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Using recent results on linear forms in logarithms of algebraic numbers, we prove
that any solution of the equation x”— y?=¢, where e= +1, p and ¢ are odd
primes, and p > g satisfies p<3.42-10% and ¢ <5.6-10". We also combine our
work with some results of Altonen and Inkeri to determine the six cases with ¢ <37
for which this equation may have solutions.  © 1994 Academic Press, Inc.

The purpose of this note is to show that if Catalan’s equation has any
non-trivial integer solutions other than 3*—2°=1, then it has such
solutions with relatively small exponents. Specifically:

THEOREM. If x" — y"=1 has a solution for (x, y, m, n} in the set of
positive rational integers greater than 1 other than (3,2, 2,3), then it has
such a solution with max{m, n} <3.42x10%® and min{m, n} <5.6 x 10"°.

This improves Langevin’s constant [6] of over 10'® for max{m, n}.
There are explicit bounds on x and y as a consequence of Alan Baker’s
work on hyperelliptic functions (see [3] or [10, Chap. 6]).

In addition, we remove many small values of min{m, n}.

In his superb work [11], Tijdeman showed that Catalan’s equation
x" — y"=1 has only a finite number of solutions in the rational integers for
x, y,m, and n greater than 1. His proof relied heavily on Alan Baker’s
brilliant analysis of linear forms in the logarithms of algebraic numbers
[2]. However, Tijdeman used only the qualitative aspect of Baker’s results;
the quantitative aspect does give explicit bounds on x, y, m, and n, as was
noted by Tijdeman. In this note, we wish to use the new improvements on
the constants for linear forms in the logarithms of algebraic numbers
[12,7] to obtain the theorem. Our approach is to effectivize Tijdeman’s
proof as given in [10, Chap. 12, pp. 205ff. ].
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Proof of Theorem. If there exists any solution in the rational integers
greater than 1 other than 3% —2° = 1, there exists one with prime exponents.
Indeed, if we let ¢= +1, p and ¢ be primes, and p > ¢, we need only show
that if x” — y¥ =¢ has a solution in the positive rational integers, then it has
one such with p<3.42x 10 and ¢ < 5.6 x 10", other than 32 -2°=1.

By [8], we may assume that ¢ > 5. Moreover, by [5], if x”— y?=¢,
then p{y and ¢q|x. Therefore,

O=x=y'"+e=y+¢ {mod g)

and similarly, x—e¢=0 (mod p). Now, following Shorey and Tijdeman
[10]—and using the same numbering—we have

y+e=gq's? (13)
and

x—g=p 'r! (14)
for some positive rational integers r, s with p|r and ¢|s (see [10, p. 205]).
Hence p~'r¢zp? '>7¢ 'and ¢ 's" 257 ' sincer>p=Tands>qg>5.
By (13) and (14) we have

(p'ri+e)’—(g 's"—e) == (13)

Moreover, r®=(p 'r'+1)P+12x"+ 129> (g 's7— 1) =5"/(2q)".
Similarly s7 2 y9+ 1 =2 x? 2 r?/(2p)?. Thus

s<r(29),
, (16)
r<s(2p)t.
We wish to establish that
g<e*(log p)’, (17)

an improvement on [10] with an explicit constant. Since ¢ =5 and p|r, it
follows that p~'r¢> p¢~ ' = p*. Now, by (13) and (14),

px p qy q y! 1
o \ e |=s‘p and ;;‘117
Since {log(1 +«)( <2 x| whenever |a| <4, we get, by (16),
|plog(r¢/p) — p log x| < 2p?/r (19)
|plog x —qlog y| <2/x”<2p/r! (20)

29% 1 2 4
|qlogy—qlog(s”/q)|<2q2/s"<—:—’2—-;<z(—"><;§. 1)

rY
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Let
A, =|plog(ri/p) — qlog(s*/q)I.

Then A, <4p?/r? since p>7.
Note that

A, =|pglog(r/s)+qlog g—plog p|.

If x”— y?=¢, then exactly one of x and p is odd. Thus exactly one of
x—¢ and y+ ¢ is even. Since p and ¢ are odd, r or s is even (and not both).
Consequently {log g, log p, log(r/s)} is a linearly independent set over Q,
so A4, #0.

We now assume that p> 10?7 and apply [12, Theorem 2.18; Sect. 9,
Table 2]. In the notation given there, 4, =¢, A,=p, and A;=2r (by (16)
above). Let E=5<gq, p, 2r; for

E<§(l+1+

Ilog(r/S)l)"l
7 ;

log 2r
it suffices that

A
E<>(t1+1+
f

by (16). Since ¢>5 and r>=p>10"", we need only require that
S5<(3//)221)7"; hence we let f=027. Now M<pq, Z,<10.3, and
G,<2log p (since p>10%"). Thus

log(2p)"#\ !
log 2r

U, = (2 log p)(10.3)(log g)(log p)(log 2r)/(log 5)*,

and

1 3
A, =exp {—2"3”1950 (1 +m> (2 log p)(10.3)(log q)

x (log p)(log 2r)/(log 5)“}~

Consequently, 4, >exp{ —e***(log p)® (log 2r)}.
Hence r? <4p? exp{e****(log p)? (log 2r)}. Therefore

logd 2logp 4,4 log 2
< —— (1 1 .
1 logr+ log r +e(log p) +logr:l

Now r=2p>=107, so g<e**®'(log p)® (as desired), and logg<

3291 + 3 log log p.
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We now apply [7] to give an explicit bound for p.
By (13) and (14),

(p'ri4e)—q U™ =x"—(y+e) £0; (24)

s0, by (20) and (21),

2 242
0<|plog x — g log(s”/q)| <= + 2.
X R}

Further, by (11) and (13), x? = y¢~ ' > 292y > 2qy > 5”. Define

BAEE 4q°
qlogq+plog(P—;q—£> <L

57

A= (25)

We wish to use [7, Theorem 5.11].
First note that p~'r¢ +£=x <s? (since x” = y¥+e<(g(y +¢€))7=s").
We now show that 2e log(s?/x) <log(s?). Indeed,

2ep log(s%/x) = 2¢ log(s?%/x") = 2¢ log(g*(y + £)%/(»* + £))
=2¢log(q?) + 2elog((y + &)/ (¥ +¢)).
But

1 q
log((y +&)%/(y* + &) <log((y + 1)*/(y* + 1)) = log [(1 +;) / (1 + }i)]

1y 2
Sqlog(l +;><}—f1

since y = 10 (see [1], e.g.). Now

2 2 + 2q° 1 2 1
_fz:ﬁq.us_q?(H_)g_q(H_),
y y+e vy s y q Y

because s=>¢q and p=¢g+2. Since s=2¢>5 and y> 10, we deduce that
2ep log(s?/x) < (2e + 10 ?)log(s¥). As 2e + 1072 < 7 < p, we readily obtain
our desired inequality.

We next observe that {log g, log(s%/x)} is linearly independent over Q.
(Otherwise for some positive relatively prime integers m and n, ¢”" =
(s9/x)". Hence x"q” = s%". If a is the highest power of ¢ that divides x and
b the highest power of g that divides s, then na + m = bgn; so m =n(bg — a).
This contradicts the coprimeness of m and n unless n=1. If n=1, then
s?=xq™. Thus gi(y+e)i=sP=x¢""=(y"+¢)qg™. But g y+e)’<
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g1+ 1/y)?<qiy% (since ply and so y=p>gq) Since m=1,
(V' +e)g™=q™(y'—1)= g 31 — 1/y?) > Lg% " *)%, a contradiction.)

Let A,=(g/p)log g —log(s?/x)#0. We follow [7, Sect. 5.1] and define
by=q, b=p, B=p, a,=¢q, a,=5%x, a,=2eloggq, a,=qlogs, f=2e,
#=22, and Z=1. Note that a,b, <a,b, since g<s and 2¢<7<p.
Moreover, since s9>x, h(x,)=s% Therefore a;=1, h(a,), f|loga,| for
j=1, 2 by the previous paragraph. Since g =5, we let

e 2 4 +log5
G =log [+ -5 )=1+1og [ -282) < 1.56,
Og<2+log5) +og<210g5>

and G =log p+loglog p+ 2.15. Because p>5x 107, G> 0. If we let

U = 2e log q log(s*)(2.15 + log p + log log p)*
= 2eq log q(log 5)(2.15 + log p + log log p)?

and C =478 (see [7, Sect. 6, Table 1]), we obtain from [7, Theorem 5.11]
that

1
[—)A2 >exp{ —478U};
ie.,
Ay > pexp{ —956eq(log q)(log 5)(2.15 + log p + log log p)*}.  (26)
So, by (25),

log4 _1
P<122s+2]Z§z+956e(2.15+10gp+]°glogP)ZQ(logfI)- (*)

Now s2¢ >S5, whence, by (17),

p <2.862 +956¢(2.15 + log p +log log p)*

x (32.91 4+ 3 log log p)(e**®'(log p)*).

Consequently, p <e®7 <3.42x 10%® and ¢ <e***" <559 x 10" by (17).
Finally, if 5.6x10"”<p<10%, then we must take f=0.27 and
G,=205log p in the application of [12] above. This gives A,>
exp{ —e***%(log p)® (log 2r)}. Since p<10?’ and r>p>56x10", we
obtain ¢ <e®(log p)® <e** <53 x10%.
This completes the proof of the theorem. [
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At the other end of the spectrum, when ¢ is small we can couple (*) most
fruitfully with the work of Aaltonen and Inkeri [1]. First, we rewrite ()
to get

log 4

< —
P log g

+24956e(2.15 + log p +log log p)? (g log g). H

Hence, if g <37, then p <2 x 10%

Now, for any prime P, let h, be the class number of the cyclotomic field
O({p), where {, is a primitive Pth root of unity, and 4(— P) be the class
number of the field Q(./ —P). In [1] it is shown that if p and ¢ are as
above, then x” — p?=¢ has no solutions in the positive rational integers if
p and g are odd primes for which ¢” #¢ (mod p?) and either (i) pf 4, or
(ii) both ¢=3 (mod 4) and p/{ h(—gq). Now, by [13, p.353], for ¢ <37,
plh, if p>q (since pfh) if p>gq and g <37). Moreover, for 5<g<37
(and so p<2x 10%), g7 #q (mod p?) except for the following pairs (see [9,
p- 276], recalling that p > g):

q p q p
5 20,771 19 43
5 40,487 19* 137
5 53,471,161 19* 63,061,489
7 491,531 23* 2,481,757
11 71 23* 13,703,077
13 863 31 79
13 1,747,591 31 6,451
17* 46,021 31* 2,806,861
17 48,947

If we assume p> 5 x 107, we can substitute g=>5 into (). But this gives
p<5x107. Therefore the case g=>5, p=53,471,161 fails. For all pairs of
entries in the table, p?# p (mod ¢°). In the cases with p=3 (mod 4), it
happens that ¢ { #(— p)—see [4]. Thus, by [1], only the asterisked cases
remain as possiblities; i.e.,

THEOREM. Let p, g be primes with p>yq, and e= + 1. Then x"— y?=¢
has no solutions in the set of positive rational integers with q <37 except for
the six possibilities (¢q=17, p=46,021), (¢=19, p=137 or 63,061,489),
(q=23, p=12,481,757 or 13,703,077), or (¢ =31, p=2,806,861).

Although the bounds on the exponents are relatively small, the bounds
on x and y are still “stratospheric.” Nonetheless, the bounds on the
exponents are so beguilingly low that they almost persuade one to believe
that a solution to Catalan’s conjecture should be possible. We hope that
this short note will spur on others to complete the process.
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Note Added in Proof. 1. The results in this paper were independently
obtained by M. Mignotte by essentially the same proof.

2. Using the more recent work of A. Baker and G. Wustholz
[J. Reine Angew. Math. 442 (1993), 19-627] and M. Laurent [Appendix in
M. Waldschmidt’s “Linear Independence of Logarithms of Algebraic Num-
bers,” Madras Lecture Notes], in place of [12] and [7], respectively,
T. Okada was able to obtain better bounds for p and ¢ by this method

(since, essentially [Q(\/—, \/—, \/r—/s-): 0]1=28).

Specifically, he shows that p<8.62 x 10%* and g < 1.18 x 10"

Moreover, he is also able to show that the last four pairs in the above
Theorem are impossible; and that if ¢ <71, the only additional possible
pairs for p, g are: (g =41, p=1,025,273), (g=153, p=97 or 4889), (¢ =159,
p=2777), (¢=061, p=1861) and (¢=67, p=268,573). So there are only
eight remaining possiblities for (g, p) with ¢ <71, p, g prime, p>q.
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