in Hom},(C, A). Then the bar and cobar constructions yield a pair of
adjoint exact functors

CA

L:—?®1AT \L ?2®:C=:R

ComC
In particular, we have isomorphisms
(HA) (LN, M) = HF,(Hom? (N, M)) = (#C)(N, RM)

natural in N and M.
8. The bar derived category

Let A be a unital cdg algebra. When C is the bar construction BA of A, and the twisting cochain is the composition of the
projection with the shift to the right, t, : BA 2 sa % A, we will show that the conditions of the Corollary 3.3 are satisfied.

8.1. The bar resolution of a cdg module

In [30, Lemme 2.2.1.9] it is essentially proved that given a unital dg module M over a unital dg algebra A, the adjunction
morphism

Sy i LRM — M

is a homotopy equivalence of complexes over k. This morphism is usually called the bar resolution of M. We claim that in the
presence of curvature, the morphism R(8),) is still a homotopy equivalence. Indeed, if sx and sy are homogeneous elements
of BA, the morphism of graded k-modules

g: (RIR(M) — (IRY(M), mR@sx @ a® sy — (—1)!™*'m @ (sx, sa, sy) ® 1,

induces a contracting homotopy for 1 — nzyR(8y). That is to say, R(8y) has injective kernel. We could say that R(§y,) hides
a bar resolution of M. The precise statement is that §,; : LRM — M is a cofibrant approximation in the model category CA,
endowed with the model structure described in Theorem 3.3.

Now, from the identity 8;yL(ny) = 1.y we get R(S.v)RL(ny) = lgwy, and since R(Sy) is a stable isomorphism, the same
holds for RL(ny). Therefore, L(ny) is a weak equivalence in CA. But it is a morphism between fibrant-cofibrant objects, which
implies that it is a homotopy equivalence. Since left homotopy agrees with homotopy in the sense of Frobenius categories
(cf. Theorem 3.1), we have that L(ny) is a stable isomorphism, i.e. has injective cokernel.

Therefore, Section 3.3 tells us that CA and Com BA admit certain model structures making the bar/cobar adjunction into
a Quillen equivalence. We have proved the

Theorem. Let A be a unital cdg algebra. Consider the bar/cobar adjunction

CA

Com BA

by using the twisting cochain t,. Then

(1) There is a model structure in CA such that all the objects are fibrant, an object M is cofibrant if and only if it is a direct
summand of a module of the form LN for some comodule N, and a morphism f is a weak equivalence if and only if Rf is a stable
isomorphism.

(2) There is a model structure in Com BA such that all the objects are cofibrant, an object N is fibrant if and only if it is a direct
summand of a comodule of the form RM for some module M, and a morphism f is a weak equivalence if and only if Lf is a
stable isomorphism.

(3) The bar/cobar adjunction is a Quillen equivalence for these model structures.
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8.2. The bar derived category

The homotopy category of CA regarded with the model structure of Theorem 8.1 is the bar derived category of A, denoted
by Dyq-A. It is the localization of CA with respect to the class of morphisms f such that R(f) is a stable isomorphism in
Com BA, i.e. such that Cone (Rf) = RCone (f) is injective. Put differently, £, A is the localization of CA with respect to the
class of morphisms f such that Cone (f) is contractible as an Ajg, ;-module over A.

Moreover, as we know from Theorem 3.3, the ‘acyclic modules’ for the bar derived category, called bar acyclic modules,
are those M such that

(HA)(LN,M) =0

for every counital dg BA-comodule N. Hence, they are indeed those modules contractible as Ajp,-;-modules over A, but they
admit (cf. Corollary 7.3) an alternative description in terms of true acyclicity of certain complexes forming a class: the bar
acyclic modules are those M such that

HPF(Hom} (N, M)) = 0
for every counital dg BA-comodule N. Accordingly, we use the term bar quasi-isomorphisms for the weak equivalences of CA,
i.e. those morphisms f such that Cone (f) is bar acyclic, and the bar closed modules are those M such that

(HAYM, M) =0

for every bar acyclic M. Theorem 3.3 states that DyA is triangle equivalent to the full subcategory #, y.+A of #A formed by
the bar closed modules.

9. The various derived categories of a dg algebra

Let A be a unital dg k-algebra (regarded as a cdg algebra with vanishing curvature). A priori, we have three derived
categories associated to it, each of them made from its own notion of acyclicity: the classical, the relative and the bar derived
category. But it turns out that these last two categories agree.

9.1. The classical derived category

A unital dg A-module M is acyclic if (when k is trivially made into a counital dg BA-comodule) we have
(FA) ((Lk)[n], M) = (HA)(A[n], M) ZH "M =0

for each n € Z, i.e. if the complex F;(Homj (k, M)) = M is acyclic. A morphism f is a quasi-isomorphism if its cone is acyclic,
and a module M is closed if

(HAM,M) =0

for every acyclic M'. As we know (cf. Example 3.2), the derived category of A, denoted by DA, is the localization of CA with
respect to the quasi-isomorphisms, and it is triangle equivalent to the full triangulated subcategory #,A of #A formed by
the closed modules.

9.2. The relative derived category

A unital dg A-module M is relatively acyclic if
(FA)Y((LK)[n], M) = (HA)((K ®; A)[n], M) = H "F;(Homi (K, M)) = 0

for each n € Z and each k-module K (trivially made into a counital dg BA-comodule). But F;(Hom; (K, M)) is the complex
Hom} (K, M) with the differential induced by that of M. Hence, to be relatively acyclic amounts to being contractible as a
complex over k. A morphism f is a relative quasi-isomorphism if its cone is relatively acyclic, and a module M is relatively
closed if

(HAM' ;M) =0

for every relatively acyclic M’. As we know [24, Proposition 7.4], the relative derived category of A, denoted by D,.A, is the
localization of CA with respect to the relative quasi-isomorphisms, and it is triangle equivalent to the full triangulated
subcategory #, A of #A formed by the relatively closed modules.

But, in fact, the relative derived category of A is its bar derived category. Indeed, any bar acyclic dg module is certainly
relatively acyclic. On the other hand, let M be a (unital) dg A-module which is contractible as a complex over k, and let
h1 : M — M be the contracting homotopy of that complex. By using Obstruction Theory (cf. [30, Chapitre B]), we can extend
h; to a contracting homotopy for M regarded as an A,,-module over A, which proves that M is bar acyclic. Then, D,A is the
homotopy category of a certain model category, and Theorem 3.3 proves the analogue of [24, Proposition 7.4] and tells us
that #, /A is the smallest full triangulated subcategory of #A containing all the modules of the form N ®- A, for any counital
dg BA-comodule N, and closed under arbitrary coproducts.
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9.3. Links between the derived categories

Since every relatively acyclic unital dg A-module is acyclic, we deduce that #,A is a full triangulated subcategory of
Hp varA. Therefore, we have a fully faithful triangulated functor

DA — Dy, M — pM

where pM is the closed resolution of M. It is well known that, if k is a field, the relatively acyclic unital dg A-modules are
precisely the acyclic unital dg A-modules, and so we have DA = DA in this case. Then the following result should be
viewed as an analogue of Kenji Lefévre-Hasegawa’s theorem [30, Théoréme 2.2.2.2] for unital dg algebras over an arbitrary
commutative ring:

Theorem. Let A be a unital dg k-algebra. Endow the category CA of unital dg A-modules with its structure of model category
whose homotopy category is the relative derived category D,qA (cf. Section 9.2). Then there exists a model structure in Com BA
such that the bar/cobar constructions

CA

Com BA

yield a Quillen equivalence.

Our proof of this theorem, being more conceptual than that of [30], suggests that the classical derived category appears
in the statement of Kenji Lefévre-Hasegawa'’s theorem ‘incidentally’, due to the fact that he is working over a semisimple
base. In fact, the category that appears in its own right is the relative derived category.

10. The relative derived category regarded from the A -theory

The spirit of A, -theory (at least over a field) is to replace quasi-isomorphisms by homotopy equivalences, up to increasing
the amount of morphisms and/or the amount of objects. Key examples of that are:

(1) The ‘Théoréme des A,.-quasi-isomorphismes’ [30, Corollaire 1.3.1.3], which states that if k is a field, the category of dg k-
algebras up to quasi-isomorphisms is equivalent to the category of dg k-algebras (with A,.-morphisms) up to homotopy
equivalences of A, -algebras.

(2) The corresponding result for modules [30, Proposition 2.4.1.1], which states that if k is a field and A is an augmented
dg k-algebra, then the derived category of A is equivalent to the category of unital dg A-modules (with strictly unital
morphisms of A,.-modules) up to strictly unital homotopy equivalences of A,.-modules.

In the proofs of these results the presence of a base field has been crucial. The aim of this section is to present an analog of
the second one for an arbitrary commutative ring.

10.1. Using arbitrary As-modules

Let A be an augmented dg k-algebra, and let 7 : BA — A be the twisting cochain of Section 8. From the situation

V (not full)
CA——— Nod A

L R
T J/ Roo (fully faithful)

Com BA
where V takes a unital dg A-module M to M itself regarded as an A,.-module over A, we get an adjoint pair of functors

CA

Nody A

Notice that Nod, A inherits via R, a structure of Frobenius category (use the structure of Frobenius category of Com BA and
the cone of a morphism between A,,-modules [30, subsection 2.4.3]). Thus, we can consider the projective model structure
on Nod A (cf. Section 3.3) such that its associated homotopy category is the stable category Nod . A of Nod,, A up to homotopy
equivalences of A,,-modules. Consider also CA as a model category whose homotopy category is the relative derived category
DyeA (cf. Section 9.2).
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Theorem. The adjunction

CA

Nody A
is a Quillen equivalence. In particular, we have a triangle equivalence DA >~ Nod, A.

Proof. The only not straightforward step is to check that the unit of the adjunction ny € (Nods, A)(M, M ®.BA®.A) is a
weak equivalence in Nod, A. Since A is augmented, we have that (ny); : M - M ®;BA®.A is an inflation in the category
Ck of complexes over k (with the Frobenius structure given by the degreewise split short exact sequences). We can see that
its cokernel is contractible in Ck with the contracting homotopy induced by the map

(=DM @ (sx,50) @ 15, ifa # 1y,

Hm®sx®a) = 0 ifa=1,.

where sx is a homogeneous element of BA. Therefore (see e.g. [6, Lemme 4.18]) (1)) is a homotopy equivalence of complexes
over k, that is to say, its cone Cone ((1y)1) is a contractible complex. But this is the underlying complex of the cone Cone 1y
of ny, and by Obstruction Theory we conclude that Cone 1y, is a contractible A,.-module. In other words, 7, is a weak
equivalence in NodcA. O

Notice that the passage from CA to Nod,, A increases both the number of objects and of morphisms. However, it is not
necessary to increase the number of objects, as shown in the following result:
Corollary. DA is triangle equivalent to the category of unital dg A-modules (with morphisms of A,-modules) up to homotopy
equivalences of A.-modules.

Proof. Let C be the full subcategory of Nod,, A formed by the unital dg A-modules. It is an exact subcategory of Nod., A which
inherits a structure of Frobenius category. Then, the inclusion ¢ < Nod., A induces a fully faithful functor € <> Nod. A
which is essentially surjective. Indeed, given an A,,-module M over A, we know from the proof of the theorem above that
the unit of the adjunction (LR, V),

Mvu:M—> M®BAQA,
is a homotopy equivalence of A,,-modules, and so M = M ®; BA®; A in Nod_ A. Therefore,

DreiA = Nod A= C. O

10.2. Using strictly unital A,-modules

Let A be an augmented dg k-algebra. If we want strictly unital morphisms and homotopies of A..-modules to appear in the
description of DA from the viewpoint of A,.-theory, then we have to use a different coalgebra. Namely, if A is the reduction
of A, then we have to consider the bar construction BA of A instead of the bar construction BA of A. The coalgebra BA is a
counital dg coalgebra and the composition

T:BAL SAS A A
is a solution of the Maurer-Cartan equation of the dg algebra Hom? (BA, A). Hence, we have an adjunction

CA

LT lR
Com BA
We can complete the picture with the functor U : CA — Mod., A which takes a unital dg A-module M to M itself regarded as

a strictly unital Aoc—modulg over A, the equivalence ? : Mod., A — Nod,, A which takes a strictly gnital Aoo—rgodule M over A
to the A,-module M over A with restricted multiplications, and the bar construction R, : Nod,, A — Com BA. Then we have

U (not full) 7 _
CA—— > Mod A ——> Nody A

Roo (fully faithful)
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If 8y : LRM — M is the counit of the adjunction (L, R), we can prove that R(8),) is a homotopy equivalence of comodules
by using almost the same contracting homotopy as the one used in Section 8.1 (from which one can easily deduce the
contracting homotopy - in the category of complexes over k - of [30, Lemme 2.2.1.9]). Therefore, Theorem 3.3 tells us that
there exist certain model structures on CA and Com BA making (L, R) into a Quillen equivalence. It is easy to check that the
homotopy category HoCA is again the relative derive category D,.A. As before,

CA

LoRo?T l/ u

Mod o A

is an adjunction and Mod,, A is a Frobenius category with homotopies given by strictly unital homotopies of A,.-modules.
The proof of the following results are similar to those of the corresponding results above.

Theorem. The adjunction

CA

LoRoxo O?T \L u

Mod o A

is a Quillen equivalence. In particular, we have a triangle equivalence D,,A >~ Mod  A.

Corollary. D,.A is triangle equivalent to the category of unital dg A-modules (with morphisms of strictly unital A,.-modules) up
to strictly unital homotopy equivalences of A..-modules.
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