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Abstract

Let M denote the class of functiorns meromorphic outside some compact totally disconnected
setE = E(f) and the cluster set of at anya € E with respect toE¢ = C\E is equal toC. It is
known that clas$/ is closed under composition. Lg¢tandg be two functions in classl, we study
relationship between dynamics 66 g andg o f. Denote byF (f) andJ (f) the Fatou and Julia sets
of f.LetU be acomponent af (f og) andV be a component af (g o f) which containg (U). We
show that under certain conditiobsis a wandering domain if and only i is a wandering domain;
if U is periodic, then so i¥ and moreoverYy is of the same type according to the classification of
periodic components d$ unlessU is a Siegel disk or Herman ring.
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1. Introduction

Let £ be any compact totally disconnected set(nif zo € E and f is a function
meromorphic inE€ = C\E, then the cluster set(f, E¢, zo) is defined asjw: w =
lim,— 100 f (zn) for somez, € E€ with z, — zo}. We introduce the claddl = {f: there
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is a compact totally disconnected $et= E(f) such thatf is meromorphic inE¢ and
C(f, E€,z0) = C for all zg € E. If E = ¢ we make the further assumption thatis nei-
ther constant nor univalent i@i}. The classV was first investigated in [1] and [2] where
the basic concepts such as Fatou and Julia sets and the basic properties of dynamics of
functions inM were established. It was proved in [1] that the cl&ds closed under
composition and iff, g € M, thenE(f o g) = E(g) Ug~X(E(f)). For f € M, we define

£9 to be the identity function witlEg = @, and, inductivelyf = f, f* = f o f*~1. We
obtain f" e M, n e N, with E,, = E(f") = U’};(l)f‘/(E) = {singularities off ~"}. If we
setJi(f) = ,’;’3 E, andFi(f) = C\Jl(f), then F1(f) is the largest open set in which
all /" are defined ang’(F1(f)) C F1(f). Asin [1], for f € M, we define the Fatou set
of f, denoted byF'( f), to be the largest open set in which (i) all iterajgsare meromor-
phic and (ii) the family{ "} is a normal family; and the Julia set ¢f denoted by/ (1),

is defined to be the complement B{ f). If the setJy(f) is either empty or contains one
point or two points, thery is conjugate to a rational map or entire function or an analytic
map of the punctured plarf&*, respectively. In these cases the condition (i) is trivial and
the Fatou sets are determined by (ii). In all other cases, by Montel’'s theorem, we have
F(f)=Fi(f)andJ(f) = J1(f). Itis easy to see that fof € M, F(f) is open and com-
pletely invariant. Let/ be a connected component®f f), then f"(U) is contained in a
componentU,, of F(f). If for somen € N, U,, = U, namely f*(U) c U, thenU is said

to be periodic. If for some pair of #n, U,, = U,, butU is not periodic, thei/ is said to

be preperiodic. If whenevet # n, U,, # U,, thenU is called a wandering domain gf.

For a periodic component @f (/) we have the following classification theorem [1]:

Theorem 1.1. Let U be a periodic component of the Fatou set of period hen precisely
one of the following is true

(i) U isa(super)attracting domain of a (super)attracting periodic padfitf of periodp
such thatf"” |y — a asn — 4+oo anda € U.

(ii) U is a parabolic domain of a rational neutral periodic péimf f of period p such
that f"P|y — b asn — +oco andb € 9U.

(i) U is a Siegel disk of periogh such that there exists an analytic homeomorphism
¢:U — A, whereA = {z: |z| < 1}, satisfying¢ (/7 (¢~ 1(z))) = 2"z for some
irrational numberr and¢~1(0) € U is an irrational neutral periodic point of of
periodp.

(iv) U is a Herman ring of periogh such that there exists an analytic homeomorphism
¢:U — A, whered = {z: 1 < |z| < r}, satisfyingg (7 (¢~ 1(2))) = 7% ; for some
irrational numberx.

(v) U is a Baker domain of period such thatf"? |y — ¢ € J(f) asn — +oo but f7 is
not meromorphic at. If p =1, thenc € E(f).

There are several subclasses of the dissghich are introduced in [1] including those
studied by Bolsch in [7,8]. To suit our purpose, we introduce some subclasses and their
dynamical properties as follows.
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Definition 1.1. Let f € M. Then

(i) fisinclas if there is a compact countable g8t f) C C such thatf is meromor-
phic in o \ E(f) butin no larger set.

(i) f isin classMPy, wherek is an integer not less than two, (1) # ¢ and for each
z0 € E(f) and open sel/ which containgyg, f takes inU \ E(f) every value inC
with at mostk exceptions.

(i) fisinclassMAy, wherek e N, if E(f) # ¢ and for eaclyg € E(f) the functionf
has thek islands property atp, namely for any neighborhodd of zg andk simply-
connected domaingi in C which have disjoint closures and which are bounded
by sectionally analytic Jordan curves, there is a simply-connected subdd@miain
U \ E(f) such thatf mapsD univalently onto one of the;.

(i) fisinclassMSif the set of singular values of ~1 is finite.

(i) fisinclassMSRif f € MSand the complement df (f) is of classO4p (If W is
a domain in the plane anél is a function analytic i, the Dirichlet integral ofF
is defined byDw (F) = [, |F'(z)|2dx dy. An analytic function with finite Dirichlet
integral is said to be of the clagsD. The domainW is said to be of clas® 4p if the
only functions of classt D on W are constants).

The followings results were established in [1]:

Theorem 1.2. Let f € M. Then the following statements are true

(i) MA; CMP;_1, KC MP,NMA5, KNMSC MSR.

(i) The subclassds, MP;, MA;, andM S are closed under composition.

(i) If f € MA; for somek > 5, then the repelling periodic points are dense/iff).

(iv) If E(f) has the local Picard property, namely there exist no open sewith
ENYV #@¥ and no functionf meromorphic inV \ E(f) with an essential singu-
larity at each point ofE NV such thatf omits three values ity \ E(f), then every
point of J (f) is a limit point of periodic points of .

(v) If f e MS, then f has no Baker domains.

(vi) If f € MSR, thenf has no wandering domains.

The following result was given in [2].

Theorem 1.3. Suppose that € MS. If E(f) has an isolated point, thefi has at most two
completely invariant domains.

In [3], Baker and Singh studied the dynamics of composite entire functions and showed
that if p is a nonconstant entire function agez) = a + be?"'</¢, wherea, b andc are
nonzero constants ando p has no wandering domains, then neither dpesg. In [6],
Bergweiler and Wang studied the dynamics of composite entire functions without assuming
any special forms of functions. The following are results obtained in [6]:
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Theorem 1.4. Let f and g be nonlinear entire functions angde C. Thenz € J(f o g) if
and only ifg(z) € J(g o f).

Theorem 1.5. Let f and g be nonlinear entire functions. Ldfy be a component of
F(f o g) and letVy be the component df (g o f) that containsg (Up). Then

(i) Upis wandering if and only it/ is wandering.
(i) If Up is periodic, then so id,. Moreover, Vy is of the same type according to the
classification of periodic components &g.

In particular, f o g has a wandering domain if and onlygfo f has a wandering domain.

Several examples of entire functions which have no wandering domains were then con-
structed by using Theorem 1.5 including an example given earlier in [3]. In [5], Bergweiler
and Hinkkanen generalized these results by considering dynamical connection of tran-
scendental entire functiong andh satisfyingg o f = h o g, whereg is a continuous and
open map of the complex plane into itself. Recently, Zheng [9] studied the connections
between the Fatou components and the singularities of the inverse function of functions in
classM and the dynamical connection betwegrandg in classM satisfying the equa-
tion ko f = g o h whereh is meromorphic inC. Several examples of Baker domains and
wandering domains of transcendental meromorphic functions which have special proper-
ties were also given in [9]. In this paper, we extend Theorems 1.4 and 1.5 to functions
meromorphic outside a small set which have certain properties such as those in subclasses
of classM defined above. By using these results, we will give examples of transcendental
meromorphic functions and functions in clddswhich do not have wandering domains or
Baker domains.

2. Preliminaries

In this section, we give several lemmas which will be used in the proof of our main
results. Throughout this paper, we dengte g by fg andE(f) by E.

Lemma 2.1. Let f, g € M. If zg is a periodic point offg, theng(zo) is a periodic point
ofgf.

Proof. Let zg be a periodic point of period of fg, namely(fg)"(zo0) = zo. Then

n—1 n—1
0¢ E((f9)") = (U ((fg)f)‘l(Eg)> U (U ((gf)fg)_l(Ef))

j=0 j=0

Thus,g(fg)"(zo) is defined and equal t9(zo). Sinceg(fg)" (z0) = (8f)" (8(z0)), it fol-
lows thatg (zo) is a periodic point og f. This completes the proof.O

Recall that the singularities of the inverse function of functjoim classM, denoted by
sing(f 1), is the union of the set of critical values ¢f denoted byCV( f), and the set of
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asymptotic values of , denoted byAV( 1) together with all limit points oCV( f) UAV(f).
We denote the set of limit points of a sEtby E’.

Lemma2.2. Let f, g € M. Assume the following conditions hold

() cc€ EfNE,.
(i) If for somezg € E s, and for some pathy (1), 0< ¢ < 1, we havey N Ey, = ¢ and
y — zoast — 1,theng(y) N (Ey \ {oo}) = 0.

Then we have
CV(fg) CCV(HH U f(CV(g)),  AV(fg) CAV(/)U f(AV(g)),
andsing(fg)~* c sing(f) "t U f(singg) ™).

Proof. Let « be a critical value offg. Then there existgg such that(fg)'(zo) =
1'(8(z0))g'(z0) =0 and(fg)(z0) = a. Thus,zo ¢ Eg U g_l(Ef)- If f"(g(z0)) =0, then
g(zo) is a critical point for f and we have(fg)(zo) € CV(f). If g'(z0) = 0, thenzg
is a critical point ofg and sog(zo) € CV(g). Thus, (fg)(z0) € f(CV(g)). Therefore,
CV(fg) C CV(f)U f(CV(g)). Now leta be an asymptotic value gfg. Then there exists
z0€ Ef, and a pathy(r), 0<t <1 suchthat NEg, =@ andy — zp ast — 1 and
(f8)(z) —> a alongy.

Case 1. 79 is finite.

Subcasd.1l: g(z) — zo alongy.
In this subcasey is an asymptotic value of .

Subcasd.2: g(z) » zo alongy andg(z) is eventually bounded along (namely, there
existss > 0 such thatg(z)| is bounded oz € y: |z — zo| < 8}).

In this subcase, there exists a sequefizg@ on y and a finite pointwg such that
liM;— 100 20 = zo @Nd lim, _, & g(2,) = wo. By (ii), wo ¢ E y and it follows thatf (wo) =
lim,- +c f(g(zn)) = . By (ii) and the fact that poles of cannot accumulate at a finite
point outsideE ¢, we can find a neighborhodd,,, of wo such that/,,, N (Ey U Py) =,
where Py is the set of poles of (if there exists a sequenes, of points inE ¢ such that
lim,— 400 wn = wo, thenwg € E ¢ = E . This is impossible by (ii). Thusf is analytic
in Uy, Let p > 0 be a fixed sufficiently small positive real number. Then for semse0,
we have| f(w) — «| > ¢ for w € {w: |w — wo| = p}. Next, asx is an asymptotic value of
fog |f(gr)—al<eforallze{z: |z—z0| <8} ony, for somes > 0. In particular, if
|zn — zo| are sufficiently small, thehf (g(z)) —«| < ¢ for all z such thatz — zo| < |z, — zol
and|g(z,) — wol| < p. Thus,|g(z) — wol| < p for all z which is arbitrarily closed tag and
hencewg is an asymptotic value gf. This givese € f(AV(g)).

Subcasd.3: g(z) is not eventually bounded along
In this subcase, there exists a sequefigg on y such that lim_ 4z, = zo and
lim,— +o g(z,) = oo. If there are infinitely many points,, of the sequence, such that
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g(zn,) = 00, then we modify the patly slightly so as to avoid the poles gfwhile pre-
serving all other conditions. Thus, eventually alofzg}, ¢ is defined and unbounded;
namely, there exists a sequerfeg} on y such that lim_, . o, = z0, g(&,) # co and
liM,,— o0 g(en) = 00. If g(z) — oo, alongy, thena € AV(f) sinceco € E ;. Otherwise,
there is a sequeng®, on y such that lim_, 1 g(8,) = wo for some finitewg. By (ii),
wo ¢ E ¢ and it follows thatf (wg) = lim, . 4 f(g(Br)) = . By the same argument as
in Subcase 1.2, we can find a neighborhég of wo such thatf is analytic inU,,,. Let

o > 0 be a fixed sufficiently small positive real number. Then for seme0, we have

| f(w) —a| > ¢ for we {w: |[w— wo| = p}. Next, asa is an asymptotic value of o g,
|f(g(z)) —«a| <e forall z e{z: |z— zol <38} ony, for some constant. In particular,
if B, are sufficiently close tap on y, then|f(g(z)) — «| < ¢ for all z beyondg, on y
and|g(B,) — wo| < p. Thus,|g(z) — wo| < p for all z sufficiently close tag ony. Thus
g must be bounded op which contradicts to the assumption tlgdt) is not eventually
bounded along . Therefore, this subcase cannot occur at all.

Case 2. z0=o00.

Subcas@.1: g(z) — oo alongy.
In this subcasey is an asymptotic value of .

Subcas@.2: g(z) » oo alongy.

In this subcase, there exists a sequefiz@ on y and a finite pointwg such that
liM;,— 400 20 = 00 @nd lim,_, 1. o0 g(zn) = wo. By (ii), wo ¢ E and it follows thatf (wo) =
lim,— 100 f(g(z1)) = @. The same argument as in Subcase 1.2 givesf (AV(g)).

From Cases 1 and 2, we conclude tB&( fg) € AV(f) U f(AV(g)). This completes
the proof. O

Remark 2.1. If f and g are transcendental entire functions, then all assumptions in
Lemma 2.2 hold.

Lemma 2.3 (Denjoy—Carleman-Ahlfors Theorem [8]f the inverse function of a mero-
morphic functionf hasn direct singularitiesy > 2, then
I f)

liminf — > 0.
r—>—+00 r2

Consequently, the inverse function to a meromorphic function of finite pries at most
max{2p, 1} direct singularities. Moreover, an entire function of finite orgehas at most
2p finite asymptotic values.

The following lemma is proved in [4].

L emma 2.4. For a meromorphic functiorf of finite order, every indirect singularity gf 1
is a limit of critical values.
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3. Results
We are now ready to state and prove our main results.

Theorem 3.1. Let f,g € M. Assume thabto € Ef N E, and every point inJ(fg)
and J(gf) is a limit point of periodic points offg and gf, respectively. Then the fol-
lowing statements hoid

(i) FzeJ(fe)\ Eg, theng(z) € J(gf).
(i) fgzx) e J(gf)\ Ef,thenze J(fg).

Proof. Let z € J(fg) \ E,. By assumption, there exist periodic poinis of fg say
(fg)"™ (zk) = zx wherez; # z such thatzy — z ask — +o00. By Lemma 2.1¢(z;) are
periodic points ofgf and g(zx) # g(z) for all but finitely manyk (otherwise, the set
{w: g(w) — g(z) =0} has a limit point and henggis a constant). As, z; ¢ E, we have
g(zx) — g(z) ask — +oo and hence(z) is a limit point of periodic points of f. It fol-
lows thatg(z) € J(gf). Similarly, by interchanging the role gf andg, if w € J(gf)\ E,
then f(w) € J(fg). Conversely, assume thatz) € J(gf) \ E, then f(g(2)) € J(fg)
and by the complete invariance property of the Julia set we obtaid (fg). This com-
pletes the proof. O

From Theorem 3.1, we have

Corollary 3.1. If U is a component of'(fg), theng(U) is contained in a componemt
of F(gf).

Proof. Let U be a component of'(fg). ThenU N J(fg) = ¥. We claim thatg(U) N
J(gf) = 0. Suppose thag(U) N (J(gf) \ Ef) # ¥. Then there existsg € U such
that g(z0) € (J(gf) \ Ef). By Theorem 3.1(ii), we haveg € J(fg) which is impos-
sible. Now if g(U) N Ef # ¢, then there existso € U such thatg(zg) € E¢. Thus,
Z0 € g_lEf C Eyg C J(fg) which is impossible. Thereforeg(U) N J(gf) =¥ and
henceg(U) is contained in a componet of F(gf). This completes the proof.O

Theorem 3.2. Let f, g € M. Assume thabo € Ey N E, and every point inJ(fg)
and J(gf) is a limit point of periodic points of g and gf, respectively. Let/ be a com-
ponent ofF (fg) and letV be the component df (gf) which containg(U). Then

(i) U is a wandering domain if and only ¥f is a wandering domain.

(iiy If U is periodic, then so i¥. Moreover,V is of the same type according to the classi-
fication of periodic components @& unlessU is a Siegel disk or Herman ring where
in this caseV is either a Siegel disk or Herman ring.

Proof. For eachn € N, let U,, be the component af (fg) which containg fg)"(U) and
let v, be the component af (¢f) which containggf)" (V). AsU N E, = we see that
g((f)™(U)) = (gf)"(g(U)) which givesg(U,) C V,. By a similar argument used in the
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proof of Corollary 3.1, we may show that(V,) c U,+1. As a result, ifU,, = U,, then
Viu =V, and ifV,, = V,, thenU,, 1 = U,+1. This gives the statement (i) of the theorem.
Moreover, ifU, = U, thenV,, = V, namely if U is periodic, then so i¥/. Assume that
U, = U and for some sequen¢e;} we have(fg)"/ |y — ¢ asj — +oo where¢p ¢ E f,.
Let V* be a domain inV such that a branch,*: V* — U* c U of the inverse function
of g is defined. Therigf)"|y* = g(fg)"g‘jlh/* and hencég )" (V*) —> ¢ = g¢>g‘71. If
U is a Siegel disk or Herman ring, thenis a nonconstant limit function df f¢)"} on U,
henceyr is also a nonconstant limit function ¢t f¢)"} on V and henceV is either a
Siegel disk or Herman ring. i/ is an attracting domain, thefis a constant limit function
lying in F(fg), hencey is also a constant limit function lying i (gf) andV must be
an attracting domain. Similarly, if/ is a parabolic domain, then so 5. By the same
arguments, ifV is an attracting or parabolic domain, then sdjis and if V is a Siegel
disk or Herman ring, thetv; is either a Siegel disk or Herman ring. It follows thatifis
a Baker domain, then so I8. This completes the proof.O

We now give an example of transcendental meromorphic function and function in
classM which do not have wandering domains or Baker domains.

Example 3.1. Let f(z) = ¢/ 4 z andg(z) = tanz. Theng has finite order and has no crit-
ical values; hence, by Lemmas 2.3 and 2.4as only finitely many asymptotic values. In
fact, AV(g) = {—i, i}. For f we may easily show tha@V(f) = {i + (5 + 2kn). k € Z}
and f has no finite asymptotic values. We may show th@V(f)) = {— coti}, hence,

by Lemma 2.2AV(gf) C {—i,i} andCV(gf) C {—coti}. SinCeEgzr = Ef U f*l(Eg) =

{00}, gf is a transcendental meromorphic function@randgf € KNMSc MSR. By
Theorem 1.1gf has no wandering domains or Baker domains. We conclude from Theo-
rem 3.2 thatfg = ¢/ @™ 4 tanz has no wandering domains or Baker domains. Note that
CV(fg) =1{i + 5 + 2kn: k € Z}, hencefg ¢ MS or not even of bounded type.C

Remark 3.1. Theorem 3.2 generalizes Theorem 1.5 obtained in [6] and in fact we may find
other examples of transcendental entire or meromorphic functions which have no wander-
ing domains or Baker domains.
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