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Abstract

We propose a novel formalism for inflation from a 5D vacuum state which could explain both, seeds of matter and magnetic fields in the early
universe.
© 2006 Elsevier B.V. Open access under CC BY license. 
1. Introduction

It is well known from observation that many spiral galaxies
are endowed with coherent magnetic fields of µG (micro Gauss)
strength [1–6], having approximately the same energy density
as the cosmic microwave background radiation (CMBR). For
instance, the field strength of our galaxy is B � 3 × 10−6 G,
similar to that detected in high redshift galaxies [7] and damped
Lyman alpha clouds [8]. There is also evidence for larger-scale
magnetic fields of similar strength within clusters [9], which
have been recently reviewed by Giovannini [10] and by Car-
illi and Taylor [11]. These fields can play an important role
in various astrophysical processes, such as the confinement of
cosmic rays and the transfer of angular momentum away from
protostellar clouds, which leads to collapse and formation of
stars. The presence of magnetic fields at even larger scales
has also been claimed [12]. These fields influence the forma-
tion process of large-scale structure [13,14]. Recently [15] the
possible existence, strength and structure of magnetic fields in
the intergalactic plane, within the local supercluster, has been
scrutinized. The local supercluster is centered approximately at
the VIRGO cluster. A statistically significant Faraday screening
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acting on the radio-waves coming from the most distant sources
has been found. This analysis supports the existence of a reg-
ular magnetic field of 0.3 µG in the local supercluster. More
recent discussions of possible observational consequences on
cosmological magnetic fields that include the effects on the
CMB anisotropy were made in [16]. Several mechanisms have
been proposed to explain the origin of the seed field. It has been
suggested that a primordial field may be produced during the in-
flationary period if conformal invariance is broken [17,18]. In
string-inspired models, the coupling between the electromag-
netic field and the dilaton breaks conformal invariance and may
produce the seed field [19].

Inflation has nowadays become a standard ingredient for the
description of the early universe. In fact, it solves some of the
problems of the standard big-bang scenario and also makes pre-
dictions about CMBR anisotropies which are being measured
with higher and higher precision. The first model of inflation
was proposed by Starobinsky in 1979 [20]. A much simpler in-
flationary model with a clear motivation was developed by Guth
in the 80’s [21]. However, the universe after inflation in this
scenario becomes very inhomogeneous. These problems were
sorted out by Linde in 1983 with the introduction of chaotic
inflation [22]. Inflation offers the hope of furnishing a mech-
anism for kinematically and dynamically producing the seed
of cosmic magnetic fields. It provides the kinematic means
for producing long-wavelength effects in the very early uni-
verse by the amplification of short-wavelength modes of the
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inflaton field. This also could have happened with modes of
an electromagnetic field. Since an electromagnetic wave with
λphys � H−1

0 has the appearance of static �E and �B fields, very
long wavelength photons (λphys � H−1

0 ) could lead to large-
scale magnetic fields.

In this work we shall study a cosmological formalism for
inflation from a 5D vacuum state, where the effective 4D matter,
electromagnetic and vacuum effects are induced geometrically.
The formalism is aimed to explain both, seeds of matter and
magnetic fields in the early universe.

2. 5D formalism

We consider the 5D canonical metric [23]

(1)dS2 = ψ2 dN2 − ψ2e2N dr2 − dψ2,

where dr2 = dx2 + dy2 + dz2. In this line element the coordi-
nates (N, r) are dimensionless and the fifth one ψ has spatial
units. This metric describes a 5D flat manifold in apparent vac-
uum GAB = 01 and satisfies RA

BCD = 0, i.e., it is flat. To
describe an electromagnetic field and neutral matter on this
background, we consider the action

(2)I =
∫

d4x dψ

√∣∣∣∣ (5)g

(5)g0

∣∣∣∣
[

(5)R

16πG
+ (5)L(AB,AC;B)

]

for a vector potential with components AB = (Aμ,ϕ), which
are minimally coupled to gravity. Here, (5)R is the 5D Ricci
scalar, which is zero for the metric (1).

We propose a 5D Lagrangian density in (2)

(3)(5)L(AB,AB;C) = −1

4
QBCQBC,

where we define the tensor field QBC = FBC + γgBC(AD;D),

with γ =
√

2λ
5 and FBC = AC;B − AB;C = −FCB , being (;)

the covariant derivative. The Lagrangian density (3) can also be
expressed as

(4)(5)L(AB,AB;C) = −1

4
FBCFBC − λ

2

(
AD;D

)2
,

where the last term is a “gauge-fixing” term. The 5D-dynamics
field equations in a Lagrange formalism leads to

(5)AB ;D ;D − (1 − λ)AC ;C ;B = 0.

Working in the Feynman gauge (λ = 1), Eq. (5) yields

(6)
1√|(5)g|

∂

∂xC

[√∣∣(5)g
∣∣gDCAB

,D

]
= 0,

where AB = (Aμ,−ϕ). Eq. (6) is a massless Klein–Gordon-
like equation for AB and represents the analogous of the
Maxwell’s equations in a 5D manifold in an apparent vac-
uum. The commutators for AC and Π̄B = ∂L

∂(AB,N )
= FBN −

1 In our conventions, capital Latin indices run from 0 to 4 and Greek indices
from 0 to 3.
gBNAC ;C are given by[
AC(N, �r,ψ), Π̄B(N, �r ′,ψ ′)

]
(7)= igCBgNN

∣∣∣∣ (5)g0
(5)g

∣∣∣∣δ(3)(�r − �r ′)δ(ψ − ψ ′),[
AC(N, �r,ψ),AB(N, �r ′,ψ ′)

]
(8)= [

Π̄C(N, �r,ψ), Π̄B(N, �r ′,ψ ′)
] = 0.

Here Π̄N = −gNN(AC ;C) and | (5)g0
(5)g

| is the inverse of the nor-
malized volume of the manifold (1). From Eq. (8), we obtain[
AC(N, �r,ψ),AB;N(N, �r ′,ψ ′)

]
(9)= −igBC

∣∣∣∣ (5)g0
(5)g

∣∣∣∣δ(3)(�r − �r ′)δ(ψ − ψ ′).

Using Eqs. (1) and (6), the equation of motion for the electro-
magnetic 4-vector potential Aμ, is given by

(10)




A
μ + 3




A
μ − e−2N∇2

r Aμ −
[

4ψ
∂Aμ

∂ψ
+ ψ2 ∂2Aμ

∂ψ2

]
= 0,

where the overstar denotes the derivative with respect to N .
Similarly for ϕ we have

(11)



ϕ +3



ϕ −e−2N∇2

r ϕ −
[

4ψ
∂ϕ

∂ψ
+ ψ2 ∂2ϕ

∂ψ2

]
= 0.

Furthermore, using (7) the commutator between ϕ and


ϕ be-

comes[
ϕ(N, �r,ψ),



ϕ(N, �r ′,ψ ′)

]
(12)= i

∣∣∣∣ (5)g0
(5)g

∣∣∣∣δ(3)(�r − �r ′)δ(ψ − ψ ′),

which is the same expression that whole obtained in [24].

2.1. The 4D electromagnetic field embedded in 5D

Transforming Aμ according to Aμ(N, �r,ψ) = e−3N/2 ×
(
ψ0
ψ

)2Āμ(N, �r,ψ), and from Eq. (10), we have

(13)




Āμ − e−2N∇2
r Āμ − ψ2 ∂2Āμ

∂ψ2
− 1

4
Āμ = 0,

so that the commutator between



Āμ and Āν becomes

[ 


Āμ(N, �r,ψ), Āν(N, �r ′,ψ ′)
]

(14)= igμνδ(3)(�r − �r ′)δ(ψ − ψ ′).

The redefined electromagnetic field Āμ can be expressed in
terms of a Fourier expansion

Āμ(N, �r,ψ) = 1

(2π)3/2

∫
d3kr

∫
dkψ

×
3∑

α=0

ε
μ

(α)

[
a

(α)
kr kψ

ei�kr ·�r ζkr kψ (N,ψ)

(15)+ a
(α)†
kr kψ

e−i�kr ·�r ζ ∗
kr kψ

(N,ψ)
]
,
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where the creation and annihilation operators (a(α)†
kr kψ

, a
(α)
kr kψ

)
comply

(16)
[
a

(α)
kr kψ

, a
(α′)†
k′
r k

′
ψ

] = −gαα′
δ(3)(�kr − �k′

r )δ(kψ − k′
ψ),

(17)
[
a

(α)
kr kψ

, a
(α′)
k′
r k

′
ψ

] = [
a

(α)†
kr kψ

, a
(α′)†
k′
r k

′
ψ

] = 0,

and the four polarization 4-vectors ε
μ

(α) satisfy ε(α) ·ε(α′) = gαα′ .
Using the expansion (15), into Eq. (13), we find

(18)
∂2

∂N2
ζkrkψ +

[
e−2Nk2

r − 1

4

]
ζkrkψ − ψ2 ∂2

∂ψ2
ζkrkψ = 0,

which is the dynamical equation for the modes ζkrkψ of Āμ.
We propose that ζkrkψ can be decomposed as ζkrkψ (N,ψ) =
ζ(1)(N)ζ(2)(ψ), where for simplicity, we have suppressed the
underscripts krkψ in the notation. Thus, Eq. (18) can be equiv-
alently expressed by the system of equations

(19)ψ2 d2

dψ2
ζ(2) − κ2ζ(2) = 0,

(20)
d2

dN2
ζ(1) +

[
k2
r e

−2N −
(

κ2 + 1

4

)]
ζ(1) = 0,

where κ is a dimensionless separation constant given by κ2 =
ψ2k2

ψ , being kψ the wavenumber corresponding to the fifth co-
ordinate. The general solution for the system (19), (20) is given
by

(21)ζkrkψ (N,ψ) = C1H(1)
ν1

[
x(N)

] + C2H(2)
ν1

[
x(N)

]
,

where ν1 =
√

4k2
ψψ2+1

2 is a dimensionless constant and x(N) =
kre

−N . In this equation H(1)
ν1 and H(2)

ν1 are the first and sec-
ond kind Hankel functions. The normalization condition for
ζkrkψ (N,ψ) becomes

(22)ζkrkψ




ζ ∗
kr kψ

− 


ζ kr kψ
ζ ∗
kr kψ

= i.

Therefore, considering the Bunch–Davies vacuum, C1 = 0 and
C2 = i

√
π/2, we obtain

(23)ζkrkψ (N,ψ) = i

√
π

2
H(2)

ν1

[
x(N)

]
,

which gives the normalized modes corresponding to the elec-
tromagnetic field embedded in a 5D apparent vacuum.

3. Effective 4D dynamics

Considering the coordinate transformations

(24)t = ψ0N, R = rψ0, ψ = ψ,

Eq. (1) takes the form

(25)dS2 =
(

ψ

ψ0

)2[
dt2 − e2t/ψ0 dR2] − dψ2,

which is the Ponce Leon metric that describes a 3D spa-
tially flat, isotropic and homogeneous extension to 5D of a
Friedmann–Robertson–Walker (FRW) line element in a de Sit-
ter expansion. Here t is the cosmic time and dR2 = dX2 +
dY 2 + dZ2. Now, we can take the foliation ψ = ψ0 in (25),
such that we obtain the effective 4D metric

(26)dS2 → ds2 = dt2 − e2H0t dR2,

which describes a 3D spatially flat, isotropic and homogeneous
de Sitter expanding Universe with a constant Hubble parameter
H0 = 1/ψ0 and a 4D scalar curvature (4)R= 12H 2

0 .
Eq. (10) with the transformation (24) and the foliation

ψ = ψ0 = H−1
0 , provides the effective equation of motion for

Aμ(t, �R,ψ = ψ0) ≡ Aμ(t, �R)

Äμ + 3H0Ȧ
μ − e−2H0t∇2

RAμ

(27)− H 2
0

[
4ψ

∂Aμ

∂ψ
+ ψ2 ∂2Aμ

∂ψ2

]∣∣∣∣
ψ=H−1

0

= 0,

where Aμ is the effective 4D electromagnetic field induced onto
the hypersurface ψ = H−1

0 . Note that the last term between
brackets acts as an induced electromagnetic potential derived
with respect Aμ. This term is the analogous to V ′(ϕ) in the
case of an inflationary scalar field as used in [25], and in our
case the dynamics of the component A4 ≡ −ϕ is described by

ϕ̈ + 3H0ϕ̇ − e−2H0t∇2
Rϕ

(28)− H 2
0

[
4ψ

∂ϕ

∂ψ
+ ψ2 ∂2ϕ

∂ψ2

]∣∣∣∣
ψ=H−1

0

= 0.

On the other hand, transforming Aμ as Aμ(t, �R) = e− 3
2 H0t ×

Aμ(t, �R), Eq. (27) takes the form

(29)Äμ − e−2H0t∇2
RAμ −

(
9

4
H 2

0 + α

)
Aμ = 0,

where α = k2
ψ0

− 2H 2
0 is a constant parameter. Expressing

Aμ(t, �R) as a Fourier expansion

Aμ(t, �R) = 1

(2π)3/2

∫
d3kR

∫
dkψ

(30)

×
3∑

γ=0

ε
μ

(γ )

[
a

γ

kR
ei�kR · �RQkR

(t) + c.c.
]
δ(kψ − kψ0),

where kψ0 is a constant. The equation of motion for the effective
4D electromagnetic modes QkR

(t), becomes

(31)Q̈kR
+

[
k2
Re−2H0t −

(
9

4
H 2

0 + α

)]
QkR

= 0,

whose general solution is

(32)QkR
(t) = F1H(1)

ν

[
y(t)

] + F2H(2)
ν

[
y(t)

]
,

where y(t) = kR

H0
e−H0t and ν = 1

2H0

√
9H 2

0 + α.
The corresponding normalization condition for the modes

QkR
(t) becomes

(33)QkR
Q̇∗

kR
− Q̇kR

Q∗
kR

= i.

Note that H0 remains constant in a de Sitter expansion. There-
fore, taking into account the Bunch–Davies vacuum condition,

we consider F1 = 0 and F2 = i
√

π
4H

. Hence the normalized

0
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solution of (31) is

(34)QkR
(t) = i

√
π

4H0
H(2)

ν

[
y(t)

]
,

which describes the normalized effective 4D-modes corre-
sponding to the effective 4D electromagnetic field Aμ.

3.1. Classicality conditions of Aμ

It is very important to see that all the modes QkR
(t) on the

infrared (IR) sector are real. If we write these modes as a com-
plex function with components ukR

(t) and vkR
(t): QkR

(t) =
ukR

(t) + ivkR
(t), the condition for the modes to be real is

(35)αkR
(t) =

∣∣∣∣ vkR
(t)

ukR
(t)

∣∣∣∣ � 1.

Hence, the condition for the field Aμ to be classical on the IR
sector during inflation, becomes

(36)
1

M(t)

kr�ϑkH (t)∑
kR=0

αkR
(t) � 1,

where M(t) is the time-dependent number of degrees of free-
dom (which increases with time during inflation) in the IR
(kR � kH ) sector. The coarse-graining field

Aμ|IR = 1

(2π)3/2

∫
d3kR Θ(εkH − kR)

(37)×
3∑

γ=0

ε
μ

(γ )

[
a

γ

kRkψ0
ei�kR · �RQkR

(t) + c.c.
]

(here Θ denotes the Heaviside function), takes into account
only the modes with 103 � ϑ−1 < kH /kR that can be consid-
ered as classical because

(38)[Aμ|IR, Ȧμ|IR] � 0,

which in turn implies that the fluctuations of Aμ|IR can be
treated as classical in the electromagnetic field as well.

3.2. Electromagnetic fields during inflation

Previous results allow us to calculate the effective 4D
super-Hubble squared fluctuations of the electromagnetic field
〈0|AμAμ|0〉 = 〈A2〉, which are given by

(39)
〈
A2〉∣∣

IR = 2e−3H0t

π2

ϑkH∫
0

dkR

kR

k3
RQkR

Q∗
kR

,

where ϑ = k
(IR)
max/kp � 1 is a dimensionless parameter. Here,

k
(IR)
max = kH (ti) = H0e

H0ti is the wavenumber related to the Hub-
ble radius at ti (the time when the horizon enters) and kp is the
Planckian wavenumber. In fact we choose kp as a cut-off scale
of all the spectrum.

To obtain 〈A2〉|IR, we must consider the small argument

limit for H(2)
ν [y] � (

y
2 )ν − i �(ν)(

y
)−ν . From the condition
�(1+ν) π 2
(35) we obtain that each kR-mode becomes classical for times

(40)t � 1

2νH0
ln

[
�(ν)

�(1 + ν)22ν

(
kR

H0

)2ν]
,

which for a de Sitter expansion takes the form kR

H0
� eNe and

Ne is the number of e-folds at the end of inflation. In order
for inflation to solve the horizon/flatness problem, Ne � 60 is
required. Note that in this case when k2

ψ0
� 2H 2

0 , the constant

parameter |α|/H 2
0 � 1 and thus ν � 3/2. Hence we can use

H(2)
ν [y] � − i

π
�(ν)(

y
2 )−ν on the IR sector to obtain

(41)
〈
A2〉∣∣

IR � 22ν−1

π3
H 2ν−1

0 �2(ν)e−(3−2ν)H0t

ϑkH∫
0

dkR

kR

k3−2ν
R .

Note that when α = 0, ν = 3/2 and thus the spectrum P(kR) ∼
k3−2ν
R is scale invariant. Performing the remaining integration,

(41) becomes

(42)
〈
A2〉∣∣

IR � 22ν−1

π3

�2(ν)

(3 − 2ν)
H 2

0 ϑ3−2ν,

which is similar to the corresponding 〈ϕ2〉|IR. We must note
that 〈A2〉 has constant value in the infrared sector, which means
that the amplitude of the corresponding photons is constant.
This result can be interpreted as a classical large-scale elec-
tromagnetic potential generated when a de Sitter inflationary
process ends, which is responsible for a large-scale seed mag-
netic field.

4. Induced seed magnetic field

In this section we estimate the seed magnetic field induced
from the electromagnetic potential whose dynamics was stud-
ied in the previous section. For this purpose we consider the
3D spatial components of �A = Aiêi (êi are the 3D spatial basis
vectors), which in view of (27) and (29) satisfy

(43)Äi + 3H0Ȧ
i − e−2H0t∇2

RAi − αAi = 0.

We consider the physical components of �A and �B measured in
a comoving frame. Hence, the orthonormal basis components
associated with the observers in this frame are given by

e(t) = ∂

∂t
, e(R̄) = e−H0t

∂

∂R̄
,

(44)e(θ) = e−H0t
1

R̄

∂

∂θ
, e(φ) = e−H0t

1

R̄ sin θ

∂

∂φ
,

where the spatial part of (26) has been rewritten as dR2 =
dR̄2 + R̄2(dθ2 + sin2θ dφ2).

On the other hand, we know that from (10) through the
transformations (24) we can obtain the standard Maxwell’s
equations with sources, where such sources have a geometrical
origin. The Maxwell’s equations without sources can be ob-
tained from these (see [26]). Therefore, using �∇R · �Bcom = 0
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and �Bcom = �∇R × �Acom, Eq. (43) becomes

(45)
B̈i

com + H0Ḃ
i
com − e−2H0t∇2

RBi
com − (

α + 2H 2
0

)
Bi

com = 0.

This expression describes the dynamics of the comoving com-
ponents of the seed magnetic field. As in the case of Aμ, we can
express these components as a Fourier expansion

Bi
com(t, �R) = e− 1

2 H0t

(2π)3/2

∫
d3kR

3∑
l=1

εi
(l)(kR)

[
b

(l)
kR

ei�kR · �RGkR
(t)

(46)+ b
(l)†
kR

e−i�kR · �RG∗
kR

(t)
]
,

where b
(l)†
kR

and b
(l)
kR

are the creation and annihilation opera-

tors and εi
(l)(kR) are the 3-polarization vectors which satisfy

ε(i) · ε(j) = gij . Therefore, the equation of motion for GkR
(t)

obtained from (45), acquires the form

(47)G̈kR
+

[
k2
Re−2H0t −

(
9

4
H 2

0 + α

)]
GkR

= 0,

and has for solution

(48)GkR
(t) = L1H(1)

ν

[
w(t)

] + L2H(2)
ν

[
w(t)

]
,

where ν = 1
2H0

√
9H 2

0 + 4α, w(t) = kR

H0
e−H0t and L1, L2 are

integration constants. The corresponding normalization condi-
tion for those seed magnetic modes is

(49)GkR
Ġ∗

kR
− ĠkR

G∗
kR

= i/a2
0,

being a0 = H−1
0 the scale factor of the universe when inflation

begins.
The normalized solution of (47) is

(50)GkR
(t) = i

√
πH0

4
H(2)

ν

[
w(t)

]
.

Now, the super-Hubble squared B fluctuations of the seed mag-
netic field 〈B2

com〉 in the Feynman gauge are given by

〈
B2

com

〉∣∣
IR = 3e−H0t

2π2

ϑkH∫
0

dkR

kR

k3
RGkR

(t)G∗
kR

(t)

(51)=
ϑkH∫
0

dkR

kR

P(kR),

where ϑ = k
(IR)
max/kp � 1 is a dimensionless parameter. We are

choosing kp as a cut-off scale of the whole spectrum. The power
spectrum P(kR) on cosmological scales is

(52)P(kR) = 3

8π3
22ν�2(ν)H 1+2ν

0 e−(1−2ν)H0t k3−2ν
R .

Considering the case k2
ψ0

� 2H 2
0 , we see that |α|/H 2

0 � 1, and

thus ν � 3/2, because α = k2
ψ0

− 2H 2
0 . This case is of physical

interest since it corresponds to a nearly scale-invariant power
spectrum for 〈B2

com〉|IR. Therefore, on the infrared IR sector,
we obtain

(53)
〈
B2

com

〉∣∣
IR � 3�2(ν)

3

22νH 4
0 ϑ3−2νe2H0t .
8π (3 − 2ν)
It is remarkable in this result that 〈B2
com〉|IR is a growing func-

tion of time during inflation. We notice that the typical infrared
divergence appears when k2

ψ0
= 2H 2

0 as in the case of the scalar
field inflaton analysis for a de Sitter expansion, where the spec-
trum is exactly scale invariant.

On the other hand, the physical magnetic field Bphys is re-
lated with the comoving one as

Bphys ∼ a−2Bcom.

After inflation, Bphys decreases as a−2. Hence, we could make
an estimation for the actual strength of the cosmological mag-
netic field B

(a)
phys

〈(
B

(a)
phys

)2〉1/2∣∣
IR �

(
a(t = t0)

a(t = ti )

)4〈
B2

com(t = ti )
〉1/2∣∣

IR,

where Bcom(t = ti ) denotes the comoving magnetic field at the
end of inflation.

In Fig. 1 we have plotted 〈(B(a)
phys)

2〉1/2|IR (in Gauss), with
respect to ν and ϑ . Notice that ν is related to the spectral in-
dex ns by the expression: ns = 4 − 2ν. Furthermore, we have
used H0 = 0.5 × 10−9Mp taking Ne = 63 and ϑ on the range
10−5 to 10−8 (which corresponds to actual scales that run from
3 × 103 to 3 × 106 Mpc). To estimate the scale factor evolution
of 〈(B(a)

phys)
2〉1/2|IR, we used

(
a(t = t0)

a(t = ti )

)4

� 10−136,

which accounts for the actual size of the observable horizon
(∼1028 cm) and the size of the horizon at the end of inflation
(∼3.6 × 10−6 cm).

5. Final comments

In this Letter we have developed a novel formalism of in-
flation which takes into account gravitoelectromagnetic effects
from a 5D vacuum state, where the fifth (spatial like) coordinate
is considered as noncompact. The reader can see a different ap-
proach in the framework of STM theory, for instance, in [27].
In our case, to define the 5D vacuum on the Riemann flat
(RA

BCD = 0) metric (1), we introduce the density Lagrangian
(3), which is purely kinetic, for a tensorial operator

QBC = FBC + gBC

(
AD;D

)
(such that FBC = AC;B − AB;C is antisymmetric and gAB is
symmetric) where the vector potential has components AB =
(Aμ,ϕ), which are minimally coupled to gravity. Working in
the Feynman gauge, we obtain a 5D massless Klein–Gordon-
like equation for AB , which represents the Maxwell’s equations
in a 5D vacuum state (see Eq. (6)). Using transformations (24)
with the foliation ψ = H−1

0 , we obtain the Maxwell’s equations
on an effective 4D de Sitter background metric (26), where the
sources (the last terms in (27) and (28)) describe the deriva-
tives of the corresponding potentials with respect to Aμ and ϕ.
Hence, the effective 4D dynamics of Aμ and the inflaton field ϕ

is well described by Eqs. (27) and (28). Finally, we have studied
the evolution of the squared Bcom-fluctuations during inflation,
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Fig. 1. 〈(B(a)
phys)

2〉1/2|IR (in Gauss), with respect to ν and ϑ . Notice that ν is related to the spectral index ns by the expression: ns = 4 − 2ν, so that values used in

the graphic for ν = (1.45,1.49) correspond respectively to ns = (1.1,1.02). Values considered for ϑ correspond to actual scales from 3 × 103 to 3 × 106 Mpc.
which are classical on cosmological scales. These fluctuations
increase exponentially on cosmological scales and at the end of
this epoch its strength is of the order of (10127)2 (G)2. Later, we
have estimated the present day strength of 〈(B(a)

phys)
2〉1/2, which

results of the order of 10−9 G. This results agree with the lim-
its imposed by the high isotropy of the CMB photons, obtained
from the COBE data [28]. However, must be noted that our cal-
culations are very sensitive with the number of e-folds that one
consider during inflation.
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