Acyclic 5-choosability of planar graphs without 4-cycles

Min Chen, Weifan Wang*

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

Received 10 July 2007; received in revised form 23 November 2007; accepted 24 November 2007

Available online 12 February 2008

Abstract

A proper vertex coloring of a graph \(G = (V, E) \) is acyclic if \(G \) contains no bicolored cycle. A graph \(G \) is acyclically \(L \)-list colorable if for a given list assignment \(L = \{L(v) : v \in V\} \), there exists a proper acyclic coloring \(\pi \) of \(G \) such that \(\pi(v) \in L(v) \) for all \(v \in V \). If \(G \) is acyclically \(L \)-list colorable for any list assignment with \(|L(v)| \geq k \) for all \(v \in V \), then \(G \) is acyclically \(k \)-choosable. In this paper we prove that every planar graph without 4-cycles and without two 3-cycles at distance less than 3 is acyclically 5-choosable. This improves a result in [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (2006) 281–300], which says that planar graphs of girth at least 5 are acyclically 5-choosable.

Keywords: Planar graphs; Acyclic coloring; Choosable; Cycle

1. Introduction

Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). A proper vertex coloring of \(G \) is an assignment \(\pi \) of integers (or labels) to the vertices of \(G \) such that \(\pi(u) \neq \pi(v) \) if two vertices \(u \) and \(v \) are adjacent in \(G \). A \(k \)-coloring is a proper vertex coloring using \(k \) colors. A proper vertex coloring of a graph is acyclic if there is no bicolored cycle in \(G \). The \textit{acyclic chromatic number}, denoted by \(\chi_a(G) \), of a graph \(G \) is the smallest integer \(k \) such that \(G \) has an acyclic \(k \)-coloring.

The acyclic coloring of graphs were introduced by Grünbaum in [5] and studied by Mitchem [8], Albertson and Berman [1] and Kostochka [6]. In 1979, Borodin [2] proved Grünbaum’s conjecture that every planar graph is acyclically 5-colorable. This bound is the best possible. In 1973, Grünbaum [5] gave an example of 4-regular planar graph which is not acyclically 4-colorable. Furthermore, bipartite planar graphs which are not acyclically 4-colorable were constructed in [7]. Borodin, Kostochka and Woodall [4] proved that every planar graph of girth at least 7 is acyclically 3-colorable and every planar graph of girth at least 5 is acyclically 4-colorable. We recall that the girth of a graph \(G \) is the length of its shortest cycle.

A graph \(G \) is \textit{acyclically \(L \)-list colorable} if for a given list assignment \(L = \{L(v) : v \in V\} \), there is an acyclic coloring \(\pi \) of the vertices such that \(\pi(v) \in L(v) \). We say that \(\pi \) is an \(L \)-coloring of \(G \). If \(G \) is acyclically \(L \)-list

* Research supported partially by NSFC (No. 10771197).

* Corresponding author.

E-mail address: wwf@zjnu.cn (W. Wang).

0012-365X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2007.11.076
colorable for any list assignment L with $|L(v)| \geq k$ for all $v \in V$, then G is acyclically k-choosable. The acyclic list chromatic number of G, $\chi_a^l(G)$, is the smallest integer k such that G is acyclically k-choosable.

Borodin et al. [3] first investigated the acyclically list coloring of planar graphs to show that every planar graph is acyclically 7-choosable. They also put forward the following challenging conjecture:

Conjecture 1. Every planar graph is acyclically 5-choosable.

If Conjecture 1 were true, then it would strengthen the Borodin’s acyclically 5-colorable theorem and the Thomassen’s 5-choosable theorem [12] about planar graphs.

By investigating the maximum average degree of graphs, Montassier, Ochem, and Raspaud [9] showed that if G is a planar graph with girth g then $\chi_a^l(G) \leq 3$ if $g \geq 8$, $\chi_a^l(G) \leq 4$ if $g \geq 6$, and $\chi_a^l(G) \leq 5$ if $g \geq 5$. Some sufficient conditions for a planar graph to be acyclically 4-choosable were established in [10]. Recently, Montassier, Raspaud and Wang [11] proved that every planar graph G without 4-cycles and 5-cycles, or without 4-cycles and 6-cycles is acyclically 5-choosable.

To attack Conjecture 1, we would like to put forward the following weak version about this conjecture:

Conjecture 2. Every planar graph without 4-cycles is acyclically 5-choosable.

Let us consider the acyclic 5-choosability of planar graphs G having neither 4-cycles nor 3-cycles at distance d. Obviously, the case $d = 0$ corresponds to Conjecture 2. The case $d = \infty$ means that G is a planar graph with girth at least 5, which is shown to be acyclically 5-choosable [9]. In this paper, we handle the case $d = 3$. More precisely, we will prove the following result:

Theorem 1. Every planar graph without 4-cycles and without triangles at distance less than 3 is acyclically 5-choosable.

Our result partially confirms Conjecture 1 and gives an improvement to a result in [9].

2. Notation

Only simple graphs are considered in this paper. A plane graph is a particular drawing of a planar graph in the Euclidean plane. For a plane graph G, we denote its face set by $F(G)$. k-vertex, k^+-vertex and k^--vertex are vertices of degree k, at least k and at most k, respectively. Similarly, we can define k-face, k^+-face, k^--face, etc. We say that two cycles (or faces) are adjacent if they share at least one common edge. A triangle is synonymous with a 3-cycle. Usually, a face $f \in F(G)$ is written as $f = [u_1u_2 \cdots u_n]$ if u_1, u_2, \ldots, u_n are the boundary vertices of f in a cyclic order. For a vertex $v \in V(G)$ and an integer $i \geq 1$, let $n_i(v)$ denote the number of i-vertices adjacent to v. For a face $f \in F(G)$ and an integer $j \geq 2$, let $n_j(f)$ denote the number of j-vertices incident to f. For $x \in V(G) \cup F(G)$, let $t(x)$ denote the number of 3-faces adjacent or incident to x. Let $N(v)$ denote the set of neighbors of a vertex v.

A 3-face $f = [v_1v_2v_3]$ is called an (a_1, a_2, a_3)-face if the degree of the vertex v_i is a_i for $i = 1, 2, 3$. An edge uv is a (b_1, b_2)-edge if $d(u) = b_1$ and $d(v) = b_2$. A 3-vertex v is light if it is incident to a 3-face. If a vertex v is adjacent to a 3-vertex u such that the edge uv is not incident to any 3-face, then we say u a pendant 3-vertex of v. A pendant light 3-vertex is a light and pendant 3-vertex. If v is a pendant light 3-vertex which is incident to an (a_1, a_2, a_3)-face, then we call v a pendant light (a_1, a_2, a_3)-vertex. Let $p_3(v)$ denote the number of pendant light 3-vertices of a vertex v. For a pendant light 3-vertex u of v, if $d(v) = 4$ and u is a pendant light $(3, 5^+, 5^+)$-vertex, then we call u a bad pendant light 3-vertex of v.

Suppose that $f = [uvwxyz \cdots]$ is a face of degree at least 5 such that $d(w) = 2$, $d(v) \geq 6$ and $d(x) = 3$. We say that f is a heavy face of the edge uv if one of the following conditions holds:

1. $d(y) = 3$;
2. $d(y) = 4$, $d(z) \geq 5$, and yz lies on a 3-face that is adjacent to f.

3. Structural properties

Suppose that G is a counterexample to Theorem 1 with the least vertices. Then the following Lemma 1 holds, whose proof was provided in [11]:
Lemma 1. (C1) There are no 1-vertices.
(C2) No 2-vertex is adjacent to a 4-vertex.
(C3) Let \(v \) be a 3-vertex. Then
 - (C3.1) If \(v \) is adjacent to a 3-vertex, then \(v \) is not adjacent to other 4-vertex;
 - (C3.2) \(v \) is not adjacent to any pendant light 3-vertex.
(C4) Let \(v \) be a 5-vertex. Then
 - (C4.1) \(v \) is adjacent to at most one 2-vertex;
 - (C4.2) If \(n_2(v) = 1 \), then \(v \) is not adjacent to any pendant light 3-vertex.
(C5) Let \(v \) be a 6-vertex. Then
 - (C5.1) \(v \) is adjacent to at most four 2-vertices;
 - (C5.2) If \(n_2(v) = 4 \), then \(v \) is not adjacent to any 3-vertex.
(C6) Each 7-vertex is adjacent to at most five 2-vertices.
(C7) No 3-face \([xyz]\) with \(d(x) \leq d(y) \leq d(z) \) satisfies one of the following:
 - (C7.1) \(d(x) = 2 \);
 - (C7.2) \(d(x) = d(y) = 3 \) and \(d(z) \leq 5 \);
 - (C7.3) \(d(x) = 3 \) and \(d(y) = d(z) = 4 \).
(C8) There is no 5-face \([x_1x_2 \cdots x_5]\) with \(d(x_1) = 2 \), \(d(x_2) = 5 \) and \(d(x_3) = 3 \).

In what follows, let \(L \) be a list assignment of \(G \) with \(|L(v)| = 5 \) for all \(v \in V(G) \).

Lemma 2. Suppose that \(v \) is a pendant light 3-vertex of \(v_3 \), i.e., \(f = [vuyv] \) is a 3-face. Then
 - (A1) \(d(v_3) \geq 4 \);
 - (A2) If \(d(v_3) = 4 \), then \(d(v_1), d(v_2) \geq 5 \).

Proof. (A1) Suppose to the contrary that \(d(v_3) \leq 3 \). Let \(u_1, \ldots, u_k \) be the neighbors of \(v_3 \) different from \(v \). Then \(k \leq 2 \). By the minimality of \(G \), \(G - v \) admits an acyclic \(L \)-coloring \(\pi \). Clearly, \(\pi(v_1) \neq \pi(v_2) \), since \(v_1 \) is adjacent to \(v_2 \) in \(G - v \). If \(v_1, v_2 \) and \(v_3 \) have mutually distinct colors, then we color \(v \) with a color different from the colors of its neighbors (i.e., a proper coloring). Otherwise, by the symmetry, we may suppose \(\pi(v_1) = \pi(v_2) \). Color \(v \) with a color in \(L(v) \setminus \{\pi(v_1), \pi(v_2), \pi(u_1), \ldots, \pi(u_k)\} \). Since \(k \leq 2 \), the resulting coloring is an acyclic \(L \)-coloring of \(G \). This contradicts the choice of \(G \).

(A2) Without loss of generality, assume that \(d(v_3) \leq 4 \). Let \(w_1, w_2 \) and \(w_3 \) be the neighbors of \(v_3 \) different from \(v \), and \(u_1, \ldots, u_m \) be the neighbors of \(v_1 \) different from \(v \) and \(v_2 \). Clearly, \(m \leq 2 \). By the minimality of \(G \), \(G - v \) admits an acyclic \(L \)-coloring \(\pi \). If \(v_1, v_2 \) and \(v_3 \) have mutually distinct colors, it is enough to color \(v \) properly. If \(\pi(v_1) = \pi(v_3) \), we color \(v \) with a color \(c \in L(v) \setminus \{\pi(v_1), \pi(v_2), \pi(u_1), \ldots, \pi(u_m)\} \).

Now, we assume that \(\pi(v_2) = \pi(v_3) \) and \(L(v) = \{1, 2, \ldots, 5\} \). If there exists a color \(c \in L(v) \setminus \{\pi(v_1), \pi(v_2), \pi(u_1), \pi(u_2), \pi(w_2), \pi(w_3)\} \), then we color \(v \) with \(c \). Otherwise, we may suppose that \(\pi(u_1) = 1, \pi(v_2) = \pi(v_3) = 2, \pi(u_1) = 3, \pi(u_2) = 4 \) and \(\pi(w_3) = 5 \). If \(L(v_3) \neq L(v) \), we recolor \(v_3 \) with a color in \(L(v_3) \setminus L(v) \) and reduce to the previous case. Otherwise, we recolor \(v_3 \) with 1 and again reduce to the previous case.

Lemma 3. Suppose that \(v \) is a 5-vertex with \(n_2(v) = 1 \). If \(v \) is incident to a 3-face \(f \), then \(n_3(f) = 0 \).

Proof. Let \(v_1, v_2, \ldots, v_5 \) be the neighbors of \(v \) with \(d(v_1) = 2 \) and \(N(v_1) = \{v, u_1\} \). Assume that \(v \) is incident to a 3-face \(f = [vuvv] \) such that \(n_3(f) \geq 1 \). By (C7.2), we derive that \(n_3(f) = 1 \), say \(d(v_2) = 3 \). Let \(x_2 \) be the neighbor of \(v_2 \) different from \(v \) and \(v_3 \). By the minimality of \(G \), \(G - v \) has an acyclic \(L \)-coloring \(\pi \). Suppose that \(L(v_1) = \{1, 2, 3, 4, 5\} \). If \(\pi(u_1) \neq \pi(v) \), we color properly \(v_1 \). Otherwise, if \(v_1 \) cannot be acyclically colored, we may assume that \(\pi(v) = \pi(u_1) = \pi(v_2) = 1, \pi(v) = i \) for \(i = 2, 3, 4, 5 \). If \(L(v) \neq L(v_1) \), we recolor \(v \) with a color in \(L(v) \setminus L(v_1) \) and then give \(v_1 \) a proper coloring. If \(L(v) = L(v_1) \), we recolor \(v \) with 2 and color \(v_1 \) with 3, then recolor \(v_2 \) with a color different from 1, 2 and 3. □

In the following proofs of Lemmas 4 and 5, we let \(v_1, v_2, \ldots, v_d(v) \) be the neighbors of the vertex \(v \) considered. If \(v_1 \) is a 2-vertex, we use \(u_i \) to denote the neighbor of \(v_j \) different from \(v \). If \(v_j \) is a 3-vertex, we use \(x_j \) and \(y_j \) to denote the neighbors of \(v_j \) different from \(v \).
Lemma 4. Suppose that v is a 6-vertex. Then the following hold:

(B1) If $n_2(v) = 2$ and v is incident to a (3, 3, 6)-face, then $n_3(v) \leq 2$;

(B2) If $n_2(v) = 3$, then $n_3(v) \leq 1$;

(B3) If $n_2(v) = 4$, then $t(v) = 0$.

Proof. (B1) Suppose that v_1, v_2 are 2-vertices, v_3, v_4, v_5 are 3-vertices such that $[v_3v_4]$ is a 3-face. Let $N(v_3) = \{v_1, v_4, x_3\}$ and $N(v_4) = \{v_3, x_4\}$. By the minimality of G, $G - \{v_1, v_2, v_3, v_4\}$ admits an acyclic L-coloring π.

If $\pi(v_5) \neq \pi(v_6)$, there exists a color $c \in L(v) \setminus \{\pi(v_5), \pi(v_6)\}$ which appears at most once on the set $\{u_1, u_2, x_3, x_4\}$. So we color v with c. If $\pi(u_1) = c$, we further color v_1 with a color different from c, $\pi(v_5)$, $\pi(v_6)$ and then give a proper coloring for v_2, v_3, v_4. If $\pi(x_3) = c$, we color v_3 with a color different from $\pi(v_5)$, $\pi(v_6)$, $\pi(v)$, then color v_4 with a color in $L(v) \setminus \{c, \pi(x_4), \pi(v_3)\}$, and finally give a proper coloring for v_1 and v_2.

Now, we suppose that $\pi(v_5) = \pi(v_6)$. If $\pi(x_3) \neq \pi(x_5)$, we recolor v_5 with a color in $L(v) \setminus \{\pi(x_5), \pi(x_3), \pi(v_3)\}$ and reduce the argument to the previous case. Otherwise, since $|L(v) \setminus \{\pi(v_5), \pi(x_3)\}| \geq 3$, the proof can also be given with a similar argument to the previous case.

(B2) Assume to the contrary that v_1, v_2, v_3 are 2-vertices and v_4, v_5 are 3-vertices. Let π be an acyclic L-coloring of $G - \{v_1, v_2, v_3\}$. Let $\alpha = |\{\pi(v_4), \pi(v_5), \pi(v_6)\}|$. We only need to handle the following three cases:

(a) $\alpha = 3$. There is a color $c \in L(v) \setminus \{\pi(v_4), \pi(v_5), \pi(v_6)\}$ appearing at most once on $\{u_1, u_2, u_3\}$, e.g., $\varphi(u_1) = c$.

We color v with c, v_1 with a color in $L(v_1) \setminus \{\pi(v_4), \pi(v_5), \pi(v_6), c\}$ and then give a proper coloring for v_2 and v_3.

(b) $\alpha = 2$. It suffices to discuss the following two situations.

(b1) $\pi(u_4) = \pi(v_5)$. If $\pi(x_4) \neq \pi(x_5)$, we recolor v_4 with a color different from $\{\pi(x_4), \pi(x_5), \pi(v_4), \pi(v_6)\}$ and go back to the former case. If $\pi(x_4) \neq \pi(x_5)$, we have a similar argument. Now assume that $\pi(x_4) = \pi(x_5) = \pi(v_5)$.

There exists a color $c \in L(v) \setminus \{\pi(v_4), \pi(v_6), \pi(x_4)\}$ appearing at most once on $\{u_1, u_2, u_3\}$, say $\pi(u_1) = c$. We color v with c, v_1 with a color different from that of u_1, v_4, u_6, x_4, and give a proper coloring for v_2 and v_3.

(b2) $\pi(v_5) = \pi(v_6)$. If $\pi(x_3) \neq \pi(x_5)$, we do a similar recoloring for v_5 and then reduce to the previous case. Otherwise, since $|L(v) \setminus \{\pi(v_4), \pi(v_5), \pi(x_5)\}| \geq 2$, we also have a similar discussion as above.

(c) $\alpha = 1$. This means that $\pi(v_4) = \pi(v_5) = \pi(v_6)$. Similarly, we may assume that $\pi(x_4) = \pi(x_5)$ and $\pi(x_5) = \pi(y_5)$. Now, since $|L(v) \setminus \{\pi(v_4), \pi(x_4), \pi(x_5)\}| \geq 2$, we can reduce the proof to the previous case.

(B3) Assume to the contrary that v_1, v_2, v_3, v_4 are 2-vertices and $[v_1v_2v_3]$ is a 3-face. Let π be an acyclic L-coloring of $G - \{v_1, v_2, v_3\}$. Obviously, $\pi(v_5) \neq \pi(v_6)$. There exists a color $c \in L(v) \setminus \{\pi(v_5), \pi(v_6)\}$ appearing at most once on $\{u_1, u_2, u_3, u_4\}$. The remaining argument is similar to the previous case.

Lemma 5. Let v be a 7-vertex. Then

(F1) If $n_2(v) = 4$, then $n_3(v) \leq 2$;

(F2) If $n_2(v) = 5$, then $n_3(v) = 0$ and $t(v) = 0$.

Proof. (F1) Assume to the contrary that v_1, v_2, v_3, v_4 are 2-vertices and v_5, v_6, v_7 are 3-vertices. By the minimality of G, $G - \{v_1, v_2, v_3, v_4\}$ has an acyclic L-coloring φ. Suppose that $L(v) = \{1, 2, \ldots, 5\}$. Let $\beta = |\{\varphi(v_5), \varphi(v_6), \varphi(v_7)\}|$. We consider the following possibilities:

(a) $\beta = 3$. This means that v_5, v_6, v_7 are colored with mutually distinct colors. If there exists a color $c \in L(v) \setminus \{\varphi(v_5), \varphi(v_6), \varphi(v_7)\}$ appearing at most once on $\{u_1, u_2, u_3, u_4\}$, we have a similar argument to the previous case. Otherwise, we may suppose that $\varphi(v_5) = 1, \varphi(v_6) = 2, \varphi(v_7) = 3, \varphi(u_1) = \varphi(u_2) = 4$ and $\varphi(u_3) = \varphi(u_4) = 5$.

If $4 \notin \{\varphi(x_j), \varphi(y_j)\}$ for some fixed $j \in \{5, 6, 7\}$, say $j = 5$, then we color v with 4, v_1 with a color different from 2, 3, 4, and v_2 with a color different from 2, 3, 4, $\varphi(u_1)$, and give a proper coloring for v_3 and v_4. Suppose that $4 \in \{\varphi(x_j), \varphi(y_j)\}$ for all $j \in \{5, 6, 7\}$, and similarly $5 \in \{\varphi(x_j), \varphi(y_j)\}$ all $j \in \{5, 6, 7\}$. This shows that $\varphi(x_j), \varphi(y_j) = \{4, 5\}$ for all $j = 5, 6, 7$. In this case, we color v with 1, recolor v_5 with a color different from 1, 4, 5 and then give a proper coloring for v_1, v_2, v_3, v_4.

(b) $\beta = 2$. Without loss of generality, we assume that $\varphi(v_5) = \varphi(v_6) = 1$ and $\varphi(v_7) = 2$. If $\varphi(x_3) \neq \varphi(y_3)$ or $\varphi(x_6) \neq \varphi(y_6)$, we can recolor v_5 or v_6 to reduce to the previous case (a). Thus, suppose $\varphi(x_3) = \varphi(y_3)$ and $\varphi(x_6) = \varphi(y_6)$. There exists a color $c \in L(v) \setminus \{1, 2, \varphi(x_3)\}$ appearing at most twice on $\{u_1, u_2, u_3, u_4\}$, say $\varphi(u_1) = \varphi(u_2) = c$. We color v with c, v_1 with a color different from 1, 2, c, v_2 with a color different from 1, 2, c, $\varphi(u_1)$, and give a proper coloring for v_3 and v_4.

(c) $\beta = 1$. This means that $\pi(v_5) = \pi(v_6) = \pi(v_7)$. If there exists $j \in \{5, 6, 7\}$ such that $\pi(x_j) \neq \pi(y_j)$, then we recolor v_j to reduce to the former case. Otherwise, we have that $\pi(x_j) = \pi(y_j)$ for all $j \in \{5, 6, 7\}$. There exists a color $c \in L(v) \setminus \{\pi(v_5), \pi(x_5), \pi(x_6)\}$ appearing at most twice on $\{u_1, u_2, u_3, u_4\}$, say $\pi(u_1) = \pi(u_2) = c$. We color v with c, v_1 with a color in $L(v_1) \setminus \{\pi(v_5), c\}$, v_2 with a color different from $\{\pi(v_5), c, \pi(v_1)\}$, then properly color v_3 and v_4.

(F2) The proof is analogous to that of (C5.2) and (B3). \qed

Lemma 6. Every 8-vertex is adjacent to at most six 2-vertices.

Proof. The proof is similar to (C6) in Lemma 1. \qed

4. Discharging process

In order to complete the proof, we suppose that G is a counterexample to Theorem 1 with the least vertices. Let L be a list assignment such that $|L(v)| = 5$ for all $v \in V(G)$. Thus, G satisfies Lemma 1 to 6.

Using Euler’s formula $|V(G)| - |E(G)| + |F(G)| = 2$ and the relation $\sum_{v \in V(G)} d(v) = \sum_{f \in F(G)} d(f) = 2|E(G)|$, we can derive the following identity:

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8. \quad (1)$$

We define a weight function w by $w(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$. It follows from identity (1) that the total sum of weights is equal to -8. We design appropriate discharging rules and redistribute weights accordingly. Once the discharging is finished, a new weight function w' is produced. However, the total sum of weights is kept fixed when the discharging is in process. Nevertheless, after the discharging is complete, the new weight function $w'(x) \geq 0$ for all $x \in V(G) \cup F(G)$. This leads to the following obvious contradiction,

$$0 \leq \sum_{x \in V(G) \cup F(G)} w'(x) = \sum_{x \in V(G) \cup F(G)} w(x) = -8. \quad (2)$$

For $x, y \in V(G) \cup F(G)$, let $\tau(x \to y)$ denote the amount of weights transferred from x to y. Suppose that $f = [v_1v_2v_3]$ is a 3-face with $d(v_1) \leq d(v_2) \leq d(v_3)$. We use $(d(v_1), d(v_2), d(v_3)) \to (c_1, c_2, c_3)$ to denote that the vertex v_i gives f the amount of weight c_i for $i = 1, 2, 3$.

Our discharging rules are as follows:

(R1) Let $f = [v_1v_2v_3]$ be a 3-face with $d(v_1) \leq d(v_2) \leq d(v_3)$. We set

$$(3, 3, 6^+) \to \left(\frac{1}{6}, \frac{1}{6}, \frac{2}{3}\right);$$

$$(3, 4, 5^+) \to \left(\frac{1}{3}, 0, \frac{1}{3}\right);$$

$$(3, 5^+, 5^+) \to \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right);$$

$$(4, 4, 5^+) \to \left(0, 0, \frac{1}{3}\right);$$

$$(4, 5^+, 5^+) \to \left(0, \frac{1}{6}, \frac{1}{6}\right);$$

$$(5^+, 5^+, 5^+) \to \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right).$$

(R2) Let v be a 2-vertex adjacent to a vertex u.

If $d(u) = 5$, then $\tau(u \to v) = \frac{1}{2}$.
If \(d(u) \geq 6 \), we set

\[
\tau(u \rightarrow v) = \begin{cases}
\frac{5}{6} & \text{if } vu \text{ is incident to two heavy faces;} \\
\frac{2}{3} & \text{if } vu \text{ is incident to exactly one heavy face;} \\
\frac{1}{2} & \text{if } vu \text{ is not incident to any heavy faces.}
\end{cases}
\]

(R3) Each \(5^+ \)-vertex \(v \) gives \(\frac{1}{2} \) to each adjacent pendant light \((3, 4, 5^+) \)-vertex, \(\frac{1}{3} \) to each other pendant light \(3 \)-vertex, and \(\frac{1}{6} \) to each adjacent \(3 \)-vertex \(u \) such that the edge \(uv \) is incident to a \(3 \)-face.

(R4) Let \(f \) be a \(5^+ \)-face. Then

(R4.1) \(f \) gives \(\frac{1}{2} \) to each adjacent \(3 \)-face through a common \((4, 4^+) \)-edge, \(\frac{1}{2} \) to each incident bad pendant light \(3 \)-vertex, \(\frac{1}{2} \) to each other incident \(3 \)-vertex.

(R4.2) If \(f \) is incident to a \(2 \)-vertex \(v \), then \(\tau(f \rightarrow v) = \frac{1}{2} \) if \(f \) is a heavy face of \(vu \), where \(u \) is a neighbor of \(v \) in the boundary of \(f \); Otherwise, \(\tau(f \rightarrow v) = \frac{1}{3} \).

Let \(f \in F(G) \). Since \(G \) contains no \(4 \)-cycles, \(d(f) \neq 4 \). The proof is divided into the following cases.

1. \(d(f) = 3 \). Then \(w(f) = -1 \). Let \(f = [xyz] \) such that \(d(x) \leq d(y) \leq d(z) \). Since \(G \) has no \(4 \)-cycles, \(f \) is not adjacent to any \(3 \)-face. Thus, each of the faces adjacent to \(f \) is of degree at least 5. By (C7.1), we derive that \(d(x) \geq 3 \).

(1.1) Assume that \(d(x) = 3 \). If \(d(y) = 3 \), then by (C7.2), \(d(z) \geq 6 \), and hence by (R1), \(w'(f) \geq -1 + \frac{1}{6} \times 2 + \frac{2}{3} = 0 \).

If \(d(y) = 4 \), then \(z \) is a \(5^+ \)-vertex by (C7.3), and hence \(w'(f) \geq -1 + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 0 \) by (R1) and (R4.1). If \(d(y) \geq 5 \), then \(w'(f) \geq -1 + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = 0 \) by (R1).

(1.2) Assume that \(d(x) \geq 4 \). If \(d(x) \geq 5 \), then \(f \) is a \((5^+, 5^+, 5^+) \)-face and therefore \(w'(f) \geq -1 + \frac{1}{3} \times 3 = 0 \) by (R1). So suppose that \(d(x) = 4 \). If at least one of \(y \) and \(z \) is a \(4 \)-vertex, then by (R1) and (R4), \(w'(f) \geq -1 + \frac{1}{4} \times 2 = 0 \). Otherwise, it follows that \(d(z) \geq d(y) \geq 5 \), and \(w'(f) \geq -1 + \frac{1}{3} \times 2 = 0 \) by (R1) and (R4).

2. \(d(f) = 5 \). Then \(w(f) = 1 \). Let \(f = [x_1x_2 \cdots x_5] \). By (C2) and (C3.1), we have \(n_2(f) \leq 2 \), and \(n_2(f) + n_3(f) \leq 3 \).

Since the distance between any two triangles is at least 3, \(t(f) \leq 1 \).

(2.1) Assume that \(t(f) = 0 \). If \(n_2(f) + n_3(f) \leq 2 \), we have \(w'(f) \geq 1 - \frac{1}{3} \times 2 = 0 \) by (R4). So suppose that \(n_2(f) + n_3(f) = 3 \). When \(n_2(f) = 2 \), it is easy to see that \(n_3(f) = 0 \) by (C2). Thus, suppose that \(n_2(f) \leq 1 \).

If \(n_2(f) = 0 \), then \(n_3(f) = 3 \). By (C3.1), \(f \) is not incident to any bad pendant light \(3 \)-vertex. Thus, \(w'(f) \geq 1 - \frac{1}{3} \times 3 = 0 \) by (R4.1).

If \(n_2(f) = 1 \), then \(n_3(f) = 2 \). Without loss of generality, we assume that \(d(x_1) = 2 \). It follows from (C2) and (C8) that \(d(x_2), d(x_3) \geq 6 \) and \(d(x_4) = d(x_5) = 3 \), implying that \(f \) is a heavy face of the edge \(x_1x_5 \). By (R4.2), \(\tau(f \rightarrow x_1) \leq \frac{1}{2} \). Noting that neither \(x_3 \) nor \(x_4 \) is a bad pendant light \(3 \)-vertex, we have \(w'(f) \geq 1 - \frac{1}{3} \times 3 = 0 \) by (R4.1).

(2.2) Assume that \(t(f) = 1 \) and \(f' = [x_1x_2x^*] \) is a \(3 \)-face. Then none of \(x_3, x_4, x_5 \) is a bad pendant light \(3 \)-vertex, since the distance between any two triangles is at least 3.

(2.2.1) Suppose that \(n_2(f) = 0 \). We consider three subcases as follows:

If \(d(x_1), d(x_2) \geq 4 \), at most two of \(x_3, x_4, x_5 \) are \(3 \)-vertices, and thus \(w'(f) \geq 1 - \frac{1}{3} \times 3 = 0 \) by (R4.1).

If exactly one of \(x_1 \) and \(x_2 \) is a \(3 \)-vertex, say \(d(x_1) = 3 \), then \(d(x_3) \geq 4 \) by (A1). If \(d(x_3) = d(x_4) = 3 \), then \(x_1 \) is not a bad pendant light \(3 \)-vertex by (C3.1). Thus, \(w'(f) \geq 1 - \frac{1}{3} \times 3 = 0 \) by (R4.1). Otherwise, at most one of \(x_3 \) and \(x_4 \) is a \(3 \)-vertex, we have \(w'(f) \geq 1 - \frac{1}{3} - \frac{1}{3} = \frac{1}{3} \) by (R4.1).

If \(d(x_1) = d(x_2) = 3 \), then neither \(x_1 \) nor \(x_2 \) is a bad pendant light \(3 \)-vertex. Both \(x_3 \) and \(x_5 \) are \(5^+ \)-vertices. Thus, \(w'(f) \geq 1 - \frac{1}{3} \times 3 = 0 \) by (R4.1).

(2.2.2) Suppose that \(n_2(f) = 1 \). Then exactly one of \(x_3, x_4, x_5 \) is a \(2 \)-vertex. By symmetry, we consider the following subcases:

Assume that \(d(x_1), d(x_2) \geq 4 \). We consider, without loss of generality, two cases: (a) \(d(x_4) = 2 \). It is easy to see that both \(x_3 \) and \(x_5 \) are \(5^+ \)-vertices by (C2). Thus, \(n_3(f) = 0 \) and \(w'(f) \geq 1 - \frac{1}{3} - \frac{1}{3} = \frac{1}{6} \).
by (R4); (b) \(d(x_3) = 2\). Then \(d(x_1), d(x_4) \geq 5\) by (C2). If \(d(x_3) \geq 4\), then \(w'(f) \geq 1 - \frac{1}{3} - \frac{1}{3} = \frac{1}{6}\) by (R4). Otherwise, \(d(x_3) = 3\) and \(d(x_4) \geq 6\) by (C8). If \(d(x_2) \geq 5\), then \(f\) gives nothing to \(f'\) and hence
\[w'(f) \geq 1 - \frac{1}{3} - \frac{1}{3} = \frac{1}{3}\]
by (R4). If \(d(x_2) = 4\), then \(f\) is a heavy face of the edge \(x_4x_5\). By (R4.2),
\(\tau(f \rightarrow x_5) \leq \frac{1}{3}\) and consequently \(w'(f) \geq 1 - \frac{1}{3} - \frac{1}{3} = 0\) by (R4).

Assume that \(d(x_1) = 3\) and \(d(x_2) \geq 4\). It follows that \(d(x_3) \geq 4\) by (A1) and \(\tau(f \rightarrow f') = 0\) by our rules. Thus, \(w'(f) \geq 1 - \frac{1}{3} - \frac{1}{3} = 0\) by (R4).

Assume that \(d(x_1) = d(x_2) = 3\). This implies that \(d(x_4) = 2\) and \(d(x_3), d(x_5) \geq 6\). Moreover, \(f\) is a heavy face of \(x_3x_4\) and \(\tau(f \rightarrow x_i) \leq \frac{1}{3}\) for \(i = 1, 2\). Thus, \(w'(f) \geq 1 - \frac{1}{3} \times 3 = 0\) by (R4).

(2.2.3) Suppose that \(n_2(f) = 2\). It is immediate to see that \(d(x_3) = d(x_5) = 2\) and \(d(x_1), d(x_2), d(x_4) \geq 5\) by (C2). Thus, \(\tau(f \rightarrow f') = 0\) and \(w'(f) \geq 1 - \frac{1}{2} \times 2 = 0\) by (R4).

3. \(d(f) \geq 6\). Let \(f = [v_1v_2 \cdots v_3]\). We use \(t^*(f)\) to denote the number of 3-faces each of which is adjacent to \(f\) and gets \(\frac{1}{3}\) from \(f\), and \(n^*(f)\) the number of 3-vertices each of which is incident to \(f\) and gets \(\frac{1}{2}\) from \(f\). For simplicity, we write \(t^*\) for \(t^*(f)\), \(n^*_2\) for \(n^*_2(f)\), \(n^*_3\) for \(n^*_3(f)\), etc.

Claim 1. \(2t^* + 2n^*_2 + 3n^*_3 \leq d(f)\).

It is easy to see that if \(2 \leq d(v_i) \leq 3\) then \(f\) gives nothing to adjacent faces through both edges \(v_{i-1}v_i\) and \(v_iv_{i+1}\).

In particular, when \(d(v_i) = 2\), we have \(d(v_{i-1}), d(v_{i+1}) \geq 5\) by (C2). Thus, the number of \((4, 4^+)-\)edges incident to \(f\) is at most \(d(f) - n_3 - 2n_2\). Since there are no triangles at distance less than 3, it follows that \(t^*\) is at most \((d(f) - n_3 - 2n_2)/2\), which shows Claim 1.

The following Claim 2 follows immediately from the fact that there do not exist two triangles at distance less than 3:

Claim 2. \(n^*_3 = \lfloor \frac{2}{3} d(f) \rfloor\).

Using (R4), we derive

\[
w'(f) \geq d(f) - 4 - \frac{2}{3} t^* - \frac{1}{2} n^*_2 - \frac{1}{2} n^*_3 - \frac{1}{3} (n_3 - n^*_3)
\]

\[
= d(f) - 4 - \frac{2}{3} t^* - \frac{1}{2} n^*_2 - \frac{1}{6} n^*_3 - \frac{1}{3} n_3
\]

\[
\geq d(f) - 4 - \frac{2}{3} t^* - \frac{1}{2} n^*_2 - \frac{1}{6} n^*_3 - \frac{1}{3} d(f) - 2n_2 - 2t^*
\]

\[
= \frac{2}{3} d(f) - 4 + \frac{2}{3} t^* + \frac{1}{6} n^*_2 - \frac{1}{6} n^*_3
\]

\[
\geq \frac{2}{3} d(f) - 4 + \frac{2}{3} t^* + 1\n\]

\[
\geq \frac{2}{3} d(f) - 4 + \frac{2}{3} t^* + 1.
\]

If \(d(f) \geq 7\), then \(w'(f) \geq \frac{3}{2} d(f) - 4 \geq \frac{3}{2} \times 7 - 4 = \frac{1}{2}\).

If \(d(f) = 6\), then \(w'(f) = 2\), \(\tau(f) \leq 1\) and so \(n^*_3 \leq 1\). If \(n^*_3 = 0\), the above expression shows that
\(w'(f) \geq \frac{2}{3} d(f) - 4 + \frac{2}{3} t^* + \frac{1}{6} n^*_2 \geq \frac{2}{3} \times 6 - 4 = 0\). Otherwise, we assume that \(v_1\) is a bad pendant light 3-vertex, say \(d(v_1) = 3\), \(d(v_2) \geq 5\) and \(d(v_3) = 4\). Noting that \(v_5\) cannot be a 2-vertex by (C2), we have that \(n_2(v) \leq 1\) and \(w'(f) \geq 2 - \frac{1}{2} \times 2 - \frac{1}{3} \times 2 = \frac{1}{3}\).

Let \(v \in V(G)\). Let \(v_1, v_2, \ldots, v_d(v)\) denote the neighbors of \(v\) in a cyclic order. Let \(f_i\) denote the incident face of \(v\) with \(v_1v_i\) and \(v_iv_{i+1}\) as two boundary edges for \(i = 1, 2, \ldots, d(v)\), where indices are taken modulo \(d(v)\). We see that \(d(v) \geq 2\) by (C1). Since \(G\) contains no triangles at distance less than 3, \(\tau(v) \leq 1\), \(p_3(v) \leq 1\) and \(p_3(v) + \tau(v) \leq 1\).

The proof is divided into some subcases according to the value of \(d(v)\).

1. \(d(v) = 2\). Then \(w(v) = -2\), \(d(v_1), d(v_2) \geq 5\) by (C2), and \(d(f_1), d(f_2) \geq 5\) by (C7.1). By (R2), \(\tau(v_1) \rightarrow v \geq \frac{1}{2}\).

By symmetry, we need to consider the following three possibilities:

(1.1) Assume that \(d(v_1) = d(v_2) = 5\). Neither \(f_1\) nor \(f_2\) is a heavy face of \(vv_1\) for each \(i = 1, 2\). Thus,
\(\tau(f_i \rightarrow v) = \tau(v_1 \rightarrow v) = \frac{1}{2}\) for \(i = 1, 2\) by (R2) and (R4). Thus, \(w'(f) \geq -2 + \frac{1}{2} \times 4 = 0\).
Assume that $d(v_1) = 5$ and $d(v_2) \geq 6$. If neither f_1 nor f_2 is a heavy face of vv_2, then $\tau(v_2 \to v) = \frac{1}{2}$ and $w'(v) \geq -1 + \frac{1}{2} \times 4 = 0$ by (R2) and (R4). If exactly one of f_1 and f_2 is a heavy face of vv_2, say f_1 is but f_2 is not, then $\tau(v_2 \to v) = \frac{3}{2}$, $\tau(f_1 \to v) = \frac{1}{2}$, $w'(v) \geq -2 + \frac{1}{3} + \frac{2}{3} + \frac{1}{2} + \frac{1}{4} = 0$ by (R2) and (R4). If both f_1 and f_2 are heavy faces of vv_2, then $\tau(v_2 \to v) = \frac{5}{6}$, $\tau(f_1 \to v) = \frac{1}{4}$ for $i = 1, 2$, $w'(v) \geq 2 + \frac{5}{6} + \frac{1}{2} + \frac{1}{4} \times 2 = 0$ by (R2) and (R4).

Assume that $d(v_1), d(v_2) \geq 6$. If neither f_1 nor f_2 is a heavy face of vv_i for any $i \in \{1, 2\}$, then $\tau(f_i \to v) = \frac{1}{2}$ for $i = 1, 2$, and $w'(v) \geq -2 + \frac{5}{6} + \frac{1}{2} + \frac{1}{4} \times 2 = 0$ by (R2) and (R4).

If neither f_1 nor f_2 is a heavy face of vv_i for any $i \in \{1, 2\}$, then $\tau(v_2 \to v) = \frac{3}{2}$, $\tau(f_1 \to v) = \frac{1}{2}$, $w'(v) \geq -2 + \frac{1}{3} + \frac{2}{3} + \frac{1}{2} + \frac{1}{4} = 0$ by (R2) and (R4). If both f_1 and f_2 are heavy faces of vv_i for some $i \in \{1, 2\}$, then $\tau(v_2 \to v) = \frac{5}{6}$, $\tau(f_1 \to v) = \frac{1}{4}$ for $i = 1, 2$, and $w'(v) \geq 2 + \frac{5}{6} + \frac{1}{2} + \frac{1}{4} \times 2 = 0$ by (R2) and (R4).

2. $d(v) = 3$. Then $w(v) = -1$, $t(v) \leq 1$, $p_3(v) = 0$ by (C3.2). If $t(v) = 0$, then $w'(v) \geq -1 + \frac{1}{3} \times 3 = 0$ by (R4). Assume that $t(v) = 1$. Let $f_1 = [vv_1v_2]$ be a 3-face with $d(v) \leq d(v_1) \leq d(v_2)$.

If $d(v_1) = 3$, then by (C7.2) and (C3.1), $d(v_2) \geq 6$, $d(v_3) \geq 5$, and $w'(v) \geq -1 - \frac{1}{6} + \frac{1}{3} \times 3 = 0$ by (R1), (R3) and (R4).

If $d(v_1) = 4$, then $d(v_2) \geq 5$ by (C7.3), $d(v_3) \geq 5$ by (A2), and $w'(v) \geq -1 - \frac{1}{6} + \frac{1}{3} \times 2 + \frac{1}{6} + \frac{1}{2} = 0$ by (R1), (R3) and (R4).

If $d(v_1) \geq 5$, then $\tau(f_3 \to v) \geq \frac{1}{2}$, $\tau(v_1 \to v) \geq \frac{1}{6}$ and $\tau(v_2 \to v) \geq \frac{1}{6}$ by (R3) and (R4). When $d(v_3) = 4$, v is a pendant light 3-vertex, so that $\tau(f_2 \to v) = \tau(f_3 \to v) = \frac{1}{2}$ and $w'(v) \geq -1 - \frac{1}{3} + \frac{1}{3} \times 2 + \frac{1}{6} \times 2 = 0$.

When $d(v_3) \geq 5$, we have $\tau(v \to f_1) = \frac{1}{3}$, $\tau(v_3 \to v) = \frac{1}{3}$, and $w'(v) \geq -1 - \frac{1}{3} + \frac{1}{3} \times 2 + \frac{1}{6} \times 2 = 0$ by (R1) and (R3).

3. $d(v) = 4$. Then $w'(v) = w(v) = d(v) - 4 = 0$.

4. $d(v) = 5$. Then $w(v) = 1$. By (C4.1), $n_2(v) \leq 1$ and $t(v) + p_3(v) \leq 1$. Assume that $n_3(v) = 0$. If $p_3(v) = 0$, then $t(v) \leq 1$ and $w'(v) \geq 1 - \frac{1}{3} + \frac{1}{6} \times 2 = \frac{1}{3}$ by (R1) and (R3). If $p_3(v) = 1$, then $t(v) = 0$ and $w'(v) \geq 1 - \frac{1}{2} = \frac{1}{2}$ by (R3). Now assume that $n_2(v) = 1$. By (C4.2), $p_3(v) = 0$. If $t(v) = 0$, then $w'(v) \geq 1 - \frac{1}{2} = \frac{1}{2}$ by (R2). If $t(v) = 1$, suppose that v_1 is a 2-vertex and $f_2 = [vv_2v_3]$ is a 3-face. From Lemma 3, we see that f_2 is a $(4^+, 4^+, 5)$-face. Thus, $w'(v) \geq 1 - \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$ by (R1) and (R2).

Given a rational number r, let $\sigma_r(v)$ denote the number of 2-vertices each of which gets r from v according to the rules. By definition, $\sigma_{\frac{1}{2}}(v) + \sigma_{\frac{1}{3}} + \sigma_{\frac{2}{3}}(v) \leq n_2(v)$. Moreover, we have the following:

Claim 3. Suppose that v is a 6^+-vertex. Then

1. $\sigma_{\frac{1}{2}}(v) \leq n_3(v)$;
2. $\sigma_{\frac{2}{3}}(v) \leq \lfloor n_3(v)/2 \rfloor$.

Proof. Assume to the contrary that $\sigma_{\frac{1}{2}}(v) > n_3(v)$. Then there exists a 3-vertex, say v_2, incident to two faces $f_1 = [v_1v_2vx \cdots]$ and $f_2 = [v_3v_2vy \cdots]$ such that $d(v_1) = d(v_3) = 2$, $\tau(v \to v_1) = \tau(v \to v_3) = \frac{2}{3}$, f_1 is a heavy face of vv_1 and f_2 is a heavy face of vv_3. Combining (C3.1) and the definition of a heavy face, it follows that $d(x) = d(y) = 4$, xx^* lies on a 3-face $[xx^*x']$, and yy^* lies on a 3-face $[yy^*y']$. However, the distance between $[xx^*x']$ and $[yy^*y']$ is 2, contradicting the assumption on G. This proves (1). With a similar argument, we can prove (2). □

5. $d(v) = 6$. Then $w(v) = 2$, $n_2(v) \leq 4$ by (C5.1), and $t(v) + p_3(v) \leq 1$. We only consider the following four cases in the light of the size of $n_2(v)$.

5.1. $n_2(v) = 4$. By (C5.2), $n_3(v) = 0$, implying that $p_3(v) = 0$ and $\sigma_{\frac{2}{3}}(v) = \sigma_{\frac{1}{2}}(v) = 0$. By (B3), $t(v) = 0$.

Thus, $w'(v) \geq 2 - \frac{1}{6} \times 4 = 0$ by (R2).

5.2. $n_2(v) = 3$. By (B2), $n_3(v) \leq 1$, and hence $\sigma_{\frac{2}{3}}(v) = 0$ and $\sigma_{\frac{1}{2}}(v) \leq 1$ by Claim 3. If $n_3(v) = 0$, then $\sigma_{\frac{2}{3}}(v) = p_3(v) = 0$, thus $w'(v) \geq 2 - \frac{1}{6} \times 3 = \frac{5}{6}$ by (R2). So suppose that $n_3(v) = 1$. We consider two situations as follows:

Assume that $t(v) = 0$. If $\sigma_{\frac{1}{2}}(v) = 0$, then $w'(v) \geq 2 - \frac{1}{6} \times 3 = 0$ by (R2). Suppose that $\sigma_{\frac{2}{3}}(v) = 1$ and $d(v_k) = 3$. If v_k is not a pendant light 3-vertex of v, then it is obvious that $\tau(v \to v_k) \leq \frac{1}{2}$ by (R3).
Otherwise, it is easy to derive that v_k must be incident to a $(3, 3, 6^+)$-face by the definition of a heavy face, we also have $\tau(v \rightarrow v_k) = \frac{1}{3}$. Consequently, $w'(v) \geq 2 - \frac{2}{3} - \frac{1}{3} \times 2 = \frac{1}{3} = 0$ by (R2) and (R3).

Assume that $t(v) = 1$. Let $f_1 = [vu_1v_2]$ be a 3-face. Then $p_3(v) = 0$. If f_1 is a $(4^+, 4^+, 6)$-face, then by (R2) and (R1), $w'(v) \geq 2 - \frac{2}{3} - \frac{1}{3} \times 2 = \frac{1}{3} = 0$. If f_1 is a $(3, 4^+, 6)$-face, then $\sigma_2(v) = 0$ by (C3.2), $\tau(v \rightarrow f_1) = \frac{1}{3}$ by (R1), and $w'(v) \geq 2 - \frac{1}{3} \times 3 = \frac{1}{3} = 0$ by (R1) to (R3).

Claim 2: $\sigma_2(v) \leq n_3(v)/2 \leq (d(v) - n_2(v))/2 = (6 - 4)/2 = 2$. In terms of the size of $t(v)$, we consider two cases as follows:

Assume that $t(v) = 0$. If $p_3(v) = 0$, then $w'(v) \geq 2 - \frac{5}{6} \times 2 = \frac{1}{3} = 0$ by (R2). Suppose that $p_3(v) = 1$ and let v_1 be a light pendant 3-vertex of v. If $\sigma_2(v) = 1$, then $w'(v) \geq 2 - \frac{5}{6} \times \frac{3}{2} = \frac{1}{3} = 0 = 0$ by (R2) and (R3). If $\sigma_2(v) = 2$, then v_1 is incident to a $(3, 3, 6^+)$-face, hence $\tau(v \rightarrow v_1) \leq \frac{1}{3} = 0$ and $w'(v) \geq 2 - \frac{5}{6} \times 2 = \frac{1}{3} = 0$ by (R2) and (R3).

Assume that $t(v) = 1$. Then $p_3(v) = 0$. Let $f_1 = [vu_1v_2]$ be a 3-face. If f_1 is a $(3, 3, 6)$-face, then $n_3(v) \leq 2$ by (B1). This implies that $d(v_i) \neq 3$ for all $i = 3, 4, 5, 6$. Furthermore, it is easy to show that $\sigma_2(v) = 2$ and hence $w'(v) \geq 2 - \frac{1}{2} \times 2 - \frac{5}{6} \times 2 = \frac{1}{3} = 0$ by (R1) to (R3). If f_1 is not a $(3, 3, 6)$-face, then $\sigma_2(v) \leq 1$ and $\sigma_2(v) \leq 2$ by Claim 3. If $\sigma_2(v) = 1$, then $\sigma_2(v) = 0$, and $w'(v) \geq 2 - \frac{5}{6} \times \frac{3}{2} = \frac{1}{3} = 0$ by (R1) to (R3).

Claim 2: $\sigma_2(v) \leq 1$. If $t(v) = 1$, then $w'(v) \geq 2 - \frac{5}{6} \times \frac{3}{2} = \frac{1}{3} = 0$. Otherwise,

\[
6. d(v) = 7. \text{ Then } w(v) = 3, n_2(v) \leq 5 \text{ by (C6). In view of the value of } n_2(v), \text{ we consider the following four subcases:}
\]

(6.1) $n_2(v) = 5$. By (F2), $n_3(v) = t(v) = 0$, implying $\sigma_2(v) = 0$ and $w'(v) \geq 3 - \frac{5}{6} \times 5 = \frac{1}{6}$ by (R2).

(6.2) $n_2(v) = 4$. By (F1), $n_3(v) \leq 2$, so $\sigma_2(v) \leq 1$ and $\sigma_2(v) \leq 2$ by Claim 3.

Assume that $t(v) = 0$. If $\sigma_2(v) = 0$, then $w'(v) \geq 3 - \frac{5}{6} \times 2 = \frac{1}{6}$ by (R2) and (R3). If $\sigma_2(v) = 1$, then $\sigma_2(v) = 0$ and $w'(v) \geq 3 - \frac{5}{6} \times \frac{1}{2} = \frac{1}{6}$ by (R2) and (R3).

Assume that $t(v) = 1$. Let $f_1 = [vu_1v_2]$ be a 3-face. Then $p_3(v) = 0$ and $d(v_1), d(v_2) \geq 3$ by (C7.1). This implies that at most one of u_3, \ldots, v_7 is a 3-vertex. Thus $\sigma_2(v) = 0$ and $\sigma_2(v) \leq 1$ by Claim 3. If $\sigma_2(v) = 0$, then $w'(v) \geq 3 - \frac{5}{6} \times \frac{1}{2} = \frac{1}{6} \times 2 = 0$. If $\sigma_2(v) = 1$, it is easy to see that f_1 is not a $(3, 3, 7)$-face and hence $w'(v) \geq 3 - \frac{5}{6} \times \frac{3}{2} = \frac{1}{6} \times 3 = \frac{1}{6}$ by (R1) to (R3).

(6.3) $n_2(v) = 3$. Since $n_3(v) \leq 4$, $\sigma_2(v) \leq 2$ by Claim 3.

If $\sigma_2(v) = 2$, then $\sigma_2(v) = t(v) = 0$ and $w'(v) \geq 3 - \frac{5}{6} \times 2 = \frac{1}{6} = 0$.

Assume that $\sigma_2(v) = 1$. Then $\sigma_2(v) \leq 2$. If $\sigma_2(v) = 2$, then $t(v) = 0$ and $w'(v) \geq 3 - \frac{5}{6} \times 2 = \frac{1}{6}$ by (R1) to (R3). Suppose that $\sigma_2(v) = 1$. When $t(v) = 0$, $w'(v) \geq 3 - \frac{5}{6} \times \frac{1}{2} = \frac{1}{6} \times 2 = \frac{1}{6}$; When $t(v) = 1$, $w'(v) \geq 3 - \frac{5}{6} \times \frac{1}{2} = \frac{1}{6} \times 2 = \frac{1}{6}$.

Assume that $\sigma_2(v) = 0$. If $t(v) = 0$, then $w'(v) \geq 3 - \frac{5}{6} \times 3 - \frac{1}{2} = \frac{1}{6}$. If $t(v) = 1$, then $w'(v) \geq 3 - \frac{5}{6} \times 3 - \frac{1}{2} = \frac{1}{6}$.

(6.4) $n_2(v) \leq 2$. Clearly, $w'(v) \geq 3 - \frac{5}{6} \times 2 = \frac{1}{6} \times 2 = \frac{1}{6}$ by (R1) to (R3).

7. $d(v) \geq 8$. In what follows, we write simply σ_i for $\sigma_i(v)$. We need to consider the following two cases:

(7.1) $t(v) = 0$. It is easy to show that $\sigma_1 + 2\sigma_2 + 3\sigma_3 \leq d(v)$ by definition. Using this fact, we derive

\[
w'(v) \geq \frac{d(v) - 4}{2} - \frac{5}{6} \sigma_3 - \frac{2}{3} \sigma_2 - \frac{1}{2} \sigma_1 - \frac{1}{2} \\
= \frac{1}{2}d(v) - \frac{9}{2} + \frac{2}{3} \sigma_3 + \frac{1}{3} \sigma_2 \equiv w^*.\]
If \(d(v) \geq 9 \), then \(w^* \geq 0 \).

Assume that \(d(v) = 8 \). If \(\sigma_2 \geq 1 \), then \(w^* \geq \frac{1}{2} \times 8 - \frac{9}{2} + \frac{2}{3} = \frac{1}{6} \). If \(\sigma_2 = 0 \), we have two possibilities:

- When \(\sigma_2 \geq 2 \), \(w^* \geq \frac{1}{2} \times 8 - \frac{9}{2} + \frac{2}{3} \times 2 = \frac{1}{6} \). When \(\sigma_2 \leq 1 \), since \(n_2(v) \leq 6 \) by Lemma 6, we have

\[
 w'(v) \geq 4 - \frac{2}{3} - \frac{1}{2} \times 5 - \frac{1}{2} = \frac{1}{2} \text{ by (R2) and (R3)}.
\]

(7.2) \(t(v) = 1 \). Let \(f_1 = [vv_1v_2] \) be a 3-face. Then \(p_3(v) = 0 \). By (C2), \(d(v_1), d(v_2) \geq 3 \). Moreover, \(f_2 \) cannot be a heavy face of \(vv_2 \) and \(f_d(v) \) cannot be a heavy face of \(vv_d(v) \). This implies that

\[
 \sigma_2 + 2\sigma_3 + 3\sigma_5 \leq d(v) - 2.
\]

Therefore,

\[
 w'(v) \geq d(v) - 4 - \frac{5}{6}\sigma_5 - \frac{2}{3}\sigma_2 - \frac{1}{2}\sigma_4 - \frac{2}{3} - \frac{1}{6} \times 2
\]

\[
 \geq d(v) - 5 - \frac{5}{6}\sigma_5 - \frac{2}{3}\sigma_2 - \frac{1}{2}(d(v) - 2 - 3\sigma_5 - 2\sigma_5)
\]

\[
 = \frac{1}{2}d(v) - 4 + \frac{2}{3}\sigma_5 + \frac{1}{3}\sigma_2 \geq 0. \quad \square
\]

References