Distortion of Univalent Functions

Ky Fan
Department of Mathematics, University of California, Santa Barbara, California 93106 TO LEON MIRSKY ON HIS 60th BIRTHDAY

1
For a complex function f which is analytic and univalent on the open unit disk $\mathcal{A}=\{z:|z|<1\}$ and normalized with $f(0)-0, f^{\prime}(0)-1$, the classical Koebe distortion theorem [1, 3] states that

$$
\begin{align*}
& \frac{|z|}{(1+|z|)^{2}} \leqslant|f(z)| \leqslant \frac{|z|}{(1-|z|)^{2}}, \tag{1}\\
& \frac{1-|z|}{(1+|z|)^{3}} \leqslant\left|f^{\prime}(z)\right| \leqslant \frac{1+|z|}{(1-|z|)^{3}} \tag{2}
\end{align*}
$$

hold for $\approx \in \mathcal{A}$. As these inequalities involve a single point of \mathcal{A}, it is natural to consider two points u, v of Δ and to look for bounds for the ratios $\left.|f(u)-f(z)|\left|\left|\left(u-i^{\prime}\right) f^{\prime}\left(v^{\prime}\right)\right|\right.$ and $| f^{\prime}(u)\right|^{\prime}\left|f^{\prime}\left(z^{\prime}\right)\right|$. It is reasonable to expect the bounds to depend on the non-Euclidean distance

$$
\begin{equation*}
D\left(u, \bar{z}^{\prime}\right)=\frac{1}{2} \log \frac{|1-u \bar{v}|+|u-\bar{v}|}{\left|1-u \overline{v_{e}}\right|-|u-\bar{a}|} . \tag{3}
\end{equation*}
$$

Such bounds (4), (6) are given in the following theorem, which is valid for all f analytic and univalent on \mathcal{L} (no need for normalization). We also include (5), which is less sharp than (4) but is simpler.

Theorem I. If f is analytic and unizalent on the open unit disk 4 , then inequalities

$$
\begin{gather*}
\frac{|1-u \bar{v}|}{1-|u|^{2}} e^{-2 D(u, u)} \leqslant\left|\frac{f(u)-f\left(v^{\prime}\right)}{\left(u-v^{\prime}\right) f^{\prime}\left(v^{\prime}\right)}\right| \leqslant \frac{|1-u \bar{v}|}{1-|u|^{2}} e^{2 D\left(u, w^{\prime}\right)}, \tag{4}\\
\frac{\left|1-u \overline{v_{1}}\right|}{(1+|u|)^{2}} \cdot \frac{1-|v|}{1+\left|\overrightarrow{z^{\prime}}\right|} \leqslant\left|\frac{f(u)-f\left(v^{\prime}\right)}{\left(u-v^{\prime}\right) f^{\prime}\left(v^{\prime}\right)}\right| \leqslant \frac{|1-u \bar{v}|}{(1-|u|)^{2}} \cdot \frac{1+|\vec{v}|}{1-\left|\overrightarrow{v^{\prime}}\right|}, \tag{5}\\
\left|\frac{f(u)}{f^{\prime}\left(\overline{c^{\prime}}\right)}\right|=\frac{1-|v|^{2}}{1-|u|^{2}} e^{t D(u . v)} \tag{6}
\end{gather*}
$$

hold for u, w^{2} in 4 .

Before proving this result, let us first identify some of its special cases. For functions f normalized with $f(0)=0, f^{\prime}(0)=1$, the classical double inequality (1) is the case $z^{\prime}=0$ of (4) or (5), while the case $u=0$ of (4) or (5) is another known result [1, pp. 88-89; 2, p. 224]:

$$
\begin{equation*}
\frac{\left|v^{\prime}\right|\left(1-\left|v^{\prime}\right|\right)}{1+|v|} \leqslant\left|\frac{f\left(v^{\prime}\right)}{f^{\prime}\left(v^{\prime}\right)}\right| \leqslant \frac{|v|\left(1+\left|v^{\prime}\right|\right)}{1-\left|v^{\prime}\right|} \tag{7}
\end{equation*}
$$

The double inequality (2) is clearly a special case of (6). As an immediate consequence of inequality (16) (which will appear in the proof of Theorem 1), we have

$$
\begin{equation*}
\frac{1-|v|^{2}}{1-|u|^{2}}\left(\frac{|1-u \bar{v}|+|u-v|}{|1-u \bar{v}|-|u-v|}\right)^{2} \leqslant \frac{1+|u|}{1-|v|}\left(\left.\frac{1+\mid}{1-|u|} \right\rvert\, \frac{|v|}{|u|}\right)^{3} \tag{8}
\end{equation*}
$$

for $u, v^{\prime} \in \Delta$. Here equality occurs if and only if $u \bar{i} \leqslant 0$. Thus, unless $u \bar{\tau} \leqslant 0$, (6) gives a sharper upper bound for $\left|f^{\prime}(u)\right| /\left|f^{\prime}\left(z^{\prime}\right)\right|$ than (2) or its consequence

$$
\begin{equation*}
\left|\frac{f^{\prime}(u)}{f^{\prime}\left(z^{\prime}\right)}\right| \leqslant\left(\frac{1+r}{1-r}\right)^{4} \tag{9}
\end{equation*}
$$

where $\max (|u|,|\boldsymbol{u}|) \leqslant r<1$.
For the special function $f(z)=z(1+\approx)^{-2}$, every bound given in Theorem 1 is attained for suitable choice of u, z. Indeed, equality occurs on each side of (4) for u, v real, respectively for $u \geqslant \tau$ and $u \leqslant \tau$. Equality occurs on each side of (5) respectively for $0 \leqslant u<1,-1<\tau \leqslant 0$ and $-1<u \leqslant 0,0 \leqslant v<1$. Equality holds in (6) for real u, v, such that $u \leqslant v$.

Proof of Theorem 1. For $w \in \mathcal{A}$, let μ_{w} denote the Möbius function

$$
\mu_{w}(z)=\frac{z-\tilde{z}}{1-\bar{w} z},
$$

which is analytic, univalent on Δ, and $\mu_{v}(\lambda)=\Delta$. The inverse function of μ_{ω} is μ_{-w}. For a fixed $z \in \mathcal{d}$, define g, h on d by

$$
g=f \circ \mu_{-n}, \quad h=\frac{g-g(0)}{g^{\prime}(0)}
$$

Then

$$
\begin{gathered}
g^{\prime}(z)=\frac{1-|z|^{2}}{(1+\bar{z} z)^{2}}\left(f^{\prime} \circ \mu_{-\mathrm{r}}\right)(z), \\
g(0)=f\left(z^{\prime}\right), \quad g^{\prime}(0)=\left(1-\left|z^{\prime}\right|^{2}\right) f^{\prime}\left(z^{\prime}\right)
\end{gathered}
$$

As f is univalent, $f\left(a^{\circ}\right)=0$, so $g^{\prime}(0)=0$. Thus h is analytic, univalent on d; $h(0)=0, h^{\prime}(0)=1$. If we introduce the substitution

$$
\begin{equation*}
u=\mu_{-1}(\approx) . \quad z=\mu_{r}(u) \tag{10}
\end{equation*}
$$

then $g(z)=f(u)$ and

$$
h(z)=\frac{f(u)-f(\dot{c})}{\left(1-\left|\varepsilon^{\prime}\right|^{2}\right) f^{\prime}\left(z^{\prime}\right)} .
$$

With substitution (10), the double inequality (1) for $h(s)$ may be written

$$
\begin{equation*}
M_{1}\left(u, a^{\prime}\right) \therefore\left|\frac{f(u)-f\left(i^{\prime}\right)}{\left(u-i^{\prime}\right) f^{\prime}\left(i^{\prime}\right)}\right|=M_{2}\left(u, i^{\prime}\right) \tag{11}
\end{equation*}
$$

for $u, \vec{a} \in \Delta$, where

$$
\begin{align*}
& M_{1}\left(u, i^{i}\right)=\frac{1-\left|i^{\prime}\right|^{2}}{\left|u-i^{\prime}\right|} \frac{\left|\mu_{r}(u)\right|}{\left(1+\left|\mu_{r}(u)\right|\right)^{2}} \tag{12}\\
& M_{2}\left(u, i^{\prime}\right)=\frac{\left|-\left|i^{\prime}\right|^{2}\right.}{\left|u-i^{\prime}\right|} \frac{\left|\mu_{,}(u)\right|}{\left(1-\left|\mu_{r}(u)\right|\right)^{2}} \tag{1.3}
\end{align*}
$$

To simplify these expressions, we use the identity

$$
\left|1-u \overline{v^{\prime}}\right|^{2}-\mid u-i^{2}=\left(1-|u|^{2}\right)\left(1-\left|\mathfrak{z}^{1}\right|^{2}\right)
$$

to write (always for u, i in لـ \quad)

$$
\frac{\left|\mu_{i}(u)\right|}{1-\left|\mu_{i}(u)\right|^{2}}=\frac{|(1-u \bar{i})(u-i)|}{\left(1-|u|^{2}\right)\left(1-\left|\bar{i}^{-}\right|^{2}\right)} .
$$

Then (12), (13) may be written

$$
\begin{align*}
& M_{1}\left(u, z^{\prime}\right)=\frac{\left|1-u \overline{v^{2}}\right|}{1-|u|^{2}} \frac{1-\left|\mu_{r}(u)\right|}{1+\left|\mu_{n}(u)\right|} \tag{14}\\
& M_{\Omega}\left(u, z^{\prime}\right)=\frac{|1-u \overline{\mathrm{c}}|}{1-|u|^{2}} \frac{1+\left|\mu_{n}(u)\right|}{1-\left|\mu_{r}(u)\right|} \tag{15}
\end{align*}
$$

so (4) follows at once from (11), (14), and (15).

From

$$
\begin{aligned}
\left|\frac{u-i^{\prime}}{1-u \bar{v}^{\prime}}\right|^{2}= & 1-\frac{\left(1-|u|^{2}\right)\left(1-\left|v^{2}\right|^{2}\right)}{|1-u \bar{\tau}|^{2}} \\
& \therefore 1-\frac{\left(1-|u|^{2}\right)\left(1-|\bar{v}|^{2}\right)}{\left(1+\left|u v^{2}\right|\right)^{2}}=\left(\frac{|u|+|\tilde{v}|}{1+\left|u v^{\prime}\right|}\right)^{2},
\end{aligned}
$$

we derive

$$
\begin{equation*}
\frac{|1-u \bar{i}|+|u-\varepsilon|}{|1-u \bar{i}|-|u-\bar{i}|} \leq \frac{(1+|u|)(1+|\vec{i}|)}{(1-|u|)(1-|\vec{v}|)} \tag{16}
\end{equation*}
$$

for u, \vec{e} in Δ; here equality occurs if and only if $u \vec{i}: 0$. Using (16), we infer that the upper bound in (4) is \because the upper bound in (5), and the lower bound in (4) is $\because=$ the lower bound in (5). Thus (5) is a consequence of (4).

If we interchange u, a in the lett-side inequality of (4), the resulting inequality combined with the right-side inequality of (4) gives (6). This completes the proof.

It is easily rerified that the bounds $M_{1}(u, i), M_{2}\left(u, i^{\prime}\right)$ in (4) may also be written

$$
\begin{align*}
& . M_{1}\left(u, i^{\prime}\right)=\left(\frac{1-\left|i^{2}\right|^{2}}{1-|u|^{2}}\right)^{12} e^{-2 D(u,+)} \cosh D\left(u, i^{\prime}\right), \tag{17}\\
& . M_{2}\left(u, i^{\prime}\right)=\left(\frac{1-\left|i^{2}\right|^{2}}{1-|u|^{2}}\right)^{12} e^{2 D\left(u, i^{\prime}\right)} \cosh D\left(u, i^{\prime}\right) . \tag{18}
\end{align*}
$$

Let f be analytic and univalent on \lrcorner, with $f(0)=0, f^{\prime}(0)=1$. If the image $f(\lrcorner)$ is a convex set in the complex plane, it is well known [2, p. 225] that inequalities (sharper than (1), (2))

$$
\begin{gather*}
\frac{|z|}{1+|z|} \because|f(z)| \leqslant \frac{|z|}{1-\mid z 1} \tag{19}\\
\frac{1}{(1+|z|)^{2}} \leqslant\left|f^{\prime}(z)\right| \because \frac{1}{(1-|z|)^{2}} \tag{20}
\end{gather*}
$$

hold for $\approx \in \mathcal{J}$. The following is a generalization of this.
Theorem 2. If fis analytic, unizalent on \lrcorner, and $f(\mathrm{~d})$ is coniex, then

$$
\begin{align*}
& \frac{1-\left|\bar{v}^{\prime}\right|^{2}}{\left|1-u \bar{v}^{\bar{\prime}}\right|+\left|u-v^{\prime}\right|} \leqslant\left|\frac{f(u)-f\left(\bar{v}^{\prime}\right)}{\left(u-i^{\prime}\right) f^{\prime}\left(\bar{v}^{\prime}\right)}\right| \leqslant \frac{1-\left|i^{\prime}\right|^{2}}{\left|1-u \bar{i}^{\bar{i}}\right|-\left|u-\bar{i}^{\prime}\right|}, \tag{21}\\
& \frac{1-\left|z^{\prime}\right|}{1+|u|} \leqslant\left|\frac{f(u)-f\left(\tau^{\prime}\right)}{\left(u-\varepsilon^{\prime}\right) f^{\prime}\left(i^{\prime}\right)}\right| \leqslant \frac{1+|\dot{c}|}{1-|u|}, \tag{22}\\
& \left|\frac{f^{\prime}(u)}{f^{\prime}(z)}\right| \leqslant \frac{1-|v|^{2}}{1-|u|^{2}} e^{2 D(u, u)} \tag{23}
\end{align*}
$$

hold for u, v in Δ.

For functions f normalized with $f(0)=0, f^{\prime}(0)==1$, the case $z=0$ of (21) or (22) is (19), while the case $u=0$ of (21) or (22) is

$$
\begin{equation*}
|v|\left(1-\left|i^{\prime}\right|\right)-\left|\frac{f\left(a^{\prime}\right)}{f^{\prime}(i)}\right| \leqslant\left|i^{\prime}\right|\left(1+\left|i^{\prime}\right|\right) . \tag{ュ4}
\end{equation*}
$$

Clearly (20) is a special case of (23). In view of (16), we have

$$
\frac{1-\left|\bar{z}^{\prime}\right|^{2}\left|1-u \overline{v^{\prime}}\right|+\left|u-i^{\prime}\right|}{1-|u|^{2}\left|1-u \overline{c^{2}}\right|-\left|u-\bar{z}^{\prime}\right|} \leqslant\left(\frac{1+\left|\overline{c^{\prime}}\right|}{1-|u|}\right)^{2}
$$

with strict inequality unless $u \overline{v_{i}}<0$. Thus except for the case $u \bar{\imath} \leqslant 0$, (23) gives a sharper upper bound for $\left|f^{\prime}(u)\right| \cdot\left|f^{\prime}\left(i^{\prime}\right)\right|$ than (20). Simple calculations will verify that each of (21)-(23) (which are valid only when $f(\sqrt{ }(\sqrt{\prime})$ is convex) gives sharper bounds than the corresponding one of (4)-(6).

For the special function $f(z)=z(1-s)^{-1}$, every bound in Theorem 2 is attained for suitable choice of u, z. Indeed, equality occurs on each side of (21) for u, v real, respectively for $u: a$ and $u \approx z$. Equality occurs on each side of (22) respectively for $-1<u<0,0: \tau<1$ and $0<u<1,-1 \ll \leqslant 0$. Equality holds in (23) for real u, i such that $u \cdots$.

Proof of Theorem 2. The proof is similar to that of Theorem 1. Define g, h as in the proof of Theorem 1. Observe that $h(4)$ is conves, so (19) holds for h. With the substitution (10), the double inequality (19) for $h(s)$ becomes (21) after simplification.

Next, in view of the identity
we have
which combined with (16) imply

$$
\begin{aligned}
& \frac{1-|\bar{z}|^{2}}{|1-u \bar{v}|+|u-\bar{v}|} \because \frac{1-|z|}{1+|u|}, \\
& \frac{1-|\bar{z}|^{2}}{|1-u \bar{\tau}|-\left|u-z^{\prime}\right|}=\frac{1+|\bar{i}|}{1-|u|} .
\end{aligned}
$$

This proves (22) as a consequence of (211. Inequality (23) follows directly from (21).

In the above proof, we have already seen that (21) may be given the form

$$
\begin{equation*}
\left(\frac{1-|v|^{2}}{1-|u|^{2}}\right)^{12} e^{-D(u, v)} \leqslant\left|\frac{f(u)-f(v)}{(u-\varepsilon) f^{\prime}(v)}\right| \leqslant\left(\frac{1-|\tau|^{2}}{1-|u|^{2}}\right)^{1: 2} e^{D(u, u)} . \tag{25}
\end{equation*}
$$

3

Let f be meromorphic and univalent on \lrcorner with $f(0)=0, f^{\prime}(0)=1$. It is known [1, p. 87] that

$$
\begin{equation*}
\frac{|f(z)|^{2}}{\left|f^{\prime}(z)\right|}<\frac{|z|^{2}}{1-|z|^{2}} \tag{26}
\end{equation*}
$$

if $\approx \in \Delta$ is not a pole of f. This is the case $v^{\prime}=0$ of the following.
Theorem 3. Let f be meromorphic and unizalent on 1 . If u, $z^{\text {a }}$ are in 1 and neither of them is a pole of f, then

$$
\begin{equation*}
\frac{\left|f(u)-f\left(z^{\prime}\right)\right|^{2}}{\left|f^{\prime}(u) f^{\prime}\left(z^{\prime}\right)\right|} \leqslant \frac{\left|\left(1-u \overline{v^{\prime}}\right)\left(u-z^{\prime}\right)\right|^{2}}{\left(1-|u|^{2}\right)\left(1-\left|\bar{i}^{\prime}\right|^{2}\right)} . \tag{27}
\end{equation*}
$$

For $f(z)=a(1+\varepsilon)^{-2}$ and any real u, v^{\prime} in \rfloor, equality occurs in (27).
Proof. Let $\tau \in J$ be not a pole of f, and let g, h be defined as in the proof of Theorem 1. h is meromorphic and univalent on \downarrow; $h(0)=0, h^{\prime}(0)=1$. With the substitution (10), we have

$$
h(z)=\frac{f(u)-f\left(z^{\prime}\right)}{\left(1-\left|z^{\prime}\right|^{2}\right) f^{\prime}\left(z^{\prime}\right)}, \quad h^{\prime}(z)=\frac{f^{\prime}(u)}{\left(1+\overline{z^{\prime}} \mu_{,}(u)\right)^{2} f^{\prime}\left(z^{\prime}\right)} .
$$

If $u \in \Delta$ is not a pole of f, then $z=\mu_{r}(u)$ is not a pole of $h_{\text {, so }}$ by (26):

$$
\left|\frac{f(u)-f^{\prime}\left(z^{\prime}\right)}{\left(1-\left|\tau^{\prime}\right|^{2}\right) f^{\prime}\left(v^{\prime}\right)}\right|^{2} \cdot\left|\frac{\left(1+\overline{v^{\prime}} \mu_{v}(u)\right)^{2} f^{\prime}\left(v^{\prime}\right)}{f^{\prime}(u)}\right| \leqslant \frac{\left|\mu_{v}(u)\right|^{2}}{1-\left|\mu_{v}(u)\right|^{2}},
$$

which easily reduces to (27).
Finally we mention that the upper bound in (27) may be expressed in terms of the non-Euclidean distance:

$$
\begin{equation*}
\frac{\left|f(u)-f\left(z^{\prime}\right)\right|^{2}}{\left|f^{\prime}(u) f^{\prime}(v)\right|} \leqslant \frac{\left(1-|u|^{2}\right)\left(1-\left|v^{\prime}\right|^{2}\right)}{4} \sinh ^{2} 2 D\left(u, z^{\prime}\right) \tag{28}
\end{equation*}
$$

References

1. J. A. Jenkins, "Univalent Functions and Conformal Mapping," Springer-Verlag, Berlin/Heidelberg/New York, 1965.
2. Z. Nehari, "Conformal Mapping," McGraw-Hill, New York, 1952.
3. C. Pominerenke, "Univalent Functions," Vandenhoeck-Ruprecht, Göttingen, WestGermany, 1975.
