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Abstract 

The present paper is concerned with the grouping of book covers on offset plates in order to minimize the total 
production cost. The mathematical formulation of the problem involves both binary and continuous variables. As exact 
methods are unable to provide solutions in reasonable time, a heuristic algorithm of the simulated annealing type is 
proposed. At each iteration, the values of the current solution binary variables are altered in order to yield a neighboring 
solution. To compute the corresponding values of the continuous variables and the value of the objective function, 
a linear programming routine is called at each iteration. This constitutes the main originality of the present approach and 
is in principle applicable in mixed integer programming problems. The procedure is tested on several examples. 

Keywords: Simulated annealing; Linear programming; Combinatorial optimization; Heuristic search 

1. Presentation of the problem 

The present case study is concerned with the printing of book covers in the publishing industry.’ 
More precisely we deal with the “mating” of book covers, i.e., the grouping of different covers on the 
stie offset plate in order to print them simultaneously. In this section, we give a brief outline of the 
problem context. The interested reader is referred to [3] for more detail of the production process. 

In a preliminary step, the covers to be produced, which are similar in size, are grouped in 
homogeneous subsets w.r.t. the covers main characterstics. These are: 
??the type of paper on which they are to be printed and, in particular, its density; 
??the number of colors needed both for the recta and the verso of the four page covers. 

* Corresponding author. 
1 We are pleased to thank Mrs. M.P. Ladavid-Duboisse from Casterman, S.A., for submitting the problem. 
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Fig. 1. The “shape” of an offset plate. 

The mating problem only concerns such homogeneous subsets. Consider an homogeneous set of 
I covers. For each of them, a given number Ni, i = 1, . . . , I, of copies has to be printed. With a single 
offset plate, it is possible to print four covers at a time in one color. After printing, the sheets of 
paper are cut into four parts. The four covers on a single plate are not necessarily the same and the 
assignment of a book cover to each compartment of each offset plate is one of the main,decisions to 
be made in this problem. To be more specific, the typical size I of the number of book covers in 
a production batch is of the order of 12, the number of copies to be printed varying from a few 
thousands to a few hundred thousands. 

Let us call “shape”, the specification of the four book covers assigned to a plate. Hence;a shape is 
defined by a 4-tuple (il, i2, i3, i4) with ii, iz, is, i4 E { 1,. . . , I> (see Fig. 1). 

The cost structure has two main components (see [3] for more details). 
- C/, the unit cost of the plate 
- Ct, the unit cost of a sheet of paper whatever the plate used for printing it. 
Clearly, C, is much larger than C,. Note that some unavoidable waste of paper must be taken 

into account in the number of covers to be printed. This waste is due to the initial setting up of the 
machines and to casualties occurring during the printing process. The losses can be a priori 
estimated to 5% of the total production on average. Hence they are taken into account through 
multiplication of the cost ,Ct by the factor 1.05. 

The problem of mating book covers consists in deciding the number of plates and their shape in 
order to produce the needed quantities at minimal cost. This amounts to finding a balance between 
two “extreme” solutions: 
??one can use as many plates as there are book covers (I); in this solution, each cover appears four 

times on the same plate and on no other plate. In this case, for all (i = 1, . . . , I), there will be NJ4 
copies printed of the plate with four times cover i on it. Hence the global production of covers will 
exactly correspond to the needs (i.e., If= 1 Ni). On the other hand, the cost associated with the 
number of used plates is maximal which is the drawback of this solution. 

??In the other “extreme” solution, each plate is filled with four different covers ii, iz, i3, i4, all 
distinct, and each cover is assigned to only one plate. The number of plates is then minimal: 
[1/4-j, the smallest integer number larger than 1/4. Hence the cost of the plates is minimal, but the 
number of printed copies of a plate will be max(Ni,, Ni,, Ni,, NL) if ir , iz, is, i4 are the covers 
assigned to the plate. This means that unnecessary copies are produced, unless all four numbers 
Ni,, Ni2, Ni,, Ni, are equal, and this results in paper losses. Suppose indeed, to be more specific, 
that 

Ni, = 1000, Ni, = 4000, Ni, = 9000, Ni, = 7000 
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and that i3 is present only in this form. The needed number of printed copies of this plate would 
have to be 9000 in order to satisfy the requirements of book cover i3 and this will lead to the 
production of, respectively, 8000, 5000 and 2000 covers of i i 1, 2, i3, i4 (resp.) in excess. The 
number of wasted sheets of papers will hence be 15 000/4 for that single plate. 

In Section 2, we present a formulation of this problem in the language of mathematical program- 
ming. Due to the number of variables needed and the typical size of the problem instances, it is 
hopeless to try to solve it by exact methods. An idea for solving this mixed integer programming 
problem by means of a combination of the simulated annealing technique and linear programming 
is presented in Section 3. The implementation of this original procedure is also outlined. Prelimi- 
nary results and conclusions are then exposed in the final section. 

2. A mixed integer linear programming formulation 

In a first attempt, we try to solve the problem to optimality through a formulation in the 
language of mathematical programming. 

2. I. A mixed integer nonlinear programming model 

A nonlinear formulation in both continuous and binary variables is readily obtained. Let 
i(i = 1, . . . , I) be the index of the different covers to be produced in quantity Ni. On the other hand, 
theindexj(j= l,... , I) labels the plates (or the shapes) that can potentially be used. The maximum 
number of plates is I, the number of book covers. 

Define the variables: 

1 
Xi = 

if plate j is used 
0 else 

(I binary variables). 

yij = 0, 1,2,3,4 represents the number of times cover i is 
integer variables). zj 2 0 represents the number printed 
The problem can be formulated as follows: 

(Pl) 

minCf (if, -> 1*05Ct( ii Zj) 1 x, + 

subject to 

i ZjYij > Ni, i = 1, . . . ,I, 
j=l 

iil Yij = 4Xj, j = 19 -. .Y 19 

present on the shape chosen for plate j (1’ 
of plate j (I continuous variables). 

Zi < Mxj, j = 1, . . ..Z 
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where A4 is an upper bound of the number of copies of each plate to be produced, e.g., 
M = maxi= 1,,,,,INi. 

The constraints of the first type in (PI) are unfortunately nonlinear which is a severe drawback. 
Indeed nonlinear mixed integer programming is not a very well explored field and there is no 
commercial software which allows to solve such a problem in an efficient way. 

2.2. A linear model 

Nevertheless it is possible to overcome these difficulties and obtain a linear formulation which is 
more sophisticated and involves a larger number of variables and constraints. In this formulation, 
we use the variables xj and zj as above but the variables yij are substituted by the following ones: 

( 

1 
“jk = 

if cover i lies in the kth compartment (k = 1, 2, 3, 4) of plate j 
0 otherwise 

(4Z2 binary variables). 

nijk 2 0 represents the number of copies of the ith cover produced on the kth compartment of plate 
j (4Z2 binary variables). 

In these variables descriptions, the index k = 1, 2, 3, 4 refers to the 4 available places on each 
plate. The problem formulation is then: 

mincf( jllxj) + 1*05ct( jlzj) 
subject to 

yijk G 1, 
i=l 

i = 1, . . . ,I; k=l,..., 4, 

(P2) 

nijk < Zj, 

%jk G Ni yijk, 

i,j= l,..., I; k= l,..., 4, 

i,j= l,..., I; k= l,..., 4, 

Yijk < 4xj, j= l,...,Z, 
i=l k=l 

Zj < Mxj, j= l,...,Z, 

nijk 2 Nip i = 1, . . . ,I. 
j=l k=l 

The number of variables and constraints is significantly increased. There are 8Z2 + 21 variables and 
8Z2 + 71 constraints. For Z = 8, this makes 528 variables (half of which are binary) and 568 
constraints: For Z = 12, the number of variables raises to 1176 and the number of constraints to 
1236. It soon became evident that such problems could not be solved in a reasonable time on 
a microcomputer by using standard commercial softwares, like, e.g., OMP [4]. Moreover, other 
attempts using more appropriate formulations and powerful packages on mainframes proved 
equally unsuccessful. Hence we turn to the use of heuristics. 
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3. Use of simulated annealing 

3.1. Principle of the combination of simulated annealing with linear programming to solve a mixed 
integer linear program 

In recent years the so-called metaheuristics or general heuristics like simulated annealing (SA) 
- or Tabu Search - have proved to be extremely efficient tools for “solving” hard combinatorial 
optimization problems. We will not make here another presentation of these techniques which are 
by now well known. In case of necessity, we refer the reader to a synthesis recently written by one of 
us on the subject [S]. 

Usually, heuristics like SA are applied to purely combinatorial problems, i.e., problems entirely 
in discrete variables. On the contrary, the model described in Section 2 is not of that type as it 
involves continuous as well as binary variables. Nevertheless, when the determination of the 
continuous variables values is strongly linked to the binary values and when there is a relatively 
small number of continuous variables, the following idea seems feasible. At each iteration, we 
combine the application of 

(a) the SA procedure for fixing the values of binary variables only: in the neighborhood V(X) of 
the current solution X (this neighborhood V(X) is only concerned with variations in the binary 
variables values), select at random another set of values for the binary variables; 

(b) a linear programming routine for determining the best setting of the continuous variables 
(conditionally to the setting of the binary variables provided in step (a)). 

The approach will be feasible only if the linear problem is of small size enough as it has to be 
solved a huge number of times. 

This procedure fully determines a new solution Y E V(X) and also the corresponding value F(Y) 
of the objective function. The SA classical test for comparing F(X) and F(Y) can then be 
performed; it determines which solution from X and Y will be the current solution at the next step. 
The conclusion of this test depends on the “temperature” at the current stage of the SA procedure 
and this “temperature” usually decreases in a stepwise geometric manner governed by three 
parameters: 

- the initial temperature, 
- the number of iterations performed without changing the temperature, 
- the cooling rate, i.e., the decreasing factor applied to the temperature at the end of each 

“isoterm” series of iterations (see [S]). 
The idea of calling an LP routine at each step of a SA process is, as far as we know, original. In 

principle, it can be applied to any mixed integer linear problem. In the sequel, we show how we 
implemented and tested this idea on the mating book covers problem. Various attempts have been 
made which are extensively described in [l]. In Section 3.2, we present what seems the most 
promising way of dealing with the binary variables (phase (a)) for the application we are concerned 
with. The binary variables determine the number J (J < I) of plates to be effectively used as well as 
the shape of each of them. So by the end of phase (a), the values of variables xj and yij, i, j = 1, . . . , I 
in problem (PI) are fixed. Problem (PI) is then reduced to a very simple LP problem with 
Jcontinuousvariableszj, j=1,...,JwithJ=I{j:xj=1,j=1,...,1}1.Inthecasesofpractical 
importance, I is of the order of 12 as mentioned above which means that it can be hoped to solve 
such an LP in much less than a second. 
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Fig. 3. 

Fig. 2. A five plate example. 

EEkDB~ 

Random selection of five places of type A. 

I 1121121Jll I ll+Il I I 
l--i--ll---+-ll--l--l~l--t-l 

14161 
Fig. 4. Initial assignment. Type A places are in bold face. 

3.2. Random choice of new conJguration of plates 

We call “configuration of plates” the assignment of a cover to each of the 41 “compartments” 
available on the I plates. We illustrate the procedure on an example with I = 5 plates (Fig. 2). 

In order to define a configuration, we have to determine the number J of plates that will effectively 
be used and an assignment of the covers to each of the 45 available places. The only constraint on this 
assignment is that each of the I covers must be assigned to at least one place on one plate. 

3.2. I. Initial feasible configuration 
(a) We first select I places at random among the 41 available ones and we assign them the covers 

1,2, . . . . I. This procedure guarantees the feasibility of the initial configuration as all covers will 
appear at least once on the set of plates. These I places will be said to be of “type A”. We denote by 
a(j) (with 0 d a(j) < 4) the number of type A places on plate j. We have cf= 1 a(j) = I. 

Example. Take the five plates of Fig. 2 and assume that we randomly selected I = 5 places of 
type A which we assign to the five covers to be produced as illustrated in Fig. 3. 

(b) Let J be the number of plates with at least one place of type A, i.e., J = ) {j: a(j) > 0, 
j = l,...,Z}l. 

The 4J - I remaining places on the plates with a(j) > 0 are called “type B” places and we 
randomly assign a cover to each of them. 

Example. We can see in Fig. 4 a random assignment of covers to the J = 3 plates which will be 
used effectively. The covers assigned to places of type A are in bold face. 
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Fig. 5. Exchange of two covers on type A places. 

(c) The I - J nonassigned plates will not be used and are said to be of “type C”. 
Through the procedure described above, we are able to produce any feasible solution using any 

number of plates (less than or equal to the number of covers). It should be pointed out however that 
the configurations obtained through this process are not all equally likely. 

3.2.2. Random choice of a new feasible conjiguration 
The main constraints in producing new configurations in the “neighborhood” of the current one 

are the following. 
??The new configuration must be feasible, i.e., every cover must appear at least once. 
??It should be possible to vary the number of used plates, i.e., to raise J to J + 1 or decrease J to 

J - 1 (the latter only if J > [l/41). 
Among the various tested procedures, we have selected the following one which fulfils best the 

above requirements. The selected procedure involves two steps. 
(1) ??Choose one place (j,, k,) (i.e., the k,th place on the j,th plate) among the I places of type A. 

??Choose one place (j,, k,) among the 41- 1 remaining ones; this place can be indifferently 
of type A, B or C. 

(2) The new configuration depends on the type of place (j,, k2) but in all cases, the cover 
previously assigned to place (j,, k,), which we denote by i( j,, k,) will now be assigned to 
(j,, k2): i( j,, k,) + i( j,, k,). The A status of (j,, k,) is also transferred to (j,, k,). 

Case a: (j,, k2) is of type A. In order not to alter the number of type A places, the covers on 
(j,, k,) and (j,, k2) are exchanged: i( j,; k,) + i( j,, k,). The total number of used plates is not 
altered in this case. 

Example. Consider as current configuration the one illustrated in Fig. 4. Assume the selected 
places are (j,, k,) = (2,3) and (j,, k2) = (4,4). The concerned covers, 3 and 4 are marked by (1) 
and (2) in Fig. 5(a). In this case covers 3 and 4 are exchanged yielding the new configuration 
illustrated in Fig. 5(b). 

Case’b: (j,, k,) is of type B. 
Case b.1: a( j,) > 1, i.e., the number of type A places on plate j, is larger than 1. In this case, we 

cannot consider the suppression of plate j, as it contains other type A places. So (j, , k,) is assigned 
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(b) 

Fig. 6. Case b.1 change. 

(b) 

Fig. 7. Case b.2 change. 

a cover i*, randomly chosen among the I covers, and the status of (j,, k,) becomes B 

i(j,, k,) t i*; type B. 

The number of the used plates J is not altered nor is the number of type A places. 

Example. Starting again with the configuration illustrated in Fig. 4 we suppose that 
(j,, ki) = (1,4) and (j,, k,) = (2,3) (Fig. 6(a)). In the new configuration, place (2,3) is assigned to 
cover 5 and receives the A status while the randomly chosen cover 2 will be assigned to place (1,4) 
with B status (Fig. 6(b)). 

Case b.2: a(j,) = 1. Plate jr is emptied; the places of this plate receive the C status and the 
number of used plates is decreased by one unit: J + J - 1. 

Example. In the current configuration (Fig. 4), (j,, k,) = (2,2) and (j,, k,) = (4,2) (see 
Fig. 7(a)). As place (2,2) is the only type A place on plate 2, this plate will not be used in the new 
configuration (Fig. 7(b)). 

Case c: ( j,, k,) is of type C. In the new configuration, platejz which was not used before includes 
the cover imported from (j,, k,). Place (j,, k,) receives the A status. The three remaining type B 
places are assigned randomly chosen covers i:, i:, iz : 

i(j,, k) t if, i:, i,*: k+,ZW)\{kz). 
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(b) 

Fig. 8. Case c.1 change. 

1 2 EH 4 5 

Plate jI is kept in use or not 
Case c.1: a(j,) > 1. 

i( jr, k,) c i*; type B 

J+J+l. 

(b) 

Fig. 9. Case c.2 change. 

according to the rules described for cases b.1 and b.2. 

Example. Assume that (j,, k,) = (1,4) and (j,, k,) = (3,4) (Fig. 8(a)). The three covers randomly 
chosen for filling plate 3 are 2, 4, 2. Cover 3 is chosen to complete plate 1 (Fig. 8(b)). 

Case c.2: a( jr) = 1. Plate jr is emptied and the corresponding places receive the C status. The 
total number of plates remains unaltered. 

Example. Suppose (jr, k,) = (2,2) and (j,, k2) = (3,4) (Fig. 9(a)). The three covers randomly 
chosen to fill plate 3 are 4, 5, 3 (Fig. 9(b)). 

4. Preliminary results and conclusions 

This mating book covers problem is particularly exciting as it is readily presented and looks 
quite simple but is tremendously difficult to solve. Several student projects were devoted to this 
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m Total cost = 136,472 m 
z, = 2,875 .Q = 4,500 

Fig. 10. Optimal solution of Example 1. 

m Total cost = 247,916 m 

.q = 6,667 22 = 9,000 

Fig. 11. Best solution found for Example 2. 

problem at our university. Two of them are mainly concerned with the approach presented. The 
first one [3] can be considered as a preliminary exploration. A large part of the final product is 
a report on the - unfruitful - attempts to solve the mathematical programming formulations 
described in Section 2. In the second part of this work, a “classical” heuristic algorithm is deviced 
on the basis of successive resolutions of subproblems involving up to four covers. The great 
advantage of this approach is the extremely short computer times needed (2 or 3 s on a PC with 
a 80386 processor). Unfortunately, the solution quality which is quite good or optimal for instances 
of small size (I = 3,4, 5), rapidly deteriorates when Z > 5. This is due to the chosen approach and 
the exploding complexity of the problem. 

The second student report [l] is a first attempt to combine SA with linear programming. Three 
alternative definitions of the neighborhood of the current solutions have been elaborated. The one 
presented in Section 3 appears to be the most promising. Note however that the numerical 
experimentation has been quite limited due to the following reason. The student version of the 
Linear Programming Software OMP (see [4]) is called to solve the LP programs. This results in 
prohibitive waste of computer time due to continuously loading and unloading OMP as an 
external routine to the main program. These operations cost about 5 or 6 s for each LP call which is 
indeed prohibitive, as the application of SA requires hundreds or thousands of calls to the LP 
routine. These contingencies have strongly limited the extent of the experimentation. We present 
below the results obtained through the above described method. These results should be con- 
sidered as preliminary. 

Four examples were treated with numerical values of the costs given by C, =. 18 676 and 
C, = 12.8. We use the notations introduced in Section 2 to present these examples. 

Example 1. 1 = 3, N1 = 16 000; iVz = 9000; N3 = 4500. The best solution found is illustrated in 
Fig. 10. 

Note that this solution is optimal as the exact formulation (PI) could be solved. 

Example 2. Z = 4, Ni = 20000; Nz = 18 000; N3 = 15 000; N4 = 8500. The best solution found is 
illustrated in Fig. 11. 
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rj m m Total cost = 1,855,872 

z, = 57,250 22 = 29,417 TV = 47,250 

Fig. 12. Best found solution for Example 3. 

z, = 3,500 z* = 7,000 23 = 1,000 Zd = 3,000 ZS = 500 
Total cost = 294,980 

Fig. 13. Best found solution for Example 4. 

m Fi m Total cost = 277,788 

21 = 10,000 .zz = 1,500 ta = 5,000 

Fig. 14. Best known solution for Example 4. 

Example 3. I = 5, N1 = 13 500; N2 = 114 500, N3 = 103 500; N4 = 94 500; N5 = 84 500. The best 
solution found is illustrated in Fig. 12. 

Example 4. I = 8, N1 = 15000; Nz = 12000; N3 = 10000; N4 = 8000; NS = 5000, N6 = N, = 
Ns = 3000. The best solution found is illustrated in Fig. 13. 

This solution is not optimal. For this example, lower cost solutions were obtained through the 
use of one of the alternative methods alluded to in Section 3 (see [l]). The best solution we know 
for this example is illustrated on Fig. 14. 

Another student project is currently being elaborated on the same subject. It aims at realizing 
a deeper experimentation on the same principle of combination of SA (or Tabu Search) and LP. In 
this work however, a specially tailored LP routine will be integrated in the main program to avoid 
any disk transfer times. We hope that this will allow to test more in depth the feasibility and 
efficiency of the present approach, by solving larger examples and experimenting on different 
neighborhood structures. 

References 

[l] C. Antoniadis, Probleme du mariage des couvertures: R&solution par la m&hode du recuit sirnil& Graduate Thesis, 
Universiti? de Mons-Hainaut, Belgium, 1992. 



102 J. Teghem et al. /Journal of Computational and Applied Mathematics 64 (199s) 91-102 

[2] C. Batta and J. Teghem, Optimization of production scheduling in the plastics processing industry, JORBEL 34 (2) 
(1994) 55-79. 

[3] M. Naya, Probleme du mariage des couvertures pose par la S.A. Casterman, Graduate Thesis, Faculte Polytech- 
nique de Mons, Belgium, 1986. 

[4] OMP optimization (version 3.0), User Manual, Beyers et Partners, Brasschaat, Belgium, 1987. 
[5] M. Pirlot, General local search heuristics in combinatorial optimization: a tutorial, JORBEL 32 (l-2) (1992) 

767. 


