Analysis of Human Cytomegalovirus US3 Gene Products

Wenzhong Liu,*† Yiqiang Zhao,* and Bonita J. Biegalke*†‡

*Graduate Program in Biological Sciences, Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, and †Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio 45701

INTRODUCTION

Human cytomegalovirus (HCMV) is a common subclinical viral infection. In immunocompromised individuals and neonates, HCMV infection can result in clinically significant disease and even death (Britt and Alford, 1996). Primary infection is followed by the establishment of a latent or persistent viral infection. Establishment of a latent infection is thought to be facilitated by viral evasion of the immune system.

HCMV has evolved numerous strategies to avoid detection and elimination by the immune system, with different strategies utilized at different time periods during viral replication. Immediately following infection, the virion protein pp65 (ppUL83) interferes with antigenic presentation of the major immediate early proteins (pUL122–123) by an as yet unidentified mechanism (Gilbert et al., 1996). Expression of the immediate early US3 gene results in retention of major histocompatibility complex type I molecules in the endoplasmic reticulum. The US3 gene is the first viral gene to be transcribed in the endoplasmic reticulum. The protein encoded by the singly spliced US3 transcript appears to be processed through the secretory pathway while the protein encoded by the doubly spliced transcript becomes localized to the Golgi apparatus. These experiments raise interesting questions about the functions of the smaller US3 proteins during viral infection in the host.

Key Words: cytomegalovirus; US3; MHC class I molecules.

Received July 31, 2001; returned to author for revision September 17, 2001; accepted May 15, 2002

Similar to other herpesviruses, human cytomegalovirus remains in the infected host following resolution of the primary infection. The ability to persist in the host after primary infection is believed to be strongly influenced by the ability of HCMV to down-regulate immune recognition of infected cells. One of the genes contributing to immune evasion is the US3 gene. The US3 gene has been shown to retain major histocompatibility complex type I molecules in the endoplasmic reticulum. The US3 gene gives rise to three alternatively spliced RNAs which encode distinct but related proteins. Each of the alternatively spliced transcripts is present early in viral infection, suggesting that the encoded proteins play a role in the viral life cycle.

We demonstrate that only the protein encoded by the unspliced US3 transcript is able to retain MHC class I heavy chains in the endoplasmic reticulum. The protein encoded by the singly spliced US3 transcript appears to be processed through the secretory pathway while the protein encoded by the doubly spliced transcript becomes localized to the Golgi apparatus. These experiments raise interesting questions about the functions of the smaller US3 proteins during viral infection in the host.

© 2002 Elsevier Science (USA)

Key Words: cytomegalovirus; US3; MHC class I molecules.

1 Present address: Research Department, Midwestern Regional Medical Center, 2520 Elisha Avenue, Zion, IL 60099.

2 To whom correspondence and reprint requests should be addressed at Department of Biomedical Sciences, 228 Irvine Hall, Ohio University College of Osteopathic Medicine, Athens, OH 45701. Fax: (740) 597-2778. E-mail: biegalke@ohiou.edu.

0042-6822/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved.
retaining these proteins in the ER (Jones et al., 1996; Ahn et al., 1996). Coprecipitation of a 22-kDa US3 protein with MHC class I molecules suggests that this protein is critical for retention of MHC class I heavy chains in the ER (Ahn et al., 1996; Jones et al., 1996). Work by Lee et al. (2000) further suggests that the ER lumenal and transmembrane domains of the 22-kDa US3 protein are sufficient for retention of MHC class I molecules. The possible contributions of the smaller US3 proteins to MHC class I molecule retention were not analyzed in these studies (Jones et al., 1996; Ahn et al., 1996; Jun et al., 2000). In this article we examined the effects of the individual US3 proteins on MHC class I molecules. Analysis of cell lines expressing individual US3 proteins demonstrated that the large US3 protein alone is sufficient for MHC class I molecule retention. We further demonstrate that the singly spliced US3 transcript encodes a protein of 17 kDa; this protein appears to traffic through the secretory pathway. Several interesting questions still remain to be answered, including the roles of the 17- and 3.5-kDa proteins in viral infection.

RESULTS
Expression of the US3 gene

The US3 gene has been defined as an immediate early gene, with transcription of the gene occurring following infection in the absence of de novo protein synthesis (Weston, 1988). Similar to many of the other immediate early genes of HCMV, the US3 gene encodes multiple alternatively spliced transcripts: a full-length unspliced transcript, a singly spliced transcript, and a doubly spliced transcript (Fig. 1A) (Tenney et al., 1993). The US3 transcripts appear by 1 h postinfection, with peak accumulation of transcripts occurring at 3 hpi, followed by a marked decline in transcript levels by 5 hpi (Biegalke, 1995; Greijer et al., 2001). Isolation of cDNAs clones representative of each of the transcripts suggests that the spliced RNAs accumulate preferentially in the absence of protein synthesis and further suggests that the full-length transcript is the most abundant US3 message (Tenney et al., 1993). We used RNase protection assays to determine the relative abundance of each of the alternatively spliced US3 transcripts at various times following HCMV (Towne) infection of human diploid fibroblasts. An antisense radiolabeled probe (see Fig. 1A) generated from the HCMV strain AD169 full-length cDNA was used for the detection of the US3 transcripts. The protected RNA fragments were predicted to be 291, 251, or 161 nucleotides in length, corresponding to the unspliced, singly spliced, or doubly spliced transcripts, respectively. An RNA probe protected by glyceraldehyde phosphate dehydrogenase transcripts was used as an internal standard.

US3 transcripts were first detected 1 h postinfection with the level of transcripts increasing until 3 to 4 hpi (Fig. 1B). By 5 hpi, all three forms of the US3 RNAs were beginning to decline in abundance, confirming the Northern blot analysis of US3 transcript levels (Biegalke, 1995). Quantitative analysis, comparing the amounts of the protected US3 fragments to levels of the cellular message, GPDH, demonstrated that the unspliced US3 transcript was the most abundant message at 1–3 h of infection (Fig. 1C). The levels of the singly spliced transcript were somewhat lower than those of the full-length transcript; the levels of these two transcripts varied with similar kinetics (Fig. 1C). In contrast to the full-length and singly spliced transcripts, the doubly spliced transcript accumulated and declined with delayed kinetics compared to the larger transcripts. The level of the doubly spliced transcripts was maximal at 4 hpi, declining slightly in abundance by 5 hpi (Figs. 1B and 1C). All three alternatively spliced forms of the US3 transcripts were clearly present early in infection, suggesting that the encoded proteins play a role in viral infection in the infected host.

In the RNase protection assays, the sizes of the protected fragments corresponding to the full-length and singly spliced transcripts were smaller than predicted by approximately 15 nucleotides. Comparison of RNase protection assay results obtained using RNA from cells that contain HCMV strain Towne or strain AD169 US3 sequences revealed differences in the sizes of the protected fragments (see Fig. 2). To determine the basis of the size variation in the protected fragments, the HCMV strain Towne US3 gene was sequenced. Seven nucleotide changes were identified, with three of the nucleotide changes located near the 3’ end of the probe used for the RNase protection assays (Fig. 1A). The three-nucleotide mismatch resulted in additional digestion of the RNA probe when hybridized to Towne US3 transcripts, resulting in a decrease of 15 bp in the protected fragment, accounting for the discrepancy between the predicted and observed sizes of the protected fragments. Five of the nucleotide changes seen in HCMV strain Towne resulted in amino acid substitutions in the encoded US3 proteins (see Table 1 and Fig. 1A). None of the amino acid changes were in the signal peptide or transmembrane domain.

The singly spliced US3 transcript encodes a 17-kDa protein

Two polypeptides of 22 and 17 kDa were detected in US3-expressing cell lines and virally infected cells (Ahn et al., 1996; Jones et al., 1996). The 17-kDa peptide was postulated to be either the translation product of a spliced US3 transcript, or alternatively, the immature form of the 22-kDa protein. To definitively identify the protein products encoded by the unspliced and singly spliced US3 RNAs, a number of cell lines were generated that express US3 sequences. To generate the cell lines, US3 cDNAs (from strain AD169), a truncated cDNA...
corresponding to the unspliced transcript but lacking exon 5, or the genomic US3 sequence (from strain Towne and equivalent to the cDNA corresponding to the unspliced transcript), were inserted into the plasmid vector pIRES-neo. Plasmids were transfected into the U373 glioblastoma cell line and neomycin-resistant cell clones were isolated. The resulting cell lines were analyzed for US3 transcripts using RNase protection assays; a minimum of four different cell lines constructed with each of the US3-expression plasmids was analyzed for US3 transcripts.

RNase protection analyses of RNA isolated from the cell lines containing the cDNA corresponding to the AD169 unspliced transcript (US-cDNA) or the Towne genomic US3 sequences revealed two protected fragments corresponding to the unspliced and singly spliced US3 transcripts (Fig. 2A, Lanes 9–12). The strain-specific variation in the size of the protected fragments resulted from nucleotide changes as discussed above. Somewhat surprisingly, the doubly spliced transcript was not detected in cell clones expressing either the AD169 US-cDNA or the Towne genomic sequences. Analyses of cells containing the AD169 US3 US-cDNA also revealed cell clone-specific protected fragments that are presumed to correspond to aberrantly spliced RNAs (Fig. 2A).

A predominant fragment corresponding to the unspliced US3 transcript was protected using RNA from cell lines expressing the truncated cDNA composed of exons 1 through 4 (US3/H9004ex5; Fig. 2A, Lanes 7 and 8). Spliced US3 transcripts in these cell lines were predicted to be degraded through the nonsense-mediated degradation pathway. Detection of only a low level of the protected fragments corresponding to the singly spliced transcript confirmed this prediction. RNase protection assays of RNA from cell clones containing the cDNA generated from the singly spliced (SS-cDNA) or the dou-

FIG. 1. Analysis of US3 expression. (A) Diagram of the US3 transcription unit. Numbered rectangles represent exons; vertical arrows depict positions of amino acid changes; the horizontal arrow corresponds to the probe used for RNase protection assays; open rectangles represent 5' and 3' untranslated regions of the US3 transcripts; gray rectangles represent protein coding regions; shared amino acids are indicated by the black rectangles; dotted lines indicate splicing events (Tenney et al., 1993; Weston, 1988). (B) RNase protection assays. RNase protection assays were performed on whole-cell RNA isolated from mock-infected (M) or from HCMV strain Towne-infected human diploid fibroblasts at the indicated times postinfection (h). The probes (P) for the internal standard, glyceraldehyde phosphate dehydrogenase (GPDH), and US3 transcripts are indicated by an * and **, respectively. P+, yeast tRNA and the probes treated with the RNase mixture; GPDH, protected fragments corresponding to levels of the cellular message; US, SS, and DS, protected fragments corresponding to unspliced, singly spliced, or doubly spliced US3 transcripts, respectively. S, RNA molecular weight markers with the size indicated in nucleotides. (C) Quantification of US3 transcripts. Protected fragments corresponding to US, SS, and DS US3 transcripts were quantified by a scanning densitometer using Molecular Dynamic software. Levels of US3 transcripts were determined by normalizing to the density of the smaller GPDH protected fragment and correcting for the number of U residues present in the protected fragment. Levels of US3 transcripts were plotted vs hours postinfection: ○, unspliced US3 mRNA; ■, singly-spliced US3 mRNA; and ▲, doubly spliced US3 mRNA.
bly spliced transcript (DS-cDNA) detected protected fragments of the predicted sizes, 251 and 161 nucleotides, respectively, that correspond to singly and doubly spliced RNAs (Fig. 2A, Lanes 3–6). Control cell lines that contained the plasmid vector but no US3 sequences did not yield any protected fragments corresponding to US3 transcripts (data not shown).

US3 proteins present in the cell lines were analyzed by immunoprecipitation experiments, using polyclonal antiserum to amino acids 33 to 113 of the US3 open reading frame (Jones et al., 1996). Cells expressing the entire US3 open reading frame (either the AD169 US-cDNA or the Towne genomic sequence) contained two US3 proteins of 22 and 17 kDa (Fig. 2B, Lanes 1, 2, and 7). Cell lines expressing the SS-cDNA synthesized a US3 protein of 17 kDa (Fig. 2B, Lanes 5 and 6). Cell lines containing the truncated cDNA (lacking exon 5) synthesized a single US3 protein of 22 kDa (Fig. 2B, Lane 4). These data demonstrated that the 22-kDa protein is encoded by the unspliced US3 RNA and that the 17-kDa US3 protein is the translation product of the singly spliced transcript. Although we constructed cell lines that express the doubly spliced US3 transcript (Fig. 2A, Lanes 3 and 4), we were unable to demonstrate synthesis of the encoded protein as no reagents are currently available that react with the predicted peptide. By comparison with the cell clones expressing other forms of the US3 RNAs, we expect that the 3.5-kDa protein is synthesized in these cells. No proteins were precipitated from the control cell lines with the anti-US3 antiserum (Fig. 2B, Lanes 3 and 8).

Functional analysis of the US3 proteins

The involvement of the different US3 proteins in retention of MHC class I molecules in the ER was assayed using the cell lines described above. To determine the

Table 1

<table>
<thead>
<tr>
<th>Amino acid position</th>
<th>AD169</th>
<th>Towne</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>Y*</td>
<td>H</td>
</tr>
<tr>
<td>53</td>
<td>F</td>
<td>Y</td>
</tr>
<tr>
<td>68</td>
<td>N</td>
<td>S</td>
</tr>
<tr>
<td>106</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>150</td>
<td>M</td>
<td>I</td>
</tr>
</tbody>
</table>

* Single letter amino acid code.
effects of the US3 proteins on the maturation of MHC class I molecules, cells were treated with a pulse of radioactive amino acids and then either immunoprecipitated with a monoclonal antibody to MHC class I molecules (W6/32) or subjected to a 2-h chase with nonradioactive amino acids (Chase) prior to immunoprecipitation. Following immunoprecipitation, complexes were divided into two aliquots and either mock-digested or digested with endoglycosidase H (EndoH). Immunoprecipitates were analyzed by SDS-PAGE and autoradiography. AD169-US, cell line 317-B2, which expresses the cDNA corresponding to the AD169-unspliced US3 transcript, Lanes 13–16; AD169-USΔex5, cell line 380-3 which expresses the AD169 unspliced cDNA with exon 5 deleted, Lanes 21–23; cell line 318-6 expresses the cDNA corresponding to the singly spliced AD169 US3 transcript, Lanes 17–20; Control, cell line GFP-4, which expresses GFP, Lanes 1–4; Towne-US, cell line 320-4, which expresses the HCMV strain Towne genomic sequence, Lanes 5–8; and AD169-DS, cell line 319-4 which expresses the cDNA corresponding to the doubly spliced AD169 US3 transcript, Lanes 9–12. Four individual cell lines derived from each of the plasmids were analyzed; data from representative cell lines are shown above. HC, MHC class I heavy chains; β2M, beta-2-microglobulin.

In all of the cell lines examined, after a 30-min labeling period, the majority of the MHC class I molecules was sensitive to endoglycosidase H treatment. This reflected the de novo synthesis of the proteins and insufficient time for the proteins to traffic from the ER to the Golgi. In the control cell line, a 2-h chase with nonradioactive amino acids was sufficient for processing of the MHC class I molecules and associated maturation of the oligosaccharide chains, making them largely resistant to
endoglycosidase H digestion (Fig. 3, compare Lanes 1–4). In contrast, in cells expressing the 17- and 22-kDa US3 proteins, the MHC class I heavy chains remained predominantly endoglycosidase H sensitive following the chase period (Fig. 3, Lanes 5–8 and 13–16). Similarly, in the cell line expressing only the 22-kDa US3 protein, the oligosaccharides on the MHC class I heavy chains remained largely sensitive to endoglycosidase H digestion, indicating retention of the proteins in the ER (Fig. 3, compare Lanes 21–24). These data demonstrated that expression of the 22-kDa US3 protein alone was sufficient for retention of MHC class I molecules in the ER.

The 17-kDa US3 protein and the 22-kDa have a large number of amino acids in common, suggesting that the 17-kDa protein, similar to the 22-kDa protein, could potentially have an effect on maturation of MHC class I molecules. Pulse-chase experiments were also performed with the cell lines expressing only the 17-kDa protein. Following the chase period, the MHC class I heavy chains became endoglycosidase H resistant, similar to the control cells (Fig. 3, Lanes 17–20), demonstrating that the 17-kDa protein is unable to retain MHC class I molecules in the ER. Coprecipitation experiments demonstrated that the 17-kDa protein does not physically associate with MHC class I molecules, confirming the results of Ahn et al. (1996) and Jones et al. (1996). Likewise, expression of the doubly spliced transcript had no effect on the maturation of MHC class I molecules (Fig. 3, Lanes 9–12). These data demonstrated that the domain for retaining MHC class I heavy chains in the ER is not present in the 134 amino acids that are common between the 17- and 22-kDa proteins. Thus, the domain for retaining MHC class I molecules in the ER resides in the COOH-terminal 52 amino acids of the 22-kDa US3 protein. The COOH-terminal amino acids also appear to be critical for the protein–protein interactions as only the 22-kDa protein coprecipitates with the MHC class I molecules (Jones et al., 1996; Ahn et al., 1996) and the physical association appears to play an important role in alteration of the MHC class I molecule processing (Zhao et al., unpublished data).

Intracellular distribution of US3 proteins

Immunofluorescence analysis of the intracellular location of US3 proteins identified the proteins as residents of the ER (Ahn et al., 1996; Jones et al., 1996). Lee et al. (2000) identified the ER luminal portion of the 22-kDa US3 protein as containing the intracellular ER localization signal. This contrasts with other ER resident proteins where retrieval to the ER is a function of the amino acid sequence in the cytoplasmic tail of the protein. This suggested that the 17- and the 22-kDa US3 proteins would both localize to the ER as they have 134 amino-terminal amino acids in common, which includes the majority of the ER luminal domain of the 22-kDa protein (See Fig. 1A). We examined the intracellular location of the US3 proteins by expressing US3-enhanced green fluorescent protein (EGFP) fusion proteins, in which the carboxyl-terminal end of the US3 protein was extended with the open reading frame of EGFP. The cDNAs representing each of the spliced variants of the US3 transcripts was inserted in-frame with EGFP; the resulting plasmids were transfected into HeLa cells. Indirect immunofluorescence was used to label the ER or the Golgi apparatus, using antibodies to protein disulfide isomerase, a resident luminal ER protein, or to human golgin-97, a resident protein of the Golgi apparatus, respectively. Transfected cells were identified by green fluorescence; nuclei were stained with DAPI and visualized by their blue fluorescence. Brefeldin A treatment was used to identify proteins trafficking through the Golgi and trans-Golgi network. Brefeldin A disrupts the Golgi apparatus, resulting in a rapid relocation of proteins in the Golgi to the ER (Sciaky et al., 1997). Fluorescence micrographs of representative fields containing transfected cells are shown in Fig. 4.

The 22-kDa US3-EGFP protein was predominantly localized to the ER as demonstrated by colocalization of US3-EGFP with PDI, and by the lack of a Brefeldin A effect on the pattern of green fluorescence (Figs. 4B and 4C), confirming and extending published reports (Jones et al., 1996; Ahn et al., 1996; Lee et al., 2000). The 17-kDa EGFP fusion protein, although found partially in the ER, was also located in the Golgi and in vesicles in the cytoplasm (Fig. 4). The pattern of green fluorescence was disrupted by Brefeldin A treatment, which resulted in localization of the green fluorescence to the ER. These data suggested that the 17-kDa US3 protein is processed through the secretory pathway. The putative 3.5-kDa US3 protein was also expressed as an EGFP-fusion protein. In contrast to the results observed with the larger US3 proteins, the 3.5-kDa US3-EGFP fusion protein localized to the Golgi apparatus (Fig. 4). Brefeldin A treatment disrupted the pattern of 3.5-kDa US3-EGFP fluorescence, redistributing the green fluorescence to a pattern that colocalized with PDI (Fig. 4C). Addition of EGFP to the 3.5-kDa protein is a significant modification of the US3 protein; generation of reagents able to specifically detect the 3.5-kDa protein is needed to determine whether the native protein localizes to the Golgi apparatus.

DISCUSSION

Retention of MHC class I heavy chains in the ER is mediated through the HCMV US3 gene, and specifically, the 22-kDa US3 protein. However, the relative abundance of all three transcripts encoded by the US3 gene suggests that each of the encoded proteins contributes to the viral life cycle in the infected host. Comparison of the levels of the different US3 transcripts, particularly in cell lines expressing the entire US3 gene, suggests that
splicing of the primary US3 transcript is regulated, perhaps by splice site repressors or by viral proteins. The experiments presented above are the first to demonstrate that proteins encoded by alternatively spliced forms of US3 transcripts do not play a role in inhibiting the maturation of the MHC class I heavy chains. The function of the US3 gene and the 22-kDa protein in immune evasion is strain-independent despite amino acid variations in the open reading frames of HCMV strains AD169 and Towne.

The 17-kDa US3 protein is highly related to the 22-kDa protein; the two proteins differ only at the COOH end, including the absence of a transmembrane domain in the 17-kDa protein. The 17-kDa protein was unable to retain

![Fluorescence microscope localization of US3-EGFP fusion proteins. Cells were transfected with plasmids expressing the 22 kDa (us), 17 kDa (ss), or 3.5 k Da (ds) US3 proteins as EGFP-tagged proteins. Cells were either left untreated (A, B) or were treated with Brefeldin A (C). Nuclei were stained with DAPI and visualized using blue fluorescence (DAPI); the resident ER protein, protein disulfide isomerase (PDI; B and C), and the resident Golgi apparatus protein, golgin-97 (A) were detected using indirect immunofluorescence with the secondary antibody conjugated to Texas red (PDI). The composite images are the sum of the blue, green, and red fluorescence. Cells are magnified ×1000.](image)
MHC class I molecules in the ER and also does not coprecipitate with MHC class I molecules (Jones et al., 1996; Ahn et al., 1996; Zhao et al., unpublished data). These data support the conclusion of Lee et al. (2000), where the US3 transmembrane domain is required for retention of MHC class I molecules in the ER. The 17-kDa protein appeared to be processed through the secretory pathway, suggesting that the COOH-terminal 52 amino acids unique to the 22-kDa protein contain an ER retention signal. A function for the 17-kDa protein has yet to be identified.

Evidence for in vivo synthesis of the 3.5-kDa US3 protein is still lacking. The RNase protection assays clearly indicate that the transcript encoding this predicted protein is expressed during viral infection. Expression of the open reading frame of the 3.5-kDa protein as an EGFP-tagged protein resulted in localization of the green fluorescence to the Golgi apparatus. The localization of the fusion protein is surprising and intriguing. The 3.5-kDa EGFP fusion protein lacks a transmembrane domain characteristic of enzymes that localize to the Golgi. Identification and localization of the 3.5-kDa protein during infection are needed to confirm the results seen with the EGFP-tagged protein.

Alteration of antigen presentation by MHC class I molecules is a common strategy used by viruses to evade detection by the host immune system. The adenovirus E3-19k ER resident protein retains MHC class I molecules in the ER through the interaction of the E3-19k lumenal and transmembrane domains with MHC class I molecules (Gabathuler et al., 1990). Murine cytomegalovirus (MCMV) encodes proteins that also interfere with the presentation of antigens by MHC class I molecules. The MCMV gene, m152, encodes a glycoprotein of 40 kDa that selectively retains mouse MHC class I heavy chains in the ER–Golgi network (Ziegler et al., 1997). A secreted form of the m152 protein is able to bind to MHC class I molecules (Ziegler et al., 2000), in contrast with the results presented here for US3 proteins. Deletion of m152 attenuates MCMV, underscoring the importance of immune evasion genes in the life cycle of the virus in the natural host.

Given the likely importance of the US3 gene for viral replication in the infected host, the short half-life of the US3 22-kDa protein (<60 min) (Ahn et al., 1996; Jones et al., 1996), and the dramatic transcriptional down-regulation of US3 expression early in infection are surprising. Although US3 expression does not interfere with the maturation of a cellular glycoprotein, the transferrin receptor, it is possible that maturation of viral glycoproteins may be inhibited by continuous expression of the 22-kDa US3 protein. Alternatively, continual expression of the 17- and 3.5-kDa proteins may have deleterious effects on viral replication.

The ability of the HCMV 22-kDa US3 protein to down-regulate expression of the MHC class I heavy chains is predicted to play an important role in the establishment of infection in the host. The recent identification of the
role of MHC class I molecules in development of the nervous system (Huh et al., 2000) suggests that HCMV infection of the fetus with associated US3 expression may interfere with normal brain development, possibly contributing to the mental retardation seen in severely affected infants.

MATERIALS AND METHODS

Cells, virus, and transfections

Human glioblastoma cells (U373 cells) were obtained from Adam Geballe, Fred Hutchinson Cancer Research Center (Seattle, WA); HeLa cells were obtained from Clontech (Palo Alto, CA) and primary human diploid fibroblast cultures were established as previously described (Biegalke, 1995). Human diploid fibroblasts, HeLa, and U373 cells were propagated in Dulbecco’s minimal essential medium (Gibco-BRL, Gaithersburg, MD) supplemented with 10% NuSerum (Collaborative Research Products, Bedford, MA), penicillin, streptomycin, and glutamine. HCMV strain Towne was propagated in primary human fibroblasts.

Transfections were performed using calcium phosphate. Briefly, cells (80–90% confluent) were fed with the appropriate medium the day of the experiment. Plasmid DNA (10 μg) in a mixture of 0.125 M CaCl₂ and 1 × BBS (50 mM BES pH 6.95, 280 mM NaCl, and 5 mM Na₂HPO₄) was added to the medium overlaying the cells. Following an overnight incubation in 3.5% CO₂ at 35°C, the cells were washed and fed with complete medium. U373 cell clones containing stable plasmid integrants were selected using complete medium containing 500 μg/ml G418.

RNA analysis

Total cellular RNA was isolated from infected cells or stable transfected cell lines using acid-phenol guanidium (Chomczynski and Sacchi, 1987). RNase protection assays were performed using the RPA II kit (Ambion, Austin, TX) as recommended by the manufacturer; the products of the assays were analyzed on 5% denaturing polyacrylamide gels. For the synthesis of radiolabeled products of the assays were analyzed on 5% denaturing polyacrylamide gels. For the synthesis of radiolabeled products, the RNase precipitation, cells were placed on ice and washed two

Sequence analysis

The DNA sequence of the HCMV strain Towne US3 open reading frame was determined by sequence analysis of pBJ174 (Biegalke, 1999) using gene-specific primers and the Sequenase kit (USB, Cleveland, OH) or the Big Dye terminator kit (Perkin–Elmer, Foster City, CA). The sequence of the HCMV strain Towne US3 open reading frame is present in GenBank as Accession No. AY038933.

Plasmids

pBJ317, pBJ318, pBJ319, and pBJ320 were constructed by inserting the cDNAs corresponding to the HCMV strain AD169 unspliced, singly spliced, or doubly spliced US3 transcripts (isolated from plasmids p516, p517, p518 kindly provided by A. Colberg-Poley) (Tenney et al., 1993) or the Towne US3-coding region (isolated from pBJ174) (Biegalke, 1999), respectively, into the multiple cloning site of pRESneo (Clontech, Palo Alto, CA). pEGFP-IRES-neo was used to generate control cell lines. Plasmid DNA was prepared by alkaline lysis and cesium chloride gradient centrifugation (Maniatis et al., 1982). pBJ380 was constructed by amplifying the open reading frame of the 19-kDa US3 protein using Vent polymerase (New England Biolabs, Beverly, MA) and oligonucleotides 133 (5’ CAGGAATTCCTCAGCGA AGCACTGC 3’) and 222 (5’ AATTGATCCCTAAAAATATGGACAGGCG 3’); the resulting amplimer was inserted into the multiple cloning site of pRESneo (Clontech).

pBJ322, 323, and 521 express the proteins encoded by the doubly spliced, singly spliced, or unspliced US3 transcripts, respectively, as in-frame fusions with enhanced green fluorescent protein. The US3-coding regions were amplified using oligonucleotide 133 in combination with oligonucleotide 143 (5’ GACGGATCCACACTGTACACATCATG 3’) and 222 (5’ AATTGATCCCTAAAAATATGGACAGGCG 3’); the resulting amplicon was inserted into the multiple cloning site of pRESneo (Clontech).

pBJ335, 336, and 337 express the proteins encoded by the singly spliced, doubly spliced, or unspliced US3 transcripts, respectively, as in-frame fusions with enhanced green fluorescent protein. The US3-coding regions were amplified using oligonucleotide 222 in combination with oligonucleotide 133 (5’ GACGGATCCACACTGTACACATCATG 3’) and 143 (5’ GTGGGATCCCTGCGAGGCTGCGA 3’); the resulting amplicon was inserted into the multiple cloning site of pRESneo (Clontech).

Proteins in US3-expressing cell lines were radiolabeled for 30 min with 200 μCi of an [³⁵S]methionine-cysteine mixture (Easy Tag Express, NEN Life Science Products, Boston, MA) using duplicate 100-mm culture dishes. One dish of cells was lysed immediately after labeling while the other dish was incubated with nonradioactive medium for 2 h prior to lysis. For immunoprecipitation, cells were placed on ice and washed two
times with cold phosphate-buffered saline. Cells were then lysed in 500 μl of lysis buffer [50 mM Tris–Cl pH 8.0, 150 mM NaCl, 0.1% SDS, 100 µg/ml PMSF, 1% Nonidet P-40, 0.5% sodium deoxycholate containing Complete protease inhibitor (Roche Biochemical, Indianapolis, IN)]. Following incubation on ice for 2 min, cell monolayers were harvested. Immunoprecipitation of the MHC class I heavy chain complexes was performed using the monoclonal antibody W6/32 (Sigma, St. Louis, MO). Polyclonal rabbit antiserum generated to a NH2-terminal region of the heavy chain complexes was performed using the mono-

Fluorescence microscopy
EGFP fusion proteins were detected in transfected cells using a FITC filter. The ER was labeled using a monoclonal antibody to PDI (Stressgen, Victoria, BC, Canada); the Golgi apparatus was labeled using a monoclonal antibody to human golgin-97 (Molecular Probes, Eugene, OR). Primary antibody binding was detected using Texas red conjugated goat anti-mouse antisera (Molecular Probes) as the secondary antibody. Immuno-

REFERENCES

ACKNOWLEDGMENTS
This work was supported by Ohio University College of Osteopathic Medicine funding and an NIH award (R5AI45520A) to B.J.B. We thank Frank Horodyski for critical reading of the manuscript and John Price and Laura Keys for expert technical assistance.

HCMV US3 PROTEINS

traffic through the secretory apparatus and to mitochondria. J. Gen. Virol. 81, 1779–1789.
Gabathuler, R., Levy, F., and Krist, S. (1990). Requirements for the association of adenosine type 2 E3/19K wild-type and mutant pro-

Science 287, 1031–1033.

