Note
 An application of linear species

Virgil Domocoș ${ }^{\mathbf{a}}$, William R. Schmitt ${ }^{\text {b }}{ }^{*}$

${ }^{\text {a }}$ University of Bucharest, Bucharest, Romamia
${ }^{\mathrm{b}}$ University of Memphis, Memphis, TN 38152, USA
Received 15 September 1992

Abstract

Combinatorial operations on linear species are used in order to obtain, in a simple manner, the identity $$
\frac{1}{1-\alpha x}=1+\sum_{k \geqslant 1} S(\alpha ; k) \frac{x^{k}}{1-x^{k}},
$$ where $S(\alpha ; k)$ denotes the number of aperiodic words of length k over an alphabet with α elements. The cyclotomic identity follows as an immediate corollary.

1. Introduction

In this note we use combinatorial operations on linear species in order to obtain some fundamental results on generating functions. Our main result is the identity

$$
\begin{equation*}
\frac{1}{1-\alpha x}=1+\sum_{k \geqslant 1} S(\alpha ; k) \frac{x^{k}}{1-x^{k}} \tag{1.1}
\end{equation*}
$$

where $S(\alpha ; k)$ denotes the number of aperiodic words of length k over an alphabet with α elements. As an immediate corollary of 1.1 we obtain the cyclotomic identity

$$
\frac{1}{1-\alpha x}=\prod_{j \geq 1}\left(\frac{1}{1-x^{j}}\right)^{M(x ; j)}
$$

where $M(\alpha ; j)$ denotes the number of aperiodic necklaces of length j over an alphabet having α letters (see [2]).

[^0]All species we consider here are linear species, i.e., functors from the category \mathbb{l} of finite linearly ordered sets and order preserving bijections to the category \mathbb{E} of finite sets and functions (see [1] for details). Notice that any object in \mathbb{L} is isomorphic in a unique manner to some ordered set $[n]=(1,2, \ldots, n), n \geqslant 0$. Hence \mathbb{L} is equivalent to the discrete category of non-negative integers, having only identity morphisms. Defining a lincar specics (\mathbb{L}-specics, for short) F is thus equivalent to giving a sequence of finite sets $(F[n])_{n \geqslant 0}$. For psychological reasons, however, we prefer to think of F as defining a set $F[E]$ of F-structures on any given linearly ordered set E.

The cardinality of an \mathbb{L}-species F is the formal series

$$
f(F, x)=\sum_{n \geqslant 0}|F[n]| x^{n},
$$

where $F[n]$ denotes the set of F-structures on $[n]$, and $|F[n]|$ denotes the cardinality of $F[n]$. We will write $F=G$, whenever F and G are isomorphic \mathbb{l}-species. It is clear that $f(F, x)=f(G, x)$ whenever F and G are isomorphic. The converse is true for 1 -species, but not for ordinary species (see [1]).

All sets considered in this paper will be finite. By an ordered set, we shall always mean a linearly ordered set.

2. Operations on linear species

We review here the operations on \mathbb{L}-species introduced in [1].
If F and G are \mathbb{L}-species, the sum $F+G$ is the \mathbb{L}-species defined by letting $(F+G)[E]$ be the disjoint union $F[E]+G[E]$, for any ordered set E. The product $F G$ is the ℓ-species defined by

$$
(F G)[E]=\sum_{E_{1}+E_{2}=E} F\left[E_{1}\right] \times G\left[E_{2}\right],
$$

where $E_{1}+E_{2}$ is the disjoint union of the ordered sets E_{1} and E_{2}, ordered by concatenation. The above sum is thus over all expressions for E as a concatenation of two disjoint (possibly empty) ordered sets.
If the \mathbb{L}-species G satisfies $G[\emptyset]=\emptyset$, then the composition $F \circ G$ is the $\mathbb{1}$-species defined by

$$
F \circ G[E]=\sum_{k \geqslant 0} \sum_{E_{1}+\cdots+E_{k}=E} F\left[\left(E_{1}, \ldots, E_{k}\right)\right] \times G\left[E_{1}\right] \times \cdots \times G\left[E_{k}\right],
$$

where $\left(E_{1}, \ldots, E_{k}\right)$ denotes the set $\left\{E_{1}, \ldots, E_{k}\right\}$ with the natural ordering.
It is straightforward to verify that cardinalities behave just as one would like with respect to these operations, i.e.,

$$
f(F+G, x)=f(F, x)+f(G, x),
$$

$$
f(F G, x)=f(F, x) f(G, x)
$$

for all \mathbb{L}-species F and G; if $G[\emptyset]=\emptyset$, then

$$
\begin{equation*}
f(F \circ G, x)=f(F, f(G, x)) \tag{2.1}
\end{equation*}
$$

A sequence F_{1}, F_{2}, \ldots of \mathbb{L}-species is summable if, for any ordered set E, there is some $k \geqslant 1$ (which depends only on $|E|$) such that $F_{n}[E]=\emptyset$, for all $n \geqslant k$. In this case, the sum $\sum_{n \geqslant 1} F_{n}$ is a well-defined \mathbb{L}-species, and $f\left(\sum F_{n}, x\right)=\sum f\left(F_{n}, x\right)$.

As an example, consider the singleton species $X: \mathbb{L} \rightarrow \mathbb{E}$ defined by

$$
X[E]= \begin{cases}\{E\} & \text { if }|E|=1 \\ \emptyset & \text { otherwise }\end{cases}
$$

It is easy to see that $f(X, x)=x$, and so $f\left(X^{n}, x\right)=f(X, x)^{n}=x^{n}$, for all $n \geqslant 1$. The \mathbb{L}-species $\sum_{k \geqslant 1} X^{n}$ is isomorphic to the \mathbb{L}-species of non-empty sets U_{0}, given by

$$
U_{0}[E]= \begin{cases}\{E\} & \text { if } E \neq \emptyset \\ \emptyset & \text { otherwise }\end{cases}
$$

Hence, $f\left(U_{0}, x\right)=\sum_{n \geqslant 1} f\left(X^{n}, x\right)=\sum_{n \geqslant 1} x^{n}=x /(1-x)$.

3. The cyclotomic identity

Let W_{α} and S_{α} be the \mathbb{Q}-species of non-empty words and aperiodic words, respectively, over an alphabet of cardinality α. Hence, for all $n \geqslant 0$,

$$
W_{\alpha}[n]= \begin{cases}\{f:[n] \rightarrow[\alpha]\} & \text { if } n \neq 0 \\ \emptyset & \text { if } n=0\end{cases}
$$

and

$$
S_{\alpha}[n]=\{f:[n] \rightarrow[\alpha]:(f(1), \ldots, f(n)) \text { is an aperiodic sequence }\} .
$$

By convention, $S_{\alpha}[\emptyset]=\emptyset$. Therefore

$$
\begin{equation*}
f\left(S_{\alpha}, x\right)=\sum_{n \geqslant 1} S(\alpha, n) x^{n} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(W_{\alpha}, x\right)=\sum_{n \geqslant 1} \alpha^{n} x^{n}=\frac{1}{1-\alpha x}-1 \tag{3.2}
\end{equation*}
$$

Our basic combinatorial result is the following:
Proposition 3.1. W_{α} and $K_{\alpha}=\sum_{n \geqslant 1}\left(S_{\alpha} \circ X^{n}\right)$ are isomorphic \mathbb{L}-species.

Proof. Let E be an ordered set. Then

$$
\begin{aligned}
K_{\alpha}[E] & =\sum_{n \geqslant 1} S_{\alpha} \circ X^{n}[E] \\
& =\sum_{n \geqslant 1} \sum_{k \geqslant 1} \sum_{E_{1}+\cdots+E_{k}=E} S_{\alpha}\left[\left(E_{1}, \ldots, E_{k}\right)\right] \times X^{n}\left[E_{1}\right] \times \cdots \times X^{n}\left[E_{k}\right] \\
& =\sum_{n \geqslant 1} \sum_{k \geqslant 1} \sum_{E_{1}+\cdots+E_{k}=E} S_{\alpha}\left[\left(E_{1}, \ldots, E_{k}\right)\right] \\
& =\sum_{n \geqslant 1 \mid} \sum_{n k=|E|} S_{\alpha}[k] \\
& =W_{\alpha}[E] .
\end{aligned}
$$

The equal signs above do not denote equality of sets, but designate natural bijections. The last of these bijections comes from the fact that any element w of $W_{\alpha}[n]$ can be written uniquely as $w=v^{n / k}$, for some $v \in S_{\alpha}[k]$, where k divides n.

We can now prove equation (1.1).
Theorem 3.2. For all $\alpha \geqslant 1$,

$$
\frac{1}{1-\alpha x}=1+\sum_{k \geqslant 1} S(\alpha ; k) \frac{x^{k}}{1-x^{k}} .
$$

Proof. By equations (3.1) and (2.1), we have

$$
f\left(S_{\alpha} \circ X^{n}, x\right)=\sum_{k \geqslant 1} S(\alpha ; k) x^{n k}
$$

Hence

$$
\begin{aligned}
f\left(K_{\alpha}, x\right) & =\sum_{n \geqslant 1} \sum_{k \geqslant 1} S(\alpha ; k) x^{n k} \\
& =\sum_{k \geqslant 1} S(\alpha ; k) \sum_{n \geqslant 1}\left(x^{k}\right)^{n} \\
& =\sum_{k \geqslant 1} S(\alpha ; k) \frac{x^{k}}{1-x^{k}} .
\end{aligned}
$$

Therefore, by Proposition (3.1) and equation (3.2),

$$
1+\sum_{k \geqslant 1} S(\alpha ; k) \frac{x^{k}}{1-x^{k}}=1+f\left(K_{\alpha}, x\right)
$$

$$
\begin{aligned}
& =1+f\left(W_{a}, x\right) \\
& =\frac{1}{1-\alpha x}
\end{aligned}
$$

Corollary 3.3 (The cyclotomic identity). For all $\alpha \geqslant 1$,

$$
\frac{1}{1-\alpha x}=\prod_{j \geqslant 1}\left(\frac{1}{1-x^{j}}\right)^{M(\alpha ; j)}
$$

Proof. From Theorem (3.2) and the fact that $k M(\alpha ; k)=S(\alpha ; k)$, we have

$$
\frac{\alpha}{1-\alpha x}=\sum_{k \geqslant 1} M(\alpha ; k) \begin{aligned}
& k x^{k-1} \\
& 1-\overline{x^{k}}
\end{aligned}
$$

Integrating both sides with respect to x, we obtain

$$
\ln \left(\frac{1}{1-\alpha x}\right)=C+\sum_{k \geqslant 1} M(\alpha ; k) \ln \left(\frac{1}{1-x^{k}}\right)
$$

for some constant C. Hence, by exponentiating,

$$
\frac{1}{1-\alpha x}=e^{c} \prod_{k \geqslant 1}\left(\frac{1}{1-x^{k}}\right)^{M(\alpha ; k)} .
$$

By setting $x=0$ we see that $C=0$. Thus the identity follows.

References

[1] A. Joyal, Une théorie combinatoire des séries formelles, Adv. in Math. 42 (1981) 1-82.
[2] N. Metropolis and G.-C. Rota, Witt vectors and the algebra of necklaces, Adv. in Math. 50 (1983) 95-125.

[^0]: * Corresponding author.

