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Abstract

We propose a novel formalism for inflation from a 5D vacuum state which could explain both, seeds of matter and magnetic fields in the early

universe.
© 2006 Elsevier B.V. Open access under CC BY license.

1. Introduction

It is well known from observation that many spiral galaxies
are endowed with coherent magnetic fields of pG (micro Gauss)
strength [1-6], having approximately the same energy density
as the cosmic microwave background radiation (CMBR). For
instance, the field strength of our galaxy is B ~ 3 x 107 G,
similar to that detected in high redshift galaxies [7] and damped
Lyman alpha clouds [8]. There is also evidence for larger-scale
magnetic fields of similar strength within clusters [9], which
have been recently reviewed by Giovannini [10] and by Car-
illi and Taylor [11]. These fields can play an important role
in various astrophysical processes, such as the confinement of
cosmic rays and the transfer of angular momentum away from
protostellar clouds, which leads to collapse and formation of
stars. The presence of magnetic fields at even larger scales
has also been claimed [12]. These fields influence the forma-
tion process of large-scale structure [13,14]. Recently [15] the
possible existence, strength and structure of magnetic fields in
the intergalactic plane, within the local supercluster, has been
scrutinized. The local supercluster is centered approximately at
the VIRGO cluster. A statistically significant Faraday screening
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acting on the radio-waves coming from the most distant sources
has been found. This analysis supports the existence of a reg-
ular magnetic field of 0.3 puG in the local supercluster. More
recent discussions of possible observational consequences on
cosmological magnetic fields that include the effects on the
CMB anisotropy were made in [16]. Several mechanisms have
been proposed to explain the origin of the seed field. It has been
suggested that a primordial field may be produced during the in-
flationary period if conformal invariance is broken [17,18]. In
string-inspired models, the coupling between the electromag-
netic field and the dilaton breaks conformal invariance and may
produce the seed field [19].

Inflation has nowadays become a standard ingredient for the
description of the early universe. In fact, it solves some of the
problems of the standard big-bang scenario and also makes pre-
dictions about CMBR anisotropies which are being measured
with higher and higher precision. The first model of inflation
was proposed by Starobinsky in 1979 [20]. A much simpler in-
flationary model with a clear motivation was developed by Guth
in the 80’s [21]. However, the universe after inflation in this
scenario becomes very inhomogeneous. These problems were
sorted out by Linde in 1983 with the introduction of chaotic
inflation [22]. Inflation offers the hope of furnishing a mech-
anism for kinematically and dynamically producing the seed
of cosmic magnetic fields. It provides the kinematic means
for producing long-wavelength effects in the very early uni-
verse by the amplification of short-wavelength modes of the
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inflaton field. This also could have happened with modes of
an electromagnetlc field. Since an electromagnetic wave with
Aphys = Hy ! has the appearance of statlc E and B fields, very
long wavelength photons (Apnys > Hy 1) could lead to large-
scale magnetic fields.

In this work we shall study a cosmological formalism for
inflation from a 5D vacuum state, where the effective 4D matter,
electromagnetic and vacuum effects are induced geometrically.
The formalism is aimed to explain both, seeds of matter and
magnetic fields in the early universe.

2. 5D formalism

We consider the 5D canonical metric [23]

§* =y?dN> —y*eN dr’ —dy?, (1)

where dr? = dx? + dy* + dz>. In this line element the coordi-
nates (N, r) are dimensionless and the fifth one ¥ has spatial
units. This metric describes a 5D flat manifold in apparent vac-
wum G4p = 0' and satisfies R4pcp = 0, ie., it is flat. To
describe an electromagnetic field and neutral matter on this
background, we consider the action

A G R

= [ d'xd —+
[ v [1671G

for a vector potential with components Ag = (A, ¢), which

are minimally coupled to gravity. Here, ®'R is the 5D Ricci

scalar, which is zero for the metric (1).
We propose a 5D Lagrangian density in (2)

S)g

5 LA, AC;B)] 2
80

1
O L(Ap, Ap.c) = —ZQBCQBC, 3)

where we define the tensor field Qpc = Fpc + ygpc (AP p),

with y = /% and Fpc = Ac.p — Ap;c = —Fcp, being ()
the covariant derivative. The Lagrangian density (3) can also be
expressed as

1 A 2
O L(Ap, Ap.c) = —ZFBCFBC - E(AD;D) , )

where the last term is a “gauge-fixing” term. The 5D-dynamics
field equations in a Lagrange formalism leads to

AB.pP — (1 —n)AC. B =o. 5)

Working in the Feynman gauge (A = 1), Eq. (5) yields
1 a

e[ elee 4" 0| <o ©

where A8 = (A%, —¢). Eq. (6) is a massless Klein—-Gordon-
like equation for A® and represents the analogous of the
Maxwell’s equations in a 5D manifold in an apparent vac-

uum. The commutators for AC and T8 = ~2£ _ — FBN _
d(AB,N)

I n our conventions, capital Latin indices run from O to 4 and Greek indices
from O to 3.

gBN A€ ¢ are given by

[AC(N, 7, ), ﬁB(N, 7, yh]

(%)
= igCBgV| LG — sy — ), (7)
8
[Ac(N.F, ), Ag(N, 7', y")]
=[Mc(N. 7, ¥), Tp(N, 7, w’)] =0. (8)
Here [TV = —gVN(AC.¢) and | < O| is the inverse of the nor-

malized volume of the manifold (1) From Eq. (8), we obtain
[Ac(N.F,¥), Ag;n(N, 7 ¥")]

€ )
=8y —¥). )

3)
(5) o|o g

—igBcC

Using Egs. (1) and (6), the equation of motion for the electro-
magnetic 4-vector potential A*, is given by

ok * 82 AN
AM+3AM — e VV2AR — 4y — + g

r w a 1// w a wz
where the overstar denotes the derivative with respect to N.
Similarly for ¢ we have

} =0, (10)

*k * azgp
—2N o2 2 _
43¢ —e Vg — |:¢ W—H// 8w2]—0. (11
Furthermore, using (7) the commutator between ¢ and QB be-
comes

[w(N,?, w>,<Z<N,?’, ]

— 3(3)(

(5) =8 =), (12)

which is the same expression that whole obtained in [24].

2.1. The 4D electromagnetic field embedded in 5D

—3N/2

Trar_lsforming A" according to AM(N,7,¥) =e X
(42)2A1(N, 7, 4), and from Eq. (10), we have
x> _ AR 1
—2N g2 2 _
AM—E VrAM—'(ﬂ B—W_ZAM_O’ (13)

*
so that the commutator between A* and AV becomes

[AM(N,F,¥), A"(N, ¥, ¢")]
=ig"sDF = —v). (14)

The redefined electromagnetic field A* can be expressed in
terms of a Fourier expansion

AM(N,F, ) = L[k [
) E) (2 )3/2 r Tﬁ
x Z%)

+a /5‘,"2; T (N, (15)

eitr " ey (N, )
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where the creation and annihilation operators (a,E‘:’,z;, a,E‘:‘,Zw)

comply

[a,ﬁflzw,a;?kf] =g 5O (k, — k)8 (ky — k},), (16)
() @)y _r1,@f (@)t _

[ak,k,,,’ak;k;//] = [ak,k,,,’ak;kl’//] =0, a7

and the four polarization 4-vectors eéfx) satisfy €(a) - €'y = 8aa’-
Using the expansion (15), into Eq. (13), we find

92 ong ] ) 8
Wfk,kd, + [6 ky — Z:|§k,kw 4 8—¢2§k,k¢ =0, (18)
which is the dynamical equation for the modes gy, x, of AR,
We propose that Ckyky c€aN be decomposed as Cherhey, (N,v¥) =
Zay(N)¢@) (), where for simplicity, we have suppressed the
underscripts &, ky in the notation. Thus, Eq. (18) can be equiv-
alently expressed by the system of equations

2 d2 2
14 d—z//?m)_'( {2 =0, (19)

d? _ 1
valot [kfe - <K2 + Z)}E(n =0, 20)

where « is a dimensionless separation constant given by x> =
wzk%&, being ky the wavenumber corresponding to the fifth co-
ordinate. The general solution for the system (19), (20) is given
by

Ly (N W) = CLrHY [x ()] + CHE [x (V)] @21
/4k3,w2+1 ] ] ]
where v| = *——=—— is a dimensionless constant and x(N) =

kre™N. In this equation HS}) and H,(f) are the first and sec-
ond kind Hankel functions. The normalization condition for
Skoky (N, Y¥) becomes

fk,kw Czrkw - é'k,kv, (}ikw =i. (22)

Therefore, considering the Bunch—Davies vacuum, C; = 0 and
Cp =i/ /2, we obtain

Skokey (N, Y1) = i?

which gives the normalized modes corresponding to the elec-
tromagnetic field embedded in a 5D apparent vacuum.

HO L], @3

3. Effective 4D dynamics

Considering the coordinate transformations

t=YoN, R =rvp, V=1, (24)
Eq. (1) takes the form
2
as?— (%) [di> — /0 dR>] — dy?. (25)
0

which is the Ponce Leon metric that describes a 3D spa-
tially flat, isotropic and homogeneous extension to 5D of a
Friedmann—Robertson—Walker (FRW) line element in a de Sit-
ter expansion. Here ¢ is the cosmic time and dR? = dX? +

dY? + dZ?. Now, we can take the foliation Y = Yo in (25),
such that we obtain the effective 4D metric

dSs? — ds* =dt*> — &2 gR?, (26)

which describes a 3D spatially flat, isotropic and homogeneous
de Sitter expanding Universe with a constant Hubble parameter
Hy = 1/ and a 4D scalar curvature DR = 12H02.

Eq. (10) with the transformation (24) and the foliation
Y =1v0=H, L provides the effective equation of motion for

AM(t, R, = o) = A*(t, R)
AV £ 3Hy AP — e72H0Iy2 A1

0AH dZAM
- H2|:41//— + 92 }
0 oy v Jly—p,

where A* is the effective 4D electromagnetic field induced onto
the hypersurface ¥ = H, ! Note that the last term between
brackets acts as an induced electromagnetic potential derived
with respect A#. This term is the analogous to V'(¢) in the
case of an inflationary scalar field as used in [25], and in our
case the dynamics of the component A* = —¢ is described by

=0, 27

¢+ 3Hop — e *'v2e

I ORI I ) _
3| v+ aw”w:%—l " oo

On the other hand, transforming A* as A (¢, R) = e 2 Hot 5

AR (x, I_é), Eq. (27) takes the form

i — g2 g (?

1 2+ a)A“ =0, (29)

where o = kio - 2H§ is a constant parameter. Expressing

AH(¢, R) as a Fourier expansion

- 1
% _ 3
A¥(t, R) = @i /d kg / d,
3 - =
x> e, [a] "% R Qe (1) + c.c.]8(ky — kyy).
y=0

(30)

where ky,, is a constant. The equation of motion for the effective

4D electromagnetic modes Qy, (7), becomes

N 9

Oig + [k%ee_ZHO’ - <Z 02+Ol>i| Qi =0, (31)
whose general solution is

Qi () = FIHY [y(O] + RHP[y()], (32)

_ kr ,—Hyt _ 1 2
where y(1) = e . 0" and v = 2—%,/9H0 o
The corresponding normalization condition for the modes
Qi (t) becomes

Qi Qtp — Qkx Qi =1- 33)

Note that Hy remains constant in a de Sitter expansion. There-
fore, taking into account the Bunch—Davies vacuum condition,

we consider F; =0 and F, =i ﬁ. Hence the normalized
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solution of (31) is

O (1) = i,/ i HP[y®)]. (34)

which describes the normalized effective 4D-modes corre-
sponding to the effective 4D electromagnetic field A*.

3.1. Classicality conditions of A,

It is very important to see that all the modes Qg (f) on the
infrared (IR) sector are real. If we write these modes as a com-
plex function with components ug, (t) and v, (1): Qk,(t) =
Uk () + ivig (1), the condition for the modes to be real is

Vi (1)
Uy (1)

Hence, the condition for the field A, to be classical on the IR
sector during inflation, becomes

< 1. (35)

Qg (1) =

1 k0 k g (1)
— t 1, 36
T kZO g (1) € (36)
po

where M (¢) is the time-dependent number of degrees of free-
dom (which increases with time during inflation) in the IR
(kg < kpp) sector. The coarse-graining field

Aulr = / d*kg O (eky — kg)

1
(271-)3/2
3
n Y i
XD € [inky, ©
y=0

(here ® denotes the Heaviside function), takes into account
only the modes with 100« <ky / kg that can be consid-
ered as classical because

[Aulr, Ay R1 =0, (38)

which in turn implies that the fluctuations of A,|[r can be
treated as classical in the electromagnetic field as well.

R () +cc] 37)

3.2. Electromagnetic fields during inflation

Previous results allow us to calculate the effective 4D
super-Hubble squared fluctuations of the electromagnetic field
(0]A*A,10) = (A?), which are given by

2e-3Hor " dkR 3
| T —— kg Ok Okps (39)
0

<A2)|IR =

where ¥ = kgax/k « 1 is a dimensionless parameter. Here,
kgﬁ,f = kpy (t;) = Hpe™" is the wavenumber related to the Hub-
ble radius at #; (the time when the horizon enters) and k, is the
Planckian wavenumber. In fact we choose &, as a cut-off scale
of all the spectrum.

To obtain (A%)|jr, we must consider the small argument
limit for H(z) [y] >~ F(lz) 5~ %F(v)(%)“’. From the condition

(35) we obtain that each kg-mode becomes classical for times

| (v kg \*
r> 2uHoln[r(1+v)22” (Fo) } o

which for a de Sitter expansion takes the form %’f} < eMe and

N, is the number of e-folds at the end of inflation. In order
for inflation to solve the horizon/flatness problem, N, > 60 is
required. Note that in this case when k20 ~ 2H§, the constant

parameter |oz|/H02 « 1 and thus v >~ 3/2. Hence we can use

MY [y] =~ —LI(1)(3)™" on the IR sector to obtain
2 22 i (3—20)H, ﬂkHdkR 3-2
~ V— —(O—2v t v
(A7) = Hy T (v)e 0 / o —ky . (4D
0

Note that when o = 0, v = 3/2 and thus the spectrum P (kg) ~
k372" is scale invariant. Performing the remaining integration,
(41) becomes

221)—1 Fz(l)) 2
3= 42
73 (3—2v) H (42)

(A%)] g =

which is similar to the corresponding (¢*)|ir. We must note
that (A2) has constant value in the infrared sector, which means
that the amplitude of the corresponding photons is constant.
This result can be interpreted as a classical large-scale elec-
tromagnetic potential generated when a de Sitter inflationary
process ends, which is responsible for a large-scale seed mag-
netic field.

4. Induced seed magnetic field

In this section we estimate the seed magnetic field induced
from the electromagnetic potential whose dynamics was stud-
ied in the previous section. For this purpose we consider the
3D spatial components of A = A’¢; (¢; are the 3D spatial basis
vectors), which in view of (27) and (29) satisfy
Al 4 3H)AT — e 2H0Iy2 AT _ g AT = 0. (43)
‘We consider the physical components of A and B measured in
a comoving frame. Hence, the orthonormal basis components
associated with the observers in this frame are given by

0 —Hyt 0
W=p0 CR=CTR
19 1 0
— ,—Hot __ _—Hyt
egy=e —_—, e =¢e - —, 44
® R 060 @ Rsin6 0¢ S

where the spatial part of (26) has been rewritten as dR> =
dR* + R*(d6* + sin*0 d¢?).

On the other hand, we know that from (10) through the
transformations (24) we can obtain the standard Maxwell’s
equations with sources, where such sources have a geometrical
origin. The Maxwell’s equations without sources can be ob-
tained from these (see [26]). Therefore, using VR Bcom =0
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and écom = %R X Acom, Eq. (43) becomes
Bl + H()B

com

_2HOIVRBéom ((X + 2I—IO) com =0.

45
This expression describes the dynamics of the comoving com-
ponents of the seed magnetic field. As in the case of A*, we can
express these components as a Fourier expansion

com

1
— 5 Hot

: g e
Béom(t, R) = W

/d kRZe(l)(kR)[b(l) ik RG (1)

+b([)T —lkR RG* (t)], (46)

where b,(cll:T and b,illz are the creation and annihilation opera-

tors and eél) (kg) are the 3-polarization vectors which satisfy
€(i) - €(j) = &ij- Therefore, the equation of motion for Gy, (r)
obtained from (45), acquires the form

.. 9
Gy + [kgez”of - (ZH(? - a)] G =0, (47)
and has for solution

Grp (1) = LK [w(®)] + LoHP [w(®)], (48)

where v = ﬁ,/9H§+4a, w(t) = %Ze’”ot and L, L, are

integration constants. The corresponding normalization condi-
tion for those seed magnetic modes is

GG — GG, = i/, 49)
being ap = H, ! the scale factor of the universe when inflation
begins.

The normalized solution of (47) is

Gy (1) = i,/”THO HP [w(n)]. (50)

Now, the super-Hubble squared B fluctuations of the seed mag-

netic field (B, Com) in the Feynman gauge are given by

Se—Hot d R, 3
( Com>|IR o2 kr —k GkR(f)GkR(l)

0
T ak
_ / YR b ), 1)
0

where ¥ = kr(r{la{,z /kp < 11is a dimensionless parameter. We are

choosing k, as a cut-off scale of the whole spectrum. The power
spectrum P (kgr) on cosmological scales is

3
Pkr) = ﬁzzvF2(v)HOIJ"Z“e—(l—ZV)Hotkz—Zv' (52)

Considering the case kz0 o~ 2H02, we see that |oz|/H02 « 1, and

thus v < 3/2, because o = kio — 2H02. This case is of physical
interest since it corresponds to a nearly scale-invariant power
spectrum for (B2, )|ir. Therefore, on the infrared IR sector,
we obtain

( >| 3F2(V) 2 H, 0 2 0 43-2v,2Hot
com/IR 873 (3 —2v)

(53)

It is remarkable in this result that (B2, )||r is a growing func-
tion of time during inflation. We notice that the typical infrared
divergence appears when k2O = ZHg as in the case of the scalar
field inflaton analysis for a de Sitter expansion, where the spec-
trum is exactly scale invariant.

On the other hand, the physical magnetic field Bpnys is re-
lated with the comoving one as

-2
Bphys ~a " Beom-

After inflation, Bphys decreases as a~2. Hence, we could make
an estimation for the actual strength of the cosmological mag-

netic field Béﬁ;s

a 1/2 a(t =tp) 172
((Bos) )1 = <m) (B2t =) |1x.

where Bqom(f = t;) denotes the comoving magnetic field at the
end of inflation.

In Fig. 1 we have plotted ((Béﬁ;s) Y1/21r (in Gauss), with
respect to v and . Notice that v is related to the spectral in-
dex ng by the expression: ny = 4 — 2v. Furthermore, we have
used Hy =0.5 x 10_9Mp taking N, = 63 and 9 on the range
107> to 10~8 (which corresponds to actual scales that run from
3 x 103 to 3 x 10° Mpc). To estimate the scale factor evolution

of ((Bphyg) 1y1/2| 1, we used

<a(t=to))4: 107136,
a(t=1;)

which accounts for the actual size of the observable horizon
(~10%8 cm) and the size of the horizon at the end of inflation
(~3.6 x 107% cm).

5. Final comments

In this Letter we have developed a novel formalism of in-
flation which takes into account gravitoelectromagnetic effects
from a 5D vacuum state, where the fifth (spatial like) coordinate
is considered as noncompact. The reader can see a different ap-
proach in the framework of STM theory, for instance, in [27].
In our case, to define the 5D vacuum on the Riemann flat
(Rgc p = 0) metric (1), we introduce the density Lagrangian
(3), which is purely kinetic, for a tensorial operator

Opc = Fpc +gac(AP.p)

(such that Fpc = Ac.p — Ap.c 1s antisymmetric and gap is
symmetric) where the vector potential has components Ap =
(A, @), which are minimally coupled to gravity. Working in
the Feynman gauge, we obtain a 5D massless Klein—Gordon-
like equation for AZ, which represents the Maxwell’s equations
in a 5D vacuum state (see Eq. (6)). Using transformations (24)
with the foliation ¢ = H;” !, we obtain the Maxwell’s equations
on an effective 4D de Sitter background metric (26), where the
sources (the last terms in (27) and (28)) describe the deriva-
tives of the corresponding potentials with respect to A* and ¢.
Hence, the effective 4D dynamics of A* and the inflaton field ¢
is well described by Eqgs. (27) and (28). Finally, we have studied
the evolution of the squared B.om-fluctuations during inflation,
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(@21 izm

<(Bphys

.49

)2) 172 |IR (in Gauss), with respect to v and ©. Notice that v is related to the spectral index ng by the expression: ng =4 — 2v, so that values used in

the graphic for v = (1.45, 1.49) correspond respectively to ng = (1.1, 1.02). Values considered for ¢ correspond to actual scales from 3 x 103 to 3 x 10° Mpc.

which are classical on cosmological scales. These fluctuations
increase exponentially on cosmological scales and at the end of
this epoch its strength is of the order of (10272 (G)2. Later, we
have estimated the present day strength of <(B]:();11;Is)2> 172 which

results of the order of 10~ G. This results agree with the lim-
its imposed by the high isotropy of the CMB photons, obtained
from the COBE data [28]. However, must be noted that our cal-
culations are very sensitive with the number of e-folds that one
consider during inflation.
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