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• We characterized ultrasonic vocalizations by the mouse model of Down syndrome Ts65Dn.
• Minimum and maximum peak frequencies of calls were generally lower than in controls.
• We found longer durations for many types of vocalizations compared to euploid mice.
• Ts65Dn produced a reduced number of complex vocalizations compared to euploid mice.
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Down syndrome (DS) is the leading cause of genetically defined intellectual disability. Although speech and
language impairments are salient features of this disorder, the nature of these phenotypes and the degree to
which they are exacerbated by concomitant oromotor dysfunction and/or hearing deficit are poorly understood.
Mouse models like Ts65Dn, the most extensively used DS animal model, have been critical to understanding
the genetic and developmental mechanisms that contribute to intellectual disability. In the present study, we
characterized the properties of the ultrasonic vocalizations (USVs) emitted by Ts65Dn males during courtship
episodes with female partners. USVs emitted by mice in this setting have been proposed to have some basic
correlation to human speech. Data were collected and analyzed from 22 Ts65Dn mice and 22 of their euploid
littermates. We found that both the minimum and maximum peak frequencies of Ts65Dn calls were lower
than those produced by euploid mice, whereas the mean individual duration of “down” and “complex” syllable
types was significantly longer. Peak, minimal and maximal, and the fundamental frequencies of short syllables
generated by Ts65Dn mice were lower compared to those by euploid mice. Finally, Ts65Dn males made fewer
multiple jumps calls during courtship and the mean total duration of their “arc”, “u”, and “complex” syllables
was longer. We discuss the human correlates to these findings, their translational potential, and the limitations
of this approach. To our knowledge, this is the first characterization of differences between adult Ts65Dn and
euploid control mice with respect to USVs.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Down syndrome (DS), the phenotypic consequence of the triplica-
tion of human chromosome 21 (HSA21) [36], is the most prevalent
genetically defined cause of intellectual disability, with an incidence of
1 in 732 live births [9,58]. While individuals with DSmaintain relatively
logy, Department of Pediatrics,
l Stop RBC 6090, Cleveland, OH
844 8966.
high levels of social intelligence and procedural learning, they often dis-
play disproportionally impaired declarative memory [45]. In addition,
children show particular difficulties in acquiring language [12,56]. The
lack of linguistic development in children with DS seems to coincide
with the beginning of an apparent developmental quotient (DQ) or in-
tellectual quotient (IQ) decline during the first few years of life [71],
suggesting that language deficiencies may be closely related to early
cognitive impairment associated to this genetic disorder [12,56].

Toddlerswith DS exhibit problems in assimilating all four basic com-
ponents of language, i.e., phonology [17,55,66,67]; semantics [5,10,40];
syntax [13,18,29,34]; and pragmatics [1]. Deficits in each of these lin-
guistic domains become readily salient as children and adolescents
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with DS often have poor speech intelligibility during conversation [65],
stunted vocabulary growth, and reduced word production [5,40]. These
shortcomings ultimately result in poor conversational or narrative skills,
in which children and adults with DS show deficits in expressive lan-
guage disproportionate to what would be expected from their general
cognitive abilities and mental age [31,41].

Although, at first glance, themousemay seem an unlikely model for
the more cognitive, and hence “human” qualities of language, these
animals nevertheless are able to emit ultrasonic vocalizations (USVs)
at particular frequency ranges that then elicit ear twitches and vibrissa
movements in conspecifics [8,53,57], and that are ideally suited to trig-
ger strong cochlear microphonic responses [6] and peak electrical
responses within the inferior colliculus [7]. Upon reaching the auditory
cortex in the mouse brain, the signals additionally function as potent
stimuli that can entrain cortical subfields to their particular frequencies
over repeated introduction [38,39]. That is, like in the human brain, they
can lead to neuroadaptations that will facilitate future detection. By and
large, humans and mice also appear to use similar psychoacoustical
mechanisms for the breakdown and perception of species-specific com-
municative sounds [21,23], and in both species, the recognition of these
utterances is lateralized to the left hemisphere [20]. Further studies
suggest that mice not only have the substrate to emit and process
USVs, but that they also use these signals in a purposeful sense as adults
to influence the behavior of conspecifics in agonistic settings and during
courtship [48,51].

In the field of animal models for developmental and intellectual
disabilities, the reduced level of calling and unusual calling patterns
have been reported in mouse models of autism spectrum disorders
[22,60,61]; Wohr et al., 2011. Such work inspired us to investigate
USVs in the most widely used murine model for DS, the Ts65Dn
mouse. Ts65Dn mice are trisomic for contiguous segments of mouse
chromosome 16 highly homologous to the long arm of HSA21 ([16];
recently reviewed by Ref. [14]), and reproduce some of themost funda-
mental characteristics of DS involving abnormalities of the brain, aswell
as those in the craniofacial skeleton and audition [24,70].

To determine whether Ts65Dn mice show phenotypic characteris-
tics similar to the dysfunctional articulatory processing seen in persons
with DS, we recorded USVs frommale euploid and Ts65Dnmice during
“courtship” episodes with euploid female mice. Female-elicited USVs
from male rodents are a very robust phenomenon that has been inten-
sively studied for almost four decades. During social exploration and
courtship of female rodents, males will emit unusually rich USV
sequences that display characteristics of song with several syllable
types organized into phrases and motifs with undulating or shift-like
pitch changes, or sharp punctuations [28]. Here, we present our findings
and discuss their human correlates, potential translational value, and
the limitations of this approach.

2. Material and methods

2.1. Mice

We have used 22 Ts65Dn mice and 22 euploid littermates in this
study. Their handling and care were consistent with the National Insti-
tutes of Health Guide for the Care and Use of Laboratory Animals, and
all experimental methods were approved by the University of Colorado
Denver's Animal Care and Use Committee.

Ts65Dn mice were generated by repeated back-crossing of Ts65Dn
females to C57BL/6JEiJ × C3Sn.BLiA-Pde6b+/D F1 hybrid males (as
described by Ref. [15]) in colonies at the University of Colorado
AnschutzMedical Campus or at The Jackson Laboratory. All experiments
were performed at the University of Colorado Denver, during the
authors' respective stints at that institution. Animals from the same lit-
ter were housed together by gender, andmaintained on a 12:12 h light/
dark cycle (lights off at 7:00 pm)with free access to food and water. All
themicewere sexually naïve at the timeof testing at 8–10 weeks of age.
2.2. Acoustic data acquisition, analysis, and classification of ultrasonic
vocalizations

USVs were recorded during the early part of the dark or “active”
phase once the mice had an hour's opportunity to register the change
between the light and dark cycles (between 8:00 and 11:00 PM). This
time of day has proven optimal formeasuringUSVs during affiliative be-
havioral interactions [49,68], and allowed us to evaluate USVs without
disturbing the animal's circadian rhythms or sleep schedule. In general,
the courtship assay involved: 1) a habituation process by which the
male mice could acclimate to the testing environment; and 2) a 5-min
session where an individual male mouse was paired with an individual
female. Habituation reduces anxiety and stress during the USV record-
ing session, directs the male's attention to the female, which should
nowbe themost salient feature of interest, and increases the probability
that themaleswill emit ultrasonic songs. Per habituation, all of themice
were progressively conditioned to the testing procedures over 3 days.
On each of the first two nights, euploid and Ts65Dn males and euploid
females were conditioned to being wheeled into the behavioral facility
1 h before lights out in the colony room. After adapting to the transition
from the light phase to the dark for 60 min, cagemates were placed
together under the recording microphone in empty acrylic cages and
given time to explore the restricted space around a sound-attenuating
chamber for 5–10 min. These “test cages” were positioned within the
chamber about 10 in. directly underneath the microphone. At the end
of the exploration period, the animals were returned to their home
cages, kept in the behavioral facility overnight, and returned to the col-
ony room the next day when the lights were on again. On the third
night, all of the mice were further conditioned to being placed alone
in the test cages for 5 min in preparation for being paired with a male/
female partner the next evening.

On the fourth night (test day), each male mouse was paired with a
different randomly-selected euploid female for 5 min. Clean cages
with fresh bedding were used for each new pairing. Female mice were
never used more than once and were placed in the testing cage first
for 1–2 min before introducing the male. Interactions between male
and female animals were left to unfold naturally. No mating attempts
or aggressive behaviors were observed during these sessions.

Vocalizations were recorded over a 5-minute period using a
pressure-field ¼-inch microphone (Type-4938, Bruel and Kjaer,
Nærum, Denmark) with a functional range of 10 Hz to 100 kHz and a
sensitivity of 1.6 mV/Pascal. The resulting electrical signal was pre-
amplified (Falcon Range® 1/4-inch Microphone Preamplifier — Type
2670, Bruel and Kjaer), then processed by an instrumentation amplifier
(Model 440; Brownlee, San Jose, CA). It was collected using a 16 bit
analog-to-digital converter at a 200 kHz sampling rate (Digidata
1322A; Molecular Devices Corporation, Sunnyvale, California) driven
by pClamp 9.2 software (Molecular Devices). An acoustic calibration of
the system was performed by positioning a 1 kHz ± 0.1%, 94.0 dB
±0.2 dB Sound Level Calibrator (Type 4231, Bruel and Kjaer) in a
clean test cage at the same relative position to the microphone where
the animals would be placed. This calibration resulted in a final gain of
0.14812 V/dB; i.e., a full range of 135 dB peak-to-peak and a resolution
of 0.002 dB/bit. Acquisition files were converted into audible.wav files
using QuB (http://www.qub.buffalo.edu/wiki/index.php/Main_Page).

USVs were analyzed and categorized into syllable types using sound
spectrograms (Avisoft Bioacoustics SasLab Pro software, Berlin,
Germany, Software Version 5.2.06). Spectrograms were generated
with a Fast Fourier Transform (FFT)-length of 512 and a Hamming
style time window overlap of 50% (100% Frame). The spectrogram
was produced at a frequency resolution of 391 Hz and a time resolution
of 1.28 ms. A low cut-off frequency of 25 kHz was used to reduce back-
ground noise outside the relevant frequency band.

Analysis of USVs was performed blind to male genotype. Each sylla-
ble was classified as one of 9 waveform categories (Fig. 1) based on in-
ternal pitch change, length and shape, according to previously reported
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Fig. 1. Representative USVs for each of the 9 categories of calls emitted by adult malemice
based on spectrograph parameters.
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nomenclature [11,25,32,46]. The syllable categories are described
below:

Arc syllables (also referred to as Chevron syllables) waveforms with
increases and then decreases in frequency, with the highest
frequency reaching N5 kHz above the beginning and end
frequencies.

Down syllables (also referred to as Downward syllables) waveforms
exhibiting a continual decrease in frequency, with a sweep
N5 kHz.

Flat syllables waveforms with less than 5 kHz of modulation.
Jump syllables (also referred to as One-Jump syllables) waveforms

containing one break in frequency, but without breaks in
intensity.

Short syllables waveforms less than 10 ms in duration.
U syllables waveforms exhibiting decreases and then increases in fre-

quency, with the lowest frequency reaching N5 kHz below
the beginning and end frequencies.

Up syllables (also referred to as Upward syllables) waveforms showing
a continual uniform increase in frequency, with a sweep
N5 kHz.

Complex syllables waveforms containing two or more directional
changes in frequency and N5 kHz modulation.

Multiple jumps syllables waveforms containing at least two breaks in
frequency with no break in intensity.
2.3. Statistical analysis

The following discrete call measures were analyzed: (1) total num-
ber of calls; and (2) number of calls per syllable type. Several acoustic
parameters were also quantified for each USV syllable category:
(1) mean duration of calls; (2) energy; (3) peak-to-peak amplitude;
(4) peak frequency; (5) amplitude; (6) peak or dominant frequency;
(7) fundamental frequency; (8) maximal and minimal frequency;
(9) bandwidth; and (10) entropy. Total calling times were computed
by summing the duration of each call emitted by the subject. Differences
between the groups (Ts65Dn vs. euploid) were analyzed by Mann
Whitney tests for data not normally distributed. Comparisons were
statistically analyzed using unpaired Student's t-tests with Welch's
correction for normally distributed data. All statistical analyses were
carried out by GraphPad Prism 6.0 (GraphPad Software Inc., San
Diego, CA, USA). The results are presented as mean ± standard error
of the mean (S.E.M.). For all comparisons, a “p” value of b0.05 was
deemed to be statistically significant.
3. Results

3.1. Comparisons between USVs recorded from euploid and Ts65Dn mice:
aggregate analysis

A total of 11,723 calls were produced by euploid mice (n= 20) and
7125 calls by Ts65Dn mice (n = 18). Data from two controls and four
Ts65Dnmice were excluded from analysis because these animals failed
to emit vocalizations during courtship. The loss of subjects was not
statistically significant between groups (9% in the WT genotype, 18%
in the Ts65Dn genotype, Fisher's exact test, p = 0.6640).

When all of the syllables produced by each genotype were com-
bined, statistical comparisons between themean values of the following
standard USV properties revealed no significant differences: number
of calls emitted during courtship (p = 0.1359), peak duration (p =
0.9185), amplitude (p = 0.1022), fundamental frequency (p =
0.2141), peak frequency (p = 0.1178), bandwidth (p = 0.9650),
peak-to-peak amplitude (p = 0.1022), energy (p = 0.0634), and
entropy (0.3420) (all of these measures were compared with the
Mann Whitney test except for “peak amplitude,” which passed the
normality test and was analyzed with an unpaired t-test with Welch's
correction). However, the maximum and minimum peak frequencies
of the calls emitted by Ts65Dnmicewere significantly lower on average
than those produced by euploid siblings (unpaired t-test with Welch's
correction; Ts65Dn mean: 70.69 ± 3.296 kHz, control mean: 78.11 ±
1.077 kHz, p = 0.0449; Ts65Dn mean: 67.88 ± 3.254 kHz, control
mean: 75.18 ± 1.115 kHz, p = 0.0464; respectively) (Fig. 2).

3.2. Comparisons between USVs recorded from euploid and Ts65Dn mice:
specific vocalization categories

When the vocalizations were broken down into different syllable
motifs, we were still unable to detect a genotypic effect on the number
of calls of most vocalization categories except for the mean number
of multiple jumps calls (Mann Whitney test; control mean: 109.7 ±
47.47, Ts65Dn mean: 38.06 ± 18.74, p = 0.0438; Fig. 3-a). However,
we detected significant genotypic effects for several spectral parame-
ters. The mean individual duration of down and complex syllables
was significantly longer in Ts65Dn mice relative to euploid animals
(unpaired t-test with Welch's correction; control mean: 19.05 ±
0.8590 ms, Ts65Dn mean: 23.31 ± 1.674 ms, p = 0.04070; Fig. 3-b;
and control mean: 34.47 ± 3.463 ms, Ts65Dn mean: 49.81 ±
3.642 ms, p = 0.0063; Fig. 3-c; respectively). The mean durations of
Ts65Dn arc, “u”, and complex syllables were also significantly longer
(Mann Whitney test; control mean: 0.2064 ± 0.06413, Ts65Dn mean:
0.8796 ± 0.4176 s, p = 0.0498; Fig. 3-d; control mean: 0.2306 ±
0.1024 s, Ts65Dn mean: 0.3442 ± 0.1403 s, p = 0.0373; Fig. 3-e;
control mean: 0.5724 ± 0.2602 s, Ts65Dn mean: 2.479 ± 0.9561 s,
p = 0.0145; Fig. 3-f; respectively). Although the peak-to-peak frequen-
cies were not significantly genotype-dependent for any vocalization
category, for flat syllables this measure reached borderline statistical
significance (unpaired t-test with Welch's correction, control mean:
0.09457 ± 0.009504, Ts65Dn mean: 0.1462 ± 0.02316, p = 0.0525).

Finally, the peak,minimal, maximal, and fundamental frequencies of
short syllable USVs generated by euploidmicewere higher compared to
Ts65Dn littermates (unpaired t-test with Welch's correction, control
mean: 79,303 ± 1069 kHz, Ts65Dn mean: 69,528 ± 3368 kHz; p =
0.0118; control mean: 78,404 ± 1091, Ts65Dn mean: 68,460 ± 3370,
p = 0.0107; control mean: 81,075 ± 1059, Ts65Dn mean: 71,149 ±
3373, p = 0.0108; Mann Whitney test, control mean: 72,780 ± 2222,
Ts65Dn mean: 65,174 ± 3241, p = 0.0409; respectively) (Fig. 4).

4. Discussion

In the present study, we have quantified the number and analyzed
the characteristics of the USVs generated by Ts65Dn males during



Fig. 2. Comparison between USVs recorded from euploid and Ts65Dn mice. For all syllables combined, we could not detect significant differences for any of the following measures:
(a) total number of calls emitted by adult male euploid and Ts65Dn mice in the presence of a female, (b) peak amplitude, (c) duration, (d) fundamental frequency, (e) peak frequency,
(f) bandwidth, (g) peak-to-peak amplitude, (h) energy, and (i) entropy. However, the (j) minimum and (k) maximum peak frequencies of the calls emitted by Ts65Dnmice were signif-
icantly lower than those produced by euploid animals (see text for respective “p” values). Data indicate means ± standard error of the mean.
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courtship episodes with euploid female partners. We found that the
minimum and maximum peak frequencies of Ts65Dn calls were gener-
ally lower than those produced by euploid mice, whereas the mean
durations of “arc,” “u”, and “complex” syllable types were significantly
longer. Peak, minimal & maximal, and the fundamental frequencies of
short Ts65Dn syllables were lower compared to those of euploid mice.
Finally, Ts65Dn USVs featured fewer multiple jumps calls during court-
ship, and the mean individual duration of their “complex” and “down”
syllables was longer.

Research on the spectral features of the voice of individuals with DS
not only has had a long history, but has also generated inconsistent
results (reviewed recently by Ref. [33]). These studies have focused
primarily on voice quality parameters, such as fundamental frequency,
jitter, shimmer, and signal-to-noise ratio. The quantification of funda-
mental frequency of verbal utterances has been a necessary constant
of all studies in the human literature. This measure can be seen as the
frequency of the “sound carrier wave” and is expected to provide the
listener with the basic perception of high and low voice pitches. Here,
we observed a significantly lower mean fundamental frequency for
the short syllable USVs emitted by the mouse model of DS Ts65Dn
when compared to their euploid siblings. Older studies involving indi-
vidualswith DS also reported lower fundamental frequencies compared
to typically developing controls [37,42,43]. Yet, newer studies have
been mixed with some describing lower or higher fundamental

image of Fig.�2


Fig. 3. Differences in the USVs emitted by adult male euploid and Ts65Dn mice according to call category. (a) There was no genotype effect on the number of calls of most categories of
USV emitted by adult male euploid and Ts65Dn mice in the presence of a female, except for the mean number of multiple jumps calls. The mean duration of individual (b) down and
(c) complex syllable typeswas significantly shorter in euploid control than in Ts65Dnmice. Also, themean total duration of (d) arc, “u” (e), and (f) complex syllable typeswas significantly
longer for Ts65Dn mice. Data indicate means ± standard error of the mean.
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frequencies, or no significant difference at all [2,35,44,62]. The reasons
behind this discrepancy are difficult to ascertain, but the results of the
older studies seem to be in better agreement with clinical and natural-
istic acoustic perceptual assessments of voice quality in persons with
DS, which has been characterized as “low pitched and raucous” when
compared to that of most typically developing individuals [42,47,64].
Fig. 4.Differences between short syllable USVs emitted by adultmale euploid and Ts65Dnmice.
in euploid control mice were higher compared to Ts65Dn littermates. Data indicate means ± s
It is tempting to speculate that the older studies might have been a bet-
ter representation of the “natural” voice characteristics of persons with
DS, given that these studies were performed at a time when systematic
and frequent sessions of speech therapy from infancy through adoles-
cence (and many times into adult years) were not the standard of care
for persons with DS. If that is truly the case, one could argue that the
(a) Peak, (b)minimal, (c)maximal and (d) fundamental frequencies of short syllable USVs
tandard error of the mean.
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lower fundamental frequency recorded from the Ts65Dnmousemay be
an apt model for the “natural voice characteristics” of individuals with
DS. However, it is also not difficult to argue that the basic spectral char-
acteristics of human speech and mouse USVs may not be directly com-
parable, given the different physical requirements for the anatomical
apparatus necessary to produce audible sounds compared to vocaliza-
tions in the ultrasonic range.

In terms of the actual characteristics of the USVs produced by
Ts65Dn mice, we found a significantly longer duration for many
types of vocalizations and a reduced number of complex vocalizations
(i.e., those consisting of multiple jumps) compared to those by euploid
mice. The significantly longer vocalizations exhibited by Ts65Dn mice
at lower fundamental frequencies can be envisioned as stretched out
versions of the vocalizations generated by euploid control animals.
Although potentially more interesting from a DS modeling point of
view, the finding of a significantly lower occurrence of complex vocali-
zations by Ts65Dn mice can be interpreted in radically different ways,
depending on one's assumptions about the nature and significance of
the “syllabic structure” of rodent USVs. For example, if one interprets
each syllable as being functionally analogous to a human word, then,
the obvious and tempting interpretation is that we might be seeing
the mouse equivalent to a shorter mean length of utterance. This is a
robust and disproportionate developmental deficit in expressive lan-
guage that is seen in persons with DS ([52]). On the other hand, if
each of these multisyllabic structures is viewed as primitive versions
of individual human “words”, then, the less complex USVs produced
by Ts65Dn mice in relation to their euploid siblings might represent
an intriguing correlate to the fluency disorders seen in persons with
DS, which occur at a rate of 10–45% [33].

Admittedly, one has to take any anthropocentric interpretation of
USVs with a grain of salt, given the vast evolutionary distance between
humans and rodents, as well as the uniquely complex and culture-
dependent nature of human vocal communication. However, one also
would be naïve in discounting the potential significance of findings
involving alterations in the characteristic of USVs generated by mouse
models of human disorders. Recent findings (e.g., [3]) demonstrate
that male mice have some limited vocal modification abilities with at
least some neuroanatomical features previously thought to be unique
to humans and song-learning birds. These data suggest that mice pos-
sess basic primitive neural substrates for the faculty of “human-like”
vocal communication. In addition, as mentioned in the Introduction,
the analysis of rodent USVs has been applied extensively and successful-
ly to the study of genetic models of autism spectrum disorders (for
recent examples, see [4,26,30,61,69,72–74]). In the context of DS, the
study of USVs may shed light on fundamental questions regarding the
nature of speech impairments affecting the domains of voice, speech
sounds, and potentially even fluency in persons with DS. The mouse is
a more amenable system to assess micro- and macroanatomic features
of the vocal apparatus when compared to human beings. Mice also
allow for the production of functional data under more controlled and
homogenous conditions than would be feasible with human experi-
mental participants. For example, the extent to which early language
learning is impaired by problems with hearing and musculoskeletal
abnormalities (rather than intellectual disability) in people with DS
remains an important, but open question that could potentially be
addressed systematically in the mouse. More than two-thirds of
toddlers with DS suffer from conductive and/or sensorineural hearing
loss [59]. Individualswith DS are bornwith small ear canals, and specific
craniofacial features that complicate the proper articulation of speech—

including hypoplasia of the bones that enclose or give form to the
midface, jaws, oral cavity, trachea, and paranasal sinuses [54]. It is
generally thought that hypotonia of the lips and cheeks compounds
the effects of facial hypoplasia on breathing and voice production [50].

Given the developmental nature of the speech impairments associ-
ated with DS, it will be important to characterize USVs produced by
Ts65Dn mice at various ages in future studies. It is known that mice
begin vocalizing shortly after birth, with a peak in vocalization rates
occurring around postnatal day 8. They continue vocalizing, albeit at re-
duced rates, throughout adulthood [63]. Reminiscent of human infants,
mouse pups are known to produce utterances that have evolved to
attract maternal care. Ts65Dn pups show significant delays in the emis-
sion of such USVs [27]. The investigation of USVs generated by murine
models of DS at different developmental stages is likely to enrich our
understanding of the neurophysiological mechanisms controlling
speech in individuals with DS. Such studies might also provide us with
new surrogate endpoints for the emergingfield of translational research
of potential pharmacotherapies designed to enhance the cognitive and
adaptive skills of persons with DS [14,19].
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