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Distortion of Univalent Functions
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TO LEON MIRSKY ON HI3 60TH BIRTHDAY

For a complex function f which is analytic and univalent on the open unit
disk 4 = {z: | 2| < 1} and normalized with f(0) —— 0, f'(0) — 1. the classical
Koebe distortion theorem [1, 3] states that
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hold for z € 4. As these inequalities involve a single point of ., it is natural
to consider two points #, © of 4 and to look for bounds for the ratios
[ f(u) — f(o)ljl(u — =) f'(w)} and | f'(@)l/] f'(2)! . It is reasonable to expect the
bounds to depend on the non-Euclidean distance
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Such bounds (4), (6) are given in the fotlowing theorem, which is valid for all f
analytic and univalent on 4 (no need for normalization). We also include (5),
which is less sharp than (4) but is simpler.

THEOREM . If f is analviic and univalent on the open unit disk A, then

inequalities
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hold for u, v in A.
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Before proving this result, let us first identify some of its special cases. For
functions f normalized with f(0) = 0, f'(0) = 1, the classical double inequality
(1) is the case © = 0 of (4) or (5), while the case u = 0 of (4) cr (5) is another
known result [1, pp. 88-89; 2, p. 224]:
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The double inequality (2) is clearly a special case of (6). As an immediate
consequence of inequality (16) (which will appear in the proof of Theorem 1),
we have
1 —]o|? |l—uz"'|+|u——-z'|2<_,l+|u| I+ o] \3 .
l—|u|2(|1—u7?|—|u~-z'|)“:l—l-z'l(l-iul) (8)

for u, v € 4. Here equality occurs if and only if 47 :< 0. Thus, unless uz < 0,
(6) gives a sharper upper bound for | f'(4)|/] f'()| than (2) or its consequence
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where max(Ju|,|o]) <r < 1.

For the special function f(z) = 2(i 4 2)%, every bound given in Theorem I
is attained for suitable choice of u, . Indeed, equality occurs on each side of (4)
for u, v real, respectively for u >» = and u < ©. Equality occurs on each side of
(5) respectively for 0 sCu <1, —l <o {0 and —1 <us=(0, 0<e <.
Equality holds in (6) for real u.  such that u < .

Proof of Theorem 1. For w = 4, let p,. denote the NMébius function
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which is analytic, univalent on 4, and p,(4) = 4. The inverse function of u,, is
t_y - For a fixed v € 4, define g, / on A by
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As f is univalent, () = 0, so g'(0) = 0. Thus 4 is analytic, univalent on ;
2(0) = 0, #'(0) = 1. If we introduce the substitution

o= pu_(z) T = p(u), (10)
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then g(z) = f(u) and
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With substitution (10), the double inequality (1) for A(z) may be written
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for u, v € 4, where
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To simplify these expressions, we use the identity
[l—wP—ju—ovP=>0—=1uH({l — o]
to write (alwayvs for u, v in 1)
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Then (12), {13} mayv be written
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so (4) follows at once from (11), (14), and (13).
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we derive
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for u, © in 4; here equality occurs if and only if #& - 0. Using (16), we infer
that the upper bound in (4) is - the upper bound in (5), and the lower bound
in (4) is 2 the lower bound in (5). Thus (3) is a consequence of (4).

If we interchange u, ¢ in the left-side inequality of (4}, the resulting inequality
combined with the right-side inequality of (4) gives (6). This completes the
proof.

It is easily verified that the bounds M (u, v}, Myu, ) in (4) may also be
written
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My(u, ) = ‘l — : ” ]‘ ) ('w‘“-"’ cosh D{u, ©). (18)
2

Let f be analvtic and univalent on J, with f(0) = 0, f'(0) = 1. If the image
f(d) is a convex set in the complex plane, it is well known [2, p. 225] that
inequalities (sharper than (1), (2))
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hold for 5 € J. The following is a generalization of this.

THEOREM 2. If f is analvtic. univalent on A, and f(J) is convex, then
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hold for u, v in 4.
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For functions f normalized with f{0) = 0, f'(0) := 1, the case © = 0 of (21)
or (22) is (19), while the case # = 0 of (21} or (22) is

el = 1o |40 | <re e 1en, (24
Clearly (20) is a special case of (23). In view of {16), we have

l—Je]*| 1 —u-zj|+|u—zv{ o 1%—|'1‘|)'2
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with strict inequality unless & <] 0. Thus except for the case uz <7 0, (23) gives

a sharper upper bound for | f'(x)]'] f'(¢)} than (20). Simple calculations will
verify that each of (21)-(23) (which are valid only when f(4) is convex) gives
sharper bounds than the corresponding one of {(4)-(6).

For the special function f(z) = 2(1 — 3)7!, every bound in Theorem 2 is
attained for suitable choice of u, 7. Indeed, equality occurs on each side of (21)
for u, v real, respectively for u : 7 ¢ and # :» v. Equality occurs on each side of
(22) respectively for —1 «Zu <20, 0:7 ¢ -2 land O w71, =1 -2 <0.
Equality holds in (23) for real u, v such that u 7 z.

Proof of Theorem 2. 'The proof is similar to that of Theorem 1. Define g, A
as in the proof of Theorem 1. Observe that A() is convex, so (19) holds for A.
With the substitution (10), the double inequality (19) for /#(2) becomes (21)
after simplification.

Next, in view of the identity

(I—1uP)( — e =0C1—ut|+la—v (] —ut] —lu—2;).
we have
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which combined with (16) imply
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This proves (22) as a consequence of (21). Inequality (23) follows directly from

(21).
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In the above proof, we have alread_v seen that (21) may be given the form
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Let f be meromorphic and univalent on 4 with f(0) =0, f(0) =1. It is
known [1, p. 87] that
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if 5 € 4 is not a pole of f. This is the case v = 0 of the following.

THEOREM 3. Let f be meromorphic and univalent on A. If u, v are in 1 and
neither of them is a pole of f, then

) —f@E (1 — um) (n — o)
F@r@ SU—Tap =19 (27)

For f(z) = 2(1 + 2)~2 and any real 4, v in 1, equality occurs in (27).

Proof. Let z = d be not a pole of f, and let g, & be detined as in the proof of
Theorem 1. 4 is meromorphic and univalent on d; A(0) =0, /'(0) = 1. With
the substitution (10), we have

f(u) —-f('Z") h (Q) — f’(u) o
= emf@ (T e/ e
If u € 4 is not a pole of f, then ¥ = u,(u) is not a pole of A, s0 by (26):

fl) =) 1*. ’ (1 + T (@)Pf(e) |~ Ipdw)?
(I =12 f'() f(w) 1= pdu)?

which easily reduces to (27).
Finally we mention that the upper bound in (27) may be expressed in terms
of the non-Euclidean distance:
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(28)

REFERENCES

1. J. A. Jenkins, "“Univalent Functions and Conformal Mapping,” Springer-Verlag,
Berlin/Heidelberg/New York, 1965.

2. Z. NeHari, “Conformal Mapping,” McGraw-Hill, New York, 1952.

3. C. Ponminierenke, “Univalent Functions,” Vandenhoeck-Ruprecht, Géttingen, West-
Germany, 1975,



